Semidefinite Programming Relaxation and Lagrangian Relaxation for Polynomial Optimization Problems

Masakazu Kojima
Department of Mathematical and Computing Sciences
Tokyo Institute of Technology
NACA 2003, August 25-29, 2003

Semidefinite Programming Relaxation and Lagrangian Relaxation for Polynomial Optimization Problems

Masakazu Kojima
Department of Mathematical and Computing Sciences
Tokyo Institute of Technology
NACA 2003, August 25-29, 2003

- Main purpose of my talk is "an introduction to the recent development of SDP relaxation in connection with the classical Lagrangian relaxation".
- Although the title includes "polynomial optimization problems", I will mainly talk about "quadratic optimization problems" for simplicity of discussions.
- But most of the discussions can be extended to "polynomial optimization problems".
- This material is available at http://www.is.titech.ac.jp/~kojima/talk.html

Outline

1. Optimization problems and their relaxation
2. Lagrangian relaxation
3. Lagrangian dual
4. SDP^{\star} relaxation of QOPs (quadratic optimization problems)
5. Lagrangian relaxation $=\mathrm{SDP}$ relaxation for QOPs
6. Summary

* : Semidefinite Program

Outline

1. Optimization problems and their relaxation
2. Lagrangian relaxation
3. Lagrangian dual
4. SDP^{\star} relaxation of QOPs (quadratic optimization problems)
5. Lagrangian relaxation $=\mathrm{SDP}$ relaxation for QOPs
6. Summary

* : Semidefinite Program

Optimization Problem

\mathcal{P}_{0} minimize $f_{0}(x)$ sub. to $x \in S_{0}$, where $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $S_{0} \subset \mathbb{R}^{n}$.
Difficult to compute exact global optimal solutions of general nonlinear programs and combinatorial optimization problems

Equality and inequality constrained optimization problem minimize $f_{0}(x)$
subject to $f_{i}(x) \leq 0(i=1,2, \ldots, \ell), f_{j}(x)=0(j=\ell+1, \ldots, m)$.

- Various assumptions imposed on f_{i}
"Continuous", "Smooth", "Convex"
"Linear + Quadratic", "Multivariate polynomial functions"

Optimization Problem

\mathcal{P}_{0} minimize $f_{0}(x)$ sub. to $x \in S_{0}$, where $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $S_{0} \subset \mathbb{R}^{n}$.
Difficult to compute exact global optimal solutions of general nonlinear programs and combinatorial optimization problems

Equality and inequality constrained optimization problem minimize $f_{0}(x)$
subject to $f_{i}(x) \leq 0(i=1,2, \ldots, \ell), f_{j}(x)=0(j=\ell+1, \ldots, m)$.

- "Linear + Quadratic" is easily manageable, yet has enough power to describe various optimization models including combinatorial optimization problem;
$0-1$ variable; $x_{j}=0$ or $1 \Leftrightarrow x_{j}\left(x_{j}-1\right)=0 \quad$ (quadratic equality)
- Powerful mathematics and tools behind "Linear + Quadratic", "Multivariate polynomial functions" such as SDP relaxation and sums of squares polynomial relaxation.

Optimization Problem

\mathcal{P}_{0} minimize $f_{0}(x)$ sub. to $x \in S_{0}$, where $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $S_{0} \subset \mathbb{R}^{n}$.

Example 1 QOP (Quadratic optimization problem)

$$
\operatorname{minimize} x_{2}^{2} \text { sub.to } x_{1}^{2}+x_{2}^{2} \leq 4,-x_{1}^{2} / 8+1 \leq x_{2} .
$$

Example 2 POP (Polynomial optimization problem)

$$
\text { minimize }-x_{1}^{3}+2 x_{1} x_{2}^{2} \text { sub.to } x_{1}^{4}+x_{2}^{4} \leq 1, x_{1} \geq 0, x_{1}^{2}+x_{2}^{2} \geq 0.5
$$

We will mainly focus our attention to QOPs, but we can adapt the discussions here to POPs with slight modification.

Optimization Problem

\mathcal{P}_{0} minimize $f_{0}(x)$ sub. to $x \in S_{0}$, where $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $S_{0} \subset \mathbb{R}^{n}$.
\Downarrow
Approximation of global optimal solutions:
(i) Methods to generate a feasible solution $x \in S_{0}$ having a smaller objective value $f_{0}(x)$.
(ii) Methods to compute a lower bound for the unknown optimal value.
(ii) \Longleftarrow Various relaxation techniques

Optimization Problem

\mathcal{P}_{0} minimize $f_{0}(x)$ sub. to $x \in S_{0}$, where $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $S_{0} \subset \mathbb{R}^{n}$.
Relaxation of $\mathcal{P}_{0}: \widetilde{\mathcal{P}}_{0}$ minimize $\tilde{f}_{0}(x)$ sub.to $x \in \tilde{S}_{0}$, where $S_{0} \subseteq \tilde{S}_{0}$, and $\tilde{f}_{0}(x) \leq f_{0}(x)\left(\forall x \in S_{0}\right)$

$f_{0}^{*} \equiv$ the unknown min. value of $\mathcal{P}_{0} \geq \tilde{f}_{0}^{*} \equiv$ the min. value of $\widetilde{\mathcal{P}}_{0}$ If the difference $f_{0}(\widehat{x})-\tilde{f}_{0}^{*}$ between $f_{0}(\widehat{x})$ at a feasible solution $\widehat{x} \in S_{0}$ and \tilde{f}_{0}^{*} is small, then we use \widehat{x} as an approximate optimal solution of \mathcal{P}_{0}

Optimization Problem

\mathcal{P}_{0} minimize $f_{0}(x)$ sub. to $x \in S_{0}$, where $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $S_{0} \subset \mathbb{R}^{n}$.
Relaxation of $\mathcal{P}_{0}: \widetilde{\mathcal{P}}_{0}$ minimize $\tilde{f}_{0}(x)$ sub.to $x \in \tilde{S}_{0}$, where $S_{0} \subseteq \tilde{S}_{0}$, and $\tilde{f}_{0}(x) \leq f_{0}(x)\left(\forall x \in S_{0}\right)$

Conditions to be satisfied by the relaxation problem $\widetilde{\mathcal{P}}_{0}$:

- $S_{0} \subseteq \tilde{S}_{0}$
- $\tilde{f}_{0}(x) \leq f_{0}(x)\left(\forall x \in S_{0}\right)$
- For $y \notin S_{0}, \tilde{f}_{0}(y)$ can take any value

Outline

1. Optimization problems and their relaxation
2. Lagrangian relaxation
3. Lagrangian dual
4. SDP^{\star} relaxation of QOPs (quadratic optimization problems)
5. Lagrangian relaxation $=\mathrm{SDP}$ relaxation for QOPs
6. Summary

* : Semidefinite Programming

Lagrangian relaxation - A classical method of constructing relaxations of equality and/or inequality constrained optimization problems

Inequality constrained optimization problem
minimize $f_{0}(x)$ sub.to $x \in S_{0}=\left\{x \in \mathbb{R}^{n}: f_{j}(x) \leq 0(j=1, \ldots, m)\right\}$
Lagrangian function:

$$
L(x, w)=f_{0}(x)+w_{1} f_{1}(x)+w_{2} f_{2}(x)+\cdots+w_{m} f_{m}(x)
$$

where $\boldsymbol{w} \in \mathbb{R}_{+}^{m} \equiv\left\{\boldsymbol{w}=\left(w_{1}, w_{2}, \ldots, w_{m}\right) \in \mathbb{R}^{m}: w_{j} \geq 0\right\}$.
Properties of Lagrangian function: for $\forall \boldsymbol{w} \in \mathbb{R}_{+}^{m}$,

$$
\begin{aligned}
& x \in S_{0} \Rightarrow f_{j}(x) \leq 0(j=1,2, \ldots, m) \Rightarrow \\
& L(x, w)=f_{0}(x)+w_{1} f_{1}(x)+w_{2} f_{2}(x)+\cdots+w_{m} f_{m}(x) \leq f_{0}(x)
\end{aligned}
$$

Lagrange relaxation problem: For \forall fixed $w \in \mathbb{R}_{+}^{m}$, minimize $L(x, w)$ sub.to $x \in \mathbb{R}^{n}$
$S_{0} \subset \mathbb{R}^{n}, L(w, x) \leq f_{0}(x)$ if $x \in S_{0}$.
Hence $L^{*}(w) \equiv \min _{x \in \mathbb{R}^{n}} L(x, w) \leq \min _{x \in S_{0}} f_{0}(x)\left(\forall w \in \mathbb{R}_{+}^{m}\right)$

Inequality constrained optimization problem
minimize $f_{0}(x)$ sub.to $x \in S_{0}=\left\{x \in \mathbb{R}^{n}: f_{j}(x) \leq 0(j=1, \ldots, m)\right\}$
Lagrangian function:

$$
L(x, w)=f_{0}(x)+w_{1} f_{1}(x)+w_{2} f_{2}(x)+\cdots+w_{m} f_{m}(x)
$$

where $\boldsymbol{w} \in \mathbb{R}_{+}^{m} \equiv\left\{\boldsymbol{w}=\left(w_{1}, w_{2}, \ldots, w_{m}\right) \in \mathbb{R}^{m}: w_{j} \geq 0\right\}$.
Example 2 (Polynomial optimization problem)

$$
\begin{array}{ll}
\operatorname{minimize} & -x_{1}^{3}+2 x_{1} x_{2}^{2} \\
\text { sub.to } & x_{1}^{4}+x_{2}^{4}-1 \leq 0,-x_{1} \leq 0,-x_{1}^{2}-x_{2}^{2}-0.5 \leq 0
\end{array}
$$

$$
\begin{aligned}
L(x, w) \equiv & -x_{1}^{3}+2 x_{1} x_{2}^{2}+w_{1}\left(x_{1}^{4}+x_{2}^{4}-1\right) \\
& +w_{2}\left(-x_{1}\right)+w_{3}\left(-x_{1}^{2}-x_{2}^{2}-0.5\right) \\
= & w_{1} x_{1}^{4}+w_{1} x_{2}^{4}-x_{1}^{3}+2 x_{1} x_{2}^{2} \\
& -w_{3} x_{1}^{2}-w_{3} x_{2}^{2}-w_{2} x_{1}-w_{1}-0.5 w_{3}
\end{aligned}
$$

where $w_{1} \geq 0, w_{2} \geq 0$.

Outline

1. Optimization problems and their relaxation
2. Lagrangian relaxation
3. Lagrangian dual
4. SDP^{\star} relaxation of QOPs (quadratic optimization problems)
5. Lagrangian relaxation $=\mathrm{SDP}$ relaxation for QOPs
6. Summary

* : Semidefinite Programming

Inequality constrained optimization problem
minimize $f_{0}(x)$ sub.to $x \in S_{0}=\left\{x \in \mathbb{R}^{n}: f_{j}(x) \leq 0(j=1, \ldots, m)\right\}$
Lagrangian function:

$$
L(x, w)=f_{0}(x)+w_{1} f_{1}(x)+w_{2} f_{2}(x)+\cdots+w_{m} f_{m}(x)
$$

where $\boldsymbol{w} \in \mathbb{R}_{+}^{m} \equiv\left\{\boldsymbol{w}=\left(w_{1}, w_{2}, \ldots, w_{m}\right) \in \mathbb{R}^{m}: w_{j} \geq 0\right\}$.
Lagrangian relaxation problem: For every fix $\boldsymbol{w} \in \mathbb{R}_{+}^{m}$,

$$
\operatorname{minimize} L(x, w) \text { sub.to } x \in \mathbb{R}^{n}
$$

Define $L^{*}(w) \equiv \min _{x \in \mathbb{R}^{n}} L(x, w) \leq \min _{x \in S_{0}} f_{0}(x)\left(\forall w \in \mathbb{R}_{+}^{m}\right)$
Lagrangian dual (The best Lagrangian relaxation problem)

$$
\operatorname{maximize}_{\boldsymbol{w} \in \mathbb{R}_{+}^{m} \boldsymbol{L}^{*}(\boldsymbol{w})}
$$

1

$\operatorname{maximize}_{\boldsymbol{w} \in \mathbb{R}_{+}^{m}} \operatorname{minimize}_{\boldsymbol{x} \in \mathbb{R}^{n}} L(\boldsymbol{x}, \boldsymbol{w})$

Inequality constrained optimization problem minimize $f_{0}(x)$ sub.to $x \in S_{0}=\left\{x \in \mathbb{R}^{n}: f_{j}(x) \leq 0(j=1, \ldots, m)\right\}$

Example 2 (Polynomial optimization problem)

$$
\begin{array}{ll}
\operatorname{minimize} & -x_{1}^{3}+2 x_{1} x_{2}^{2} \\
\text { sub.to } & x_{1}^{4}+x_{2}^{4}-1 \leq 0,-x_{1} \leq 0,-x_{1}^{2}-x_{2}^{2}-0.5 \leq 0
\end{array}
$$

$$
\begin{aligned}
L(x, w) \equiv & -x_{1}^{3}+2 x_{1} x_{2}^{2}+w_{1}\left(x_{1}^{4}+x_{2}^{4}-1\right) \\
& +w_{2}\left(-x_{1}\right)+w_{3}\left(-x_{1}^{2}-x_{2}^{2}-0.5\right) \\
= & w_{1} x_{1}^{4}+w_{1} x_{2}^{4}-x_{1}^{3}+2 x_{1} x_{2}^{2} \\
& -w_{3} x_{1}^{2}-w_{3} x_{2}^{2}-w_{2} x_{1}-w_{1}-0.5 w_{3}
\end{aligned}
$$

where $w_{1} \geq 0, w_{2} \geq 0$.
Lagrangian dual: $\max _{\min } L(x, w)$.

$$
\left(w_{1}, w_{2}\right) \geq 0\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
$$

- Although we introduce the Lagrangian dual, its minimization is difficult. \Rightarrow SOS, SDP relaxation

Outline

1. Optimization problems and their relaxation
2. Lagrangian relaxation
3. Lagrangian dual
4. SDP^{\star} relaxation of QOPs (quadratic optimization problems)
5. Lagrangian relaxation $=\mathrm{SDP}$ relaxation for QOPs
6. Summary

* : Semidefinite Programming

QOP minimize $f_{0}(x) \equiv x^{T} Q_{0} x+q_{0}^{T} x$
sub.to $\quad f_{i}(x) \equiv x^{T} Q_{i} x+q_{i}^{T} x+\pi_{i} \leq 0(i=1, \ldots, m)$.
Here $\quad x \in \mathbb{R}^{n}$: a vector variable, $Q_{i}: n \times n$ symmetric matrix, $q_{i} \in \mathbb{R}^{n}, \pi_{i} \in \mathbb{R}:$ constant

Notation: Given $n \times n$ symmetric matrix $Q, X, Q \bullet X=\sum_{j=1}^{n} \sum_{k=1}^{n} Q_{j k} X_{j k}$.

$$
x^{T} Q x=\sum_{j=1}^{n} \sum_{k=1}^{n} Q_{j k} x_{j} x_{k}=Q \bullet x x^{T} .
$$

Here $x x^{T}$ becomes an $n \times n$ symmetric matrix;

$$
x x^{T}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\begin{array}{cccc}
x_{1} x_{1} & x_{1} x_{2} & \cdots & x_{1} x_{n} \\
x_{2} x_{1} & x_{2} x_{2} & \cdots & x_{1} x_{n} \\
\vdots & \vdots & \cdots & \vdots \\
x_{n} x_{1} & x_{n} x_{2} & \cdots & x_{n} x_{n}
\end{array}\right) .
$$

$$
\begin{array}{lll}
\text { QOP } & \text { minimize } & f_{0}(x) \equiv x^{T} Q_{0} x+q_{0}^{T} \\
& \text { sub.to } & f_{i}(x) \equiv x^{T} Q_{i} x+q_{i}^{T} x+\pi_{i} \leq 0(i=1, \ldots, m)
\end{array}
$$

I equivalent

$$
\begin{array}{ll}
\operatorname{minimize} & Q_{0} \bullet x x^{T}+q_{0}^{T} x \\
\text { sub.to } & Q_{i} \bullet x x^{T}+q_{i}^{T} x+\pi_{i} \leq 0(i=1, \ldots, m)
\end{array}
$$

I equivalent

$$
\begin{array}{ll}
\operatorname{minimize} & Q_{0} \bullet X+q_{0}^{T} x \\
\text { sub.to } & Q_{i} \bullet X+q_{i}^{T} x+\pi_{i} \leq 0(i=1, \ldots, m), X-x x^{T}=O \\
\hline \Downarrow \operatorname{SDP} \text { relaxation }
\end{array}
$$

```
minimize \(Q_{0} \bullet X+q_{0}^{T} x\)
sub.to \(\quad Q_{i} \bullet X+q_{i}^{T} x+\pi_{i} \leq 0(i=1, \ldots, m), X-x x^{T} \succeq O\).
```

Here $A \succeq O \Leftrightarrow$ a symmetric matrix A is positive semidefinite, all eigenvalues of A are nonnegative or $\boldsymbol{u}^{T} \boldsymbol{A} \boldsymbol{u} \geq 0$ for $\forall u \in \mathbb{R}^{n}$.

QOP minimize $f_{0}(x) \equiv x^{T} Q_{0} x+q_{0}^{T}$

$$
\text { sub.to } \quad f_{i}(x) \equiv x^{T} Q_{i} x+q_{i}^{T} x+\pi_{i} \leq 0(i=1, \ldots, m)
$$

\Downarrow SDP relaxation
minimize $Q_{0} \bullet X+q_{0}^{T} x$
sub.to $\quad Q_{i} \bullet X+q_{i}^{T} x+\pi_{i} \leq 0(i=1, \ldots, m), X-x x^{T} \succeq O$.

$$
\text { (1) equivalent } X-x x^{T} \succeq O \Leftrightarrow\left(\begin{array}{cc}
1 & x^{T} \\
x & X
\end{array}\right) \succeq O
$$

SDP: minimize $Q_{0} \bullet X+q_{0}^{T} x$
sub.to

$$
Q_{i} \bullet X+q_{i}^{T} x+\pi_{i} \leq 0(i=1, \ldots, m),\left(\begin{array}{cc}
1 & x^{T} \\
x & X
\end{array}\right) \succeq O
$$

- SDP is an extension of LP (Linear Program) to the space of symmetric matrices.
- SDPs with $m, n=$ a few thousands can be solved by Interior-point methods, which was originally developed for LPs.

Outline

1. Optimization problems and their relaxation
2. Lagrangian relaxation
3. Lagrangian dual
4. SDP relaxation of QOPs (quadratic optimization problems)
5. Lagrangian relaxation $=\mathrm{SDP}$ relaxation for QOPs
6. Summary

Preparation - 1
$\boldsymbol{\lambda}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

$$
\zeta^{*}=\min _{x \in \mathbb{R}^{n}} \lambda(x)
$$

1
Semi-infinite optimization problem (Optimization problem having an infinite number of inequality constraints)

$$
\text { maximize } \zeta \text { subject to } \lambda(x)-\zeta \geq 0\left(\forall x \in \mathbb{R}^{n}\right)
$$

Here $\zeta \in \mathbb{R}$ denotes a variable but x an index parameter describing an infinite number of inequality constraints.

Preparation - 2

Nonnegative quadratic functions

$$
\lambda(x) \equiv x^{T} Q x+q^{T} x+\gamma \geq 0 \text { for } \forall x \in \mathbb{R}^{n}
$$

I
$\lambda(x)$: a sum of squares of linear functions

$$
=\sum_{i=1}^{k}\left(a_{i}^{T} x+b_{i}\right)^{2} \quad \text { for } \exists a_{i} \in \mathbb{R}^{n}, \exists b_{i} \in \mathbb{R}, \exists k \in \mathbb{Z}_{+}
$$

I

$$
\lambda(x) \equiv x^{T} Q x+q^{T} x+\gamma=\left(1, x^{T}\right) V\binom{1}{x} \text { for } \exists V \succeq O \text { and } \forall x \in \mathbb{R}^{n}
$$

Preparation - 3

Nonnegative polynomial functions with degree $\ell \leq 2 m$.

$$
\lambda(x) \geq 0 \text { for } \forall x \in \mathbb{R}^{n}
$$

介
$\lambda(x)$: a sum of squares of polynomial functions with degree $\leq m$
$=\sum_{i=1}^{k} g_{i}(x)^{2}$ for \exists polynomial functions $g_{i}(x)$ with degree $\leq m, \exists k \in \mathbb{Z}_{+}$.

II

$$
\begin{aligned}
\lambda(x)= & u(x) V u(x)^{T} \text { for } \exists V \succeq O \text { and } \forall x \in \mathbb{R}^{n}, \\
& \text { where } u(x)=\left(1, x_{1}, \ldots, x_{n}, x_{1}^{2}, x_{1} x_{2}, \ldots, x_{n}^{2}, \ldots, x_{1}^{m}, \ldots, x_{n}^{m}\right) \\
& (\text { a row vector of basis for a real valued polynomial of degree } m)
\end{aligned}
$$

Preparation - 4

Example. Characterization of a nonnegative quadratic function $\boldsymbol{\lambda}(\boldsymbol{x})=$ $d+b x_{1}+c x_{2}+x_{1}^{2}+a x_{1} x_{2}+2 x_{2}^{2}$: Choose a, b, c, d such that $\lambda(x) \geq 0$ for $\forall x \in \mathbb{R}^{2}$

$$
\begin{aligned}
& d+b x_{1}+c x_{2}+x_{1}^{2}+a x_{1} x_{2}+2 x_{2}^{2}=\left(1, x_{1}, x_{2}\right) V\left(\begin{array}{c}
1 \\
x_{1} \\
x_{2}
\end{array}\right) \\
& =V_{00}+2 V_{01} x_{1}+2 V_{02} x_{2}+V_{11} x_{1}^{2}+2 V_{12} x_{1} x_{2}+V_{22} x_{2}^{2} \\
& \quad \text { for } \exists V=\left(\begin{array}{lll}
V_{00} & V_{01} & V_{02} \\
V_{01} & V_{11} & V_{12} \\
V_{02} & V_{12} & V_{22}
\end{array}\right) \succeq O
\end{aligned}
$$

\mathbb{I} The coefficients of $x_{1}, x_{2}, x_{1} x_{2}, x_{1}^{2}, x_{2}^{2}$ in both side must coincide to each other, respectively.

$$
d=V_{00}, b=2 V_{01}, c=2 V_{02}, 1=V_{11}, a=2 V_{12}, 2=2 V_{22}, V \succeq O
$$

(Linear Matrix Inequality)

QOP minimize $f_{0}(x) \equiv x^{T} Q_{0} x+q_{0}^{T}$

$$
\text { sub.to } \quad f_{i}(x) \equiv x^{T} Q_{i} x+q_{i}^{T} x+\pi_{i} \leq 0(i=1, \ldots, m) .
$$

Lagrangian relaxation with a fixed parameter $\boldsymbol{w} \in \mathbb{R}_{+}^{m}$

$$
\operatorname{minimize} L(x, w) \equiv f_{0}(x)+\sum_{i=1}^{m} w_{i} f_{i}(x) \text { sub.to } x \in \mathbb{R}^{n}
$$

I equivalent

$$
\text { maximize } \zeta \text { sub.to } f_{0}(x)+\sum_{i=1}^{m} w_{i} f_{i}(x)-\zeta \geq 0\left(\forall x \in \mathbb{R}^{n}\right)
$$

I equivalent

$$
\text { maximize } \zeta \text { sub.to } f_{0}(x)+\sum_{i=1}^{m} w_{i} f_{i}(x)-\zeta=\left(1, x^{T}\right) V\binom{1}{x} \text { for } \exists V \succeq O .
$$

I Comparison of coefficients of every monomial in both side

$$
\begin{array}{ll}
\text { SDP: } & \text { maximize } \zeta \\
& \text { sub.to Linear equations in } V, V \succeq O
\end{array}
$$

QOP minimize $f_{0}(x) \equiv x^{T} Q_{0} x+q_{0}^{T}$

$$
\text { sub.to } \quad f_{i}(x) \equiv x^{T} Q_{i} x+q_{i}^{T} x+\pi_{i} \leq 0(i=1, \ldots, m)
$$

Lagrangian relaxation with a fixed parameter $w \in \mathbb{R}_{+}^{m}$
I equivalent

```
SDP: maximize }
    sub.to Linear equations in }V,V\succeq
```

maximization in $w \in \mathbb{R}_{+}^{n} \Downarrow$ The best Lagrangian relaxation

SDP:	maximize ζ
	sub.to Linear equations in $w \in \mathbb{R}_{+}^{m}$ and $V, V \succeq O$

SDP relaxation of QOP I dual

$$
\begin{array}{ll}
\operatorname{minimize} & Q_{0} \bullet X+q_{0}^{T} x \\
\text { sub.to } & Q_{i} \bullet X+q_{i}^{T} x+\pi_{i} \leq 0(i=1, \ldots, m),\left(\begin{array}{cc}
1 & x^{T} \\
x & X
\end{array}\right) \succeq O
\end{array}
$$

Outline

1. Optimization problems and their relaxation
2. Lagrangian relaxation
3. Lagrangian dual
4. SDP^{\star} relaxation of QOPs (quadratic optimization problems)
5. Lagrangian relaxation $=\mathrm{SDP}$ relaxation for QOPs
6. Summary

QOP minimize $f_{0}(x) \equiv x^{T} Q_{0} x+q_{0}^{T}$ sub.to $\quad f_{i}(x) \equiv x^{T} Q_{i} x+q_{i}^{T} x+\pi_{i} \leq 0(i=1, \ldots, m)$.

QOP
 $\Rightarrow \quad$ SDP relaxation of QOP

I Duality theory
Lagrangian dual of QOP
\Leftrightarrow Dual SDP relaxation of QOP

- \Leftrightarrow follows from

Nonnegative quadratic functions $=$ Sum of squares of linear functions

- Optimal values

$$
\mathrm{QOP} \geq \text { Lagrangian dual }=\mathrm{SDP}=\text { Dual SDP. }
$$

- Computation

SDP, Dual SDP can be solved by interior-point methods.

POP minimize $f_{0}(x)$ sub.to $f_{i}(x) \leq 0(i=1, \ldots, m)$, where $f_{i}(x)$ denotes a polynomial in $x \in \mathbb{R}^{n}(i=0,1,2, \ldots, m)$. POP \Rightarrow SDP relaxation of POP
\Downarrow
Lagrangian dual of POP

I Duality theory
\Rightarrow Dual SDP relaxation of POP

- \Rightarrow follows from

Nonnegative polynomials \supset Sum of squares of polynomials

- Optimal values

$$
\mathrm{QOP} \geq \text { Lagrangian dual } \geq \mathrm{SDP}=\text { Dual } \mathrm{SDP}
$$

- Computation

SDP, Dual SDP can be solved by interior-point methods.

This presentation material is available at
http://www.is.titech.ac.jp/~kojima/talk.html

Thank you!

References

[1] M. Kojima, S. Kim and H. Waki, "A general framework for convex relaxation of polynomial optimization problems over cones", J. of OR Society of Japan, 46 (2003) 125-144.
[2] J. B. Lasserre, "Global optimization with polynomials and the problems of moments", SIAM J. on Optimization, 11 (2001) 796-817.
[3] P. A. Parrilo, "Semidefinite programming relaxations for semi algebraic problems". Math. Frog., 96 (2003) 293-320.
[4] V. Powers and T. Wörmann, "An algorithm for sums of squares of real polynomials", Journal of Pure and Applied Algebra, 127 (1998) 99-104.
[5] S. Prajna, A. Papachristodoulou and P. A. Parrilo, "SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB - User's Guide", Control and Dynamical Systems, California Institute of Technology, Pasadena, CA 91125 USA, 2002.
[6] M. Putinar, "Positive polynomials on compact semi-algebraic sets", Indiana University Mathematics Journal, 42 (1993) 969-984.
[7] B. Reznick, "Extremal psd forms with few terms", Duke Mathematical Journal, 45 (1978) 363-374.

