半正定値計画と多項式最適化

東京工業大学 情報理工学研究科 数理・計算科学専攻 小島政和

> 日本オペレーションズ・リサーチ学会 2009 年春季研究発表会

> > 2009年3月17日

- 1. 最適化の中での位置づけ
 - 1-1 半正定值計画問題
 - 1-2 多項式最適化問題
 - 1-3 この分野での私の主な研究
- 2. モーメント行列,半正定値計画緩和
- 3. 疎性の活用
- 4. ソフトウェア
 - 4-1 SparsePOP
 - 4-2 SFSDP
 - 4-3 SDPARA
- 5. おわりに

1. 最適化の中での位置づけ

- 1-1 半正定值計画問題
- 1-2 多項式最適化問題
- 1-3 この分野での私の主な研究
- 2. モーメント行列,半正定値計画緩和
- 3. 疎性の活用
- 4. ソフトウェア
 - 4-1 SparsePOP
 - 4-2 SFSDP
 - 4-3 SDPARA
- 5. おわりに

最適化の理論と手法 ⊂ OR

線形計画,整数線形計画(組み合わせ最適化), 非線形計画(凸計画)

- 理工学を支える基礎技術,理工学分野への幅広い応用
 汎用
- 商用のソフトウェア

最適化の理論と手法 ⊂ OR

線形計画,整数線形計画(組み合わせ最適化), 非線形計画(凸計画)

- 理工学を支える基礎技術,理工学分野への幅広い応用
 汎用
- 商用のソフトウェア
- 半正定値計画 (SDP, Semidefinite Program)
 汎用,幅広い応用 (ここ15年間),ソフトウェアは 整っている.
 - 多項式最適化 (POP, Polynomial Optimization Problem)
 汎用,大域的最適化のための数理モデル,応用

半正定値計画問題と多項式最適化問題の位置付け

- 1. 最適化の中での位置づけ
 - 1-1 半正定值計画問題 (SDP)
 - 1-2 多項式最適化問題
 - 1-3 この分野での私の主な研究
- 2. モーメント行列,半正定値計画緩和
- 3. 疎性の活用
- 4. ソフトウェア
 - 4-1 SparsePOP
 - 4-2 SFSDP
 - 4-3 SDPARA
- 5. おわりに

半正定値計画問題 (SDP) は線形計画 (LP) の拡張

LP: minimize
$$-x_1 - 2x_2 - 5x_3$$

subject to $2x_1 + 3x_2 + x_3 = 7, x_1 + x_2 \ge 1,$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$

SDP: minimize $-x_1 - 2x_2 - 5x_3$ subject to $2x_1 + 3x_2 + x_3 = 7, x_1 + x_2 \ge 1,$ $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0,$ $\begin{pmatrix} x_1 & x_2 \\ x_2 & x_3 \end{pmatrix} \succeq O$ (半正定値).

共通:実変数 x₁, x₂, x₃ に関する線形目的関数
共通:実変数 x₁, x₂, x₃ に関する線形等式・不等式条件
違い:SDP:半正定値条件
共通:許容領域は凸。違い:多面体 VS 凸集合
共通:主双対内点法

半正定値計画問題 (SDP) は線形計画 (LP) の拡張

LP: minimize
$$-x_1 - 2x_2 - 5x_3$$

subject to $2x_1 + 3x_2 + x_3 = 7, x_1 + x_2 \ge 1,$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$

SDP: minimize $-x_1 - 2x_2 - 5x_3$ subject to $2x_1 + 3x_2 + x_3 = 7, x_1 + x_2 \ge 1,$ $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0,$ $\begin{pmatrix} x_1 & x_2 \\ x_2 & x_3 \end{pmatrix} \succeq O$ (半正定値).

半正定値計画問題 (SDP) は線形計画 (LP) の拡張

LP: minimize
$$-x_1 - 2x_2 - 5x_3$$

subject to $2x_1 + 3x_2 + x_3 = 7, x_1 + x_2 \ge 1,$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$

SDP: minimize $-x_1 - 2x_2 - 5x_3$ subject to $2x_1 + 3x_2 + x_3 = 7, x_1 + x_2 \ge 1,$ $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0,$ $\begin{pmatrix} x_1 & x_2 \\ x_2 & x_3 \end{pmatrix} \succeq O$ (半正定値).

 $n \times n$ 実対称行列 A:半正定值

⇔ A の固有値がすべて非負,または,

2 次形式 $\boldsymbol{u}^T \boldsymbol{A} \boldsymbol{u} \ge 0$ for $\forall \boldsymbol{u} \in \mathbb{R}^n$

例:分散共分散行列

半正定値計画問題の応用例

- システムと制御 線形行列不等式
- Robust Optimization
- 機械学習
- 金融工学
- 建造物の構造安定性解析
- 量子化学
- 量子計算
- モーメント行列 (応用確率論)
- 半正定値計画緩和
 - ▶ グラフの最大カット問題,最大クリーク問題
 - Sensor Network Localization Problem
 - 多項式最適化問題

1. 最適化の中での位置づけ

- 1-1 半正定值計画問題
- 1-2 多項式最適化問題 (POP)
- 1-3 この分野での私の主な研究
- 2. モーメント行列,半正定値計画緩和
- 3. 疎性の活用
- 4. ソフトウェア
 - 4-1 SparsePOP
 - 4-2 SFSDP
 - 4-3 SDPARA
- 5. おわりに

$$\boldsymbol{x} = (x_1, \dots, x_n)$$
:ベクトル変数.
 $f_j(\boldsymbol{x})$: \boldsymbol{x} に関する n 変数多項式 $(j = 0, 1, \dots, m)$.

POP: min $f_0(\boldsymbol{x})$ sub.to $f_j(\boldsymbol{x}) \ge 0$ ($\sharp \succeq \Bbbk$) = 0 ($j = 1, \ldots, m$)

$$x = (x_1, \dots, x_n)$$
: ベクトル変数.
 $f_j(x)$: x に関する n 変数多項式 $(j = 0, 1, \dots, m)$.
POP: min $f_0(x)$ sub.to $f_j(x) \ge 0$ (または) = 0 $(j = 1, \dots, m)$

例. n = 3

 $\begin{array}{ll} \min & f_0(\boldsymbol{x}) \equiv x_1^3 - 2x_1x_2^2 + x_1^2x_2x_3 - 4x_3^2 \\ \text{sub.to} & f_1(\boldsymbol{x}) \equiv -x_1^2 + 5x_2x_3 + 1 \ge 0, \\ & f_2(\boldsymbol{x}) \equiv x_1^2 - 3x_1x_2x_3 + 2x_3 + 2 \ge 0, \\ & f_3(\boldsymbol{x}) \equiv -x_1^2 - x_2^2 - x_3^2 + 1 \ge 0. \\ & x_1(x_1 - 1) = 0 \ (0 - 1 \ \underline{8}$ 数条件), \\ & x_2 \ge 0, \ x_3 \ge 0, \ x_2x_3 = 0 \ (相補性条件). \end{array}

- •多項式最適化問題 (POP) の記述能力は高い.
- 非線形最適化+組合せ最適化での大域的最適化の数理モデル.

- 1. 最適化の中での位置づけ
 - 1-1 半正定值計画問題
 - 1-2 多項式最適化問題
 - 1-3 この分野での私の主な研究
- 2. モーメント行列,半正定値計画緩和
- 3. 疎性の活用
- 4. ソフトウェア
 - 4-1 SparsePOP
 - 4-2 SFSDP
 - 4-3 SDPARA
- 5. おわりに

- SDP に対する主双対内点法の基礎理論の構築
 - Nesterov, Nemirovskii '94 内点法の拡張
 - Kojima, Shindoh, Hara '97 主双対内点法 SDPA, CSDP, SDPT3 等で使われている
 - Nesterov, Todd '98 主双対内点法
- SDP に対する主双対内点法での疎性の活用
 - Fujisawa, Kojima, Nakata '97 探索方向の計算 SDPA, SDPT3, CSDP 等で使われている
 - Fujisawa, Fukuda, Kojima, Murota, Nakata '01, '03

 — 構造的な疎性を持つ SDP に対する半正定値補完
 - Kim, Kojima, Mevissen, Yamashita '09
 - 上記の疎性の活用の拡張(双対性, 非線形) ⇒ 3節
- 多項式最適化問題(POP)の SDP 緩和での疎性の活用
 - Lasserre '01, Parrilo '03 POP の SDP 緩和の基礎理論
 - ▶ Kim, Kojima, Muramatsu, Waki '05, '06 疎性の活用

ソフトウェア

- SDPA
 - SDP に対する主双対内点法のソフトウェア
 - SDPA 1.00 Fujisawa, Kojima December 1995
 - family (SDPA 7.2.1, SDPARA 7.2.1, SDPA-GMP 他)
 On Line Solver
 - 開発グループ: Fujisawa, Fukuda, Futakata, Kobayashi, Kojima, K.Nakata, M.Nakata, Yamashita
- SparsePOP
 - SDP 緩和を用いた疎な POP の解法
 - Waki, Kim, Kojima, Muramatsu, Sugimoto '07

SFSDP

- Sensor Network Localization 問題に対する疎性を活用した SDP 緩和
- Kim, Kojima, Waki '08

計算実験結果を後で示す

- 1. 最適化の中での位置づけ
 - 1-1 半正定值計画問題
 - 1-2 多項式最適化問題
 - 1-3 この分野での私の主な研究
- モーメント行列,半正定値計画緩和 — Lasserre '01
- 3. 疎性の活用
- 4. ソフトウェア
 - 4-1 SparsePOP
 - 4-2 SFSDP
 - 4-3 SDPARA
- 5. おわりに

 $\mu: \mathbb{R}^n$ 上の確率測度. ここでは, n = 2 に限定して説明する. $r = 0, 1, 2, \ldots$ に対して

$$u_{r}(\boldsymbol{x}) = (1, x_{1}, x_{2}, x_{1}^{2}, x_{1}x_{2}, x_{2}^{2}, x_{1}^{3}, \dots, x_{2}^{r}) : 行ベクトル (次数 r までのすべての単項式) M_{r}(\boldsymbol{y}) = \int_{\mathbb{R}^{2}} u_{r}(\boldsymbol{x})^{T} u_{r}(\boldsymbol{x}) d\mu (\mathcal{E} - \mathcal{X} \mathcal{Y} \wedge \mathcal{F} \mathcal{T} \mathcal{I}), triangle the set of th$$

 $\mu: \mathbb{R}^n$ 上の確率測度. ここでは, n = 2に限定して説明する. $r = 0, 1, 2, \ldots$ に対して

$$u_r(\mathbf{x}) = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2, x_1^3, \dots, x_2^r)$$
: 行ベクトル
(次数 r までのすべての単項式)
 $M_r(\mathbf{y}) = \int_{\mathbb{R}^2} u_r(\mathbf{x})^T u_r(\mathbf{x}) d\mu$ (モーメント行列),
ただし $y_{\alpha\beta} = \int_{\mathbb{R}^2} x_1^{\alpha} x_2^{\beta} d\mu = (\alpha, \beta)$ -要素 (μ に依存), $y_{00} = 1$

例えば,
$$r = 2$$
 では
$$M_r(\boldsymbol{y}) = \begin{pmatrix} y_{00} & y_{10} & y_{01} & y_{20} & y_{11} & y_{02} \\ y_{10} & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} \\ y_{01} & y_{11} & y_{02} & y_{21} & y_{12} & y_{03} \\ y_{20} & y_{30} & y_{21} & y_{40} & y_{31} & y_{22} \\ y_{11} & y_{21} & y_{12} & y_{31} & y_{22} & y_{13} \\ y_{02} & y_{12} & y_{03} & y_{22} & y_{13} & y_{04} \end{pmatrix}, \ y_{00} = 1$$

 μ : \mathbb{R}^n 上の確率測度. ここでは, n = 2 に限定して説明する. $r = 0, 1, 2, \ldots$ に対して

 $\mu: \mathbb{R}^n$ 上の確率測度. ここでは, n = 2 に限定して説明する. $r = 0, 1, 2, \dots$ に対して

$$u_{r}(\boldsymbol{x}) = (1, x_{1}, x_{2}, x_{1}^{2}, x_{1}x_{2}, x_{2}^{2}, x_{1}^{3}, \dots, x_{2}^{r}) : 行ベクトル (次数 r までのすべての単項式)
$$M_{r}(\boldsymbol{y}) = \int_{\mathbb{R}^{2}} u_{r}(\boldsymbol{x})^{T} u_{r}(\boldsymbol{x}) d\mu (\boldsymbol{\varepsilon} - \boldsymbol{x} \boldsymbol{\nu} \boldsymbol{\nu} \boldsymbol{\gamma} \boldsymbol{\beta}),$$
$$t \\ t \\ t \\ \boldsymbol{\xi} \\ \boldsymbol{\xi}$$$$

 $\mu: \mathbb{R}^n$ 上の確率測度. ここでは, n = 2 に限定して説明する. $r = 0, 1, 2, \ldots$ に対して

$$u_{r}(\boldsymbol{x}) = (1, x_{1}, x_{2}, x_{1}^{2}, x_{1}x_{2}, x_{2}^{2}, x_{1}^{3}, \dots, x_{2}^{r}) : 行ベクトル (次数 r までのすべての単項式) M_{r}(\boldsymbol{y}) = \int_{\mathbb{R}^{2}} u_{r}(\boldsymbol{x})^{T} u_{r}(\boldsymbol{x}) d\mu (\mathcal{E} - \mathcal{X} \mathcal{Y} \wedge \mathcal{F} \mathcal{T} \mathcal{I}), triangle the set of th$$

 μ : \mathbb{R}^n 上の確率測度. ここでは, n = 2 に限定して説明する. r = 0, 1, 2, ... に対して

$$u_{r}(\boldsymbol{x}) = (1, x_{1}, x_{2}, x_{1}^{2}, x_{1}x_{2}, x_{2}^{2}, x_{1}^{3}, \dots, x_{2}^{r}) : 行ベクトル (次数 r までのすべての単項式)
$$M_{r}(\boldsymbol{y}) = \int_{\mathbb{R}^{2}} u_{r}(\boldsymbol{x})^{T} u_{r}(\boldsymbol{x}) d\mu (\mathcal{E} - \mathcal{X} \mathcal{Y} \wedge \mathcal{F} \mathcal{F} \mathcal{I} \mathcal{I}),$$

ただし $y_{\alpha\beta} = \int_{\mathbb{R}^{2}} x_{1}^{\alpha} x_{2}^{\beta} d\mu = (\alpha, \beta) - 要素 (\mu \ \mathrm{E} \ \mathrm{$$$

 $y_{00} = 1, M_r(y), B_{ir}(y) \succeq O(i = 1, 2, ..., m, r = 1, 2, ...)$

伝統的な手法:確率測度を推定して,期待値の計算,最小(大)化 新しい手法(多項式モデル):モーメントだけを使って, 期待値の評価(上界,下界),最小(大)値の下界(上界) ⇒半正定値計画問題

多項式最適	化問題の半正定値計画緩和
POP: min) $f_0(x) = x_1^4 - 2x_1x_2$ 最適值 ζ^* :未知
sub. to	$\boldsymbol{x} \in S \equiv \left\{ \boldsymbol{x} \in \mathbb{R}^2 : \begin{array}{l} f_1(\boldsymbol{x}) = 1 - x_1^2 - x_2^2 \ge 0 \\ f_2(\boldsymbol{x}) = x_1 \ge 0 \end{array} \right\}.$
	$1 \qquad 1 \qquad x_2$
min	$\int f_0(\boldsymbol{x}) d\mu \qquad $
sub. to	" μ は S 上の確率測度". 0 1 x ₁
	↓(緩和)1
min	$y_{40} - 2y_{11}$
sub. to	$M_r(y), B_{ir}(y) \succeq O \ (i = 1, 2, r = 1, 2,), y_{00} = 1$
有限の	r ≥ 0 で打ち切り ↓ (緩和)
min	$y_{40} - 2y_{11}$ — SDP 緩和問題, 最適值 $\zeta_r \leq \zeta^*$
sub. to	$M_r(y), \ B_{ir}(y) \succeq O \ (i = 1, 2), \ y_{00} = 1$
注: $oldsymbol{M}_r(oldsymbol{y})$	$\succeq oldsymbol{O} \Rightarrow oldsymbol{M}_{r-1}(oldsymbol{y}) \succeq oldsymbol{O}, oldsymbol{B}_{ir}(oldsymbol{y}) \succeq oldsymbol{O} \Rightarrow oldsymbol{B}_{ir-1}(oldsymbol{y}) \succeq oldsymbol{O}$

多項式最適任	<u>と問題の半正定値計画緩和</u>
POP: min	$f_0(x) = x_1^4 - 2x_1x_2$ 最適値 ζ^* :未知
sub. to	$\boldsymbol{x} \in S \equiv \left\{ \boldsymbol{x} \in \mathbb{R}^2 : \begin{array}{l} f_1(\boldsymbol{x}) = 1 - x_1^2 - x_2^2 \ge 0 \\ f_2(\boldsymbol{x}) = x_1 \ge 0 \end{array} \right\}.$
	\uparrow $1 2$
min	$\int f_0(\boldsymbol{x}) d\mu \qquad $
sub. to '	" μ は S 上の確率測度". 0 1 x ₁
	↓(緩和) _1
min	$y_{40} - 2y_{11}$ — SDP 緩和問題, 最適值 $\zeta_r \leq \zeta^*$
sub. to	$M_r(y), \ B_{ir}(y) \succeq O \ (i = 1, 2), \ y_{00} = 1$

● 一般の多項式最適化問題,多項式半正定値計画問題

● 条件 "S が有界"の下で、 $r \to \infty$ のとき、SDP 緩和問題の最適値 ζ_r は 単調非減少で、POP の最適値 ζ^* に収束する

多項式最適化問題の半正定値計画緩和

 \Downarrow

多項式最適化問題の半正定値計画緩和 r = 2

多項式最適化問題の半正定値計画緩和 r = 2

- 1. 最適化の中での位置づけ
 - 1-1 半正定值計画問題
 - 1-2 多項式最適化問題
 - 1-3 この分野での私の主な研究
- 2. モーメント行列,半正定値計画緩和
- 3. 疎性の活用
 - Fujisawa, Fukuda, Kojima, Murota, Nakata '01, '03

 — 構造的な疎性を持つ SDP に対する半正定値補完
 - Kim, Kojima, Mevissen, Yamashita '09
 - ― 上記の疎性の活用の拡張 (双対性, 非線形)
- 4. ソフトウェア
 - 4-1 SparsePOP
 - 4-2 SFSDP
 - 4-3 SDPARA

5. おわりに

3 種類の疎性:簡単な例題
$$A_0: n \times n \ 3 \pm \eta \beta$$

min $\sum_{i=1}^{n-1} (A_{ii}^0 X_{ii} + A_{i,i+1}^0 X_{i,i+1} + A_{i+1,i}^0 X_{i+1,i}) + A_{nn}^0 X_{nn}$ — (1)
sub. to (行列不等式, 対角+縁付き)
 $M(X) = \begin{pmatrix} 1 - X_{11} & 0 & \dots & X_{12} \\ 0 & 1 - X_{22} & \dots & X_{23} \\ \dots & \dots & \ddots & \dots \\ X_{21} & X_{32} & \dots & 1 - X_{nn} \end{pmatrix} \succeq O$ (2)
 $X = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ \dots & \dots & \dots & \dots \\ X_{n1} & X_{n2} & \dots & X_{nn} \end{pmatrix} \succeq O$ (半正定值条件)

• domain-space sparsity — (1), (2) で使われている変数 X_{ij} ?

- range-space sparsity (2) は対角+縁付き
- (隠れた)相関疎性 (2) では各 X_{ij} はたかだか 1 回出現

3 種類の疎性:簡単な例題 ↓ 疎性を活用した変換を適用

$$\min \sum_{i=1}^{n-1} \left(A_{ii}^{0} X_{ii} + 2A_{i,i+1}^{0} X_{i,i+1} \right) + A_{nn}^{0} X_{nn} \text{ sub.to}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} X_{11} & -X_{12} \\ -X_{12} & -z_{1} \end{pmatrix} \succeq \boldsymbol{O},$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} X_{ii} & -X_{i,i+1} \\ -X_{i,i+1} & z_{i-1} - z_{i} \end{pmatrix} \succeq \boldsymbol{O} \ (i = 2, 3, \dots, n-2),$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} X_{n-1,n-1} & -X_{n-1,n} \\ -X_{n-1,n} & X_{n,n} + z_{n-2} \end{pmatrix} \succeq \boldsymbol{O},$$

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} -X_{ii} & -X_{i,i+1} \\ -X_{i,i+1} & -X_{i+1,i+1} \end{pmatrix} \succeq \boldsymbol{O} \ (i = 1, 2, \dots, n-1).$$

 $n \times n$ 行列変数 $\Rightarrow 3n - 3$ 変数
 2 個の $n \times n$ 行列不等式 $\Rightarrow 3n - 3$ 個の 2×2 行列不等式
 相関疎性 — *i* 番目の不等式の変数 vs *j* 番目の不等式の変数

3 種類の疎性:簡単な例題

	計算時間,秒 (Schur 補完行列のサイズ)					
n	変換前	変換後				
10	0.2 (55)	0.1 (27)				
100	1091.4 (5,050)	0.6 (<mark>297</mark>)				
1000	-	6.3 (<mark>2,997</mark>)				
10000	-	99.2 (<mark>29,997</mark>)				

● 変換後の SDP の Schur 補完行列 (主双対内点法の各反復で解 く線形方程式の正定値な係数行列)の疎性(n = 10, 100) ● 変換前は完全に密な行列

- 1. 最適化の中での位置づけ
 - 1-1 半正定值計画問題
 - 1-2 多項式最適化問題
 - 1-3 この分野での私の主な研究
- 2. モーメント行列,半正定値計画緩和
- 3. 疎性の活用
- 4. ソフトウェア
 - 4-1 SparsePOP
 - 4-2 SFSDP
 - 4-3 SDPARA
- 5. おわりに

- 1. 最適化の中での位置づけ
 - 1-1 半正定值計画問題
 - 1-2 多項式最適化問題
 - 1-3 この分野での私の主な研究
- 2. モーメント行列,半正定値計画緩和
- 3. 疎性の活用
- 4. ソフトウェア
 - 4-1 SparsePOP (MATLAB, SeDuMi)
 - SDP 緩和を用いた疎な POP の解法
 - Waki, Kim, Kojima, Muramatsu, Sugimoto '07
 - 4-2 SFSDP
 - 4-3 SDPARA
- 5. おわりに

問題1: alkyl.gms — globallib からのベンチマーク問題
min
$$-6.3x_5x_8 + 5.04x_2 + 0.35x_3 + x_4 + 3.36x_6$$

sub.to $-0.820x_2 + x_5 - 0.820x_6 = 0$,
 $0.98x_4 - x_7(0.01x_5x_{10} + x_4) = 0$,
 $-x_2x_9 + 10x_3 + x_6 = 0$,
 $x_5x_{12} - x_2(1.12 + 0.132x_9 - 0.0067x_9^2) = 0$,
 $x_8x_{13} - 0.01x_9(1.098 - 0.038x_9) - 0.325x_7 = 0.574$,
 $x_{10}x_{14} + 22.2x_{11} = 35.82$,
 $x_1x_{11} - 3x_8 = -1.33$, $lbd_i \le x_i \le ubd_i$ $(i = 1, 2, ..., 14)$

Sparse			Den	se (Lasser	re)
[€] obj	[€] obj [€] feas ^{cpu}		€obj	ϵ feas	cpu
1.8e-9	9.6e-9	4.1	out of	memory	

$$\epsilon_{obj} = \frac{| \mathbf{b} \wedge \mathbf{i} \mathbf{o} \nabla \mathbf{F} - \mathbf{i} \mathbf{U} \mathbf{b} \mathbf{h} \mathbf{f} \mathbf{h} |}{\max\{1, | \mathbf{b} \wedge \mathbf{i} \mathbf{o} \nabla \mathbf{F} \mathbf{F} |\}}.$$

 $\epsilon_{feas} = 等式制約の誤差, cpu: 計算時間(秒)$

•

無制約最小化のベンチマーク問題

The gneralized Rosenbrock function — 次数4の多項式

$$f_R(\boldsymbol{x}) = 1 + \sum_{i=2}^n \left(100(x_i - x_{i-1}^2)^2 + (1 - x_i^2)^2 \right)$$

The chained singular function — 次数4の多項式

$$f_C(\boldsymbol{x}) = \sum_{i \in J} \left((x_i + 10x_{i+1})^2 + 5(x_{i+2} - x_{i+3})^2 + (x_{i+1} - 2x_{i+2})^4 + 10(x_i - 10x_{i+3})^4 \right)$$

ただし, $J = \{1, 3, 5, \dots, n-3\}$, n は 4 の倍数.

The Broyden banded function — 次数6の多項式

$$f_B(\boldsymbol{x}) = \sum_{i=1}^n \left(x_i (2 + 5x_i^2) + 1 - \sum_{j \in J_i} (1 + x_j) x_j \right)^2$$
ただし, $J_i = \{j : j \neq i, \max\{1, i - 5\} \le j \le \min\{n, i\}\}.$ 問題 2 : min $f_R(\boldsymbol{x}) + f_C(\boldsymbol{x})$ 問題 3 : min $f_R(\boldsymbol{x}) + f_B(\boldsymbol{x})$

問題2:min $f_R(\mathbf{x}) + f_C(\mathbf{x}) - 4$ 次,非常に疎,未知最適値

	Sparse			Den	se (Lass	serre)
n	ϵ obj	# =	cpu	$\epsilon_{\sf obj}$	# =	cpu
12	6e-9	214	0.2	1e-9	1,819	64.1
16	5e-9	294	0.2	1e-9	4,844	1311.1
100	2e-9	1,974	1.2	out of	mem	
1000	7e-11	19,974	16.9			
2000	6e-12	39,974	45.1			
3000	out of	mem				

$$\epsilon_{obj} = \frac{|最小値の下界 - 近似最小解|}{\max\{1, |最小値の下界|\}}$$

= : SDP の等式条件数, cpu : 計算時間(秒)

問題3:min $f_R(\mathbf{x}) + f_B(\mathbf{x}) - 6$ 次,疎as $n \uparrow$,未知最適値

		Sparse		Dens	se (Lass	erre)
n	ϵ obj	# =	cpu	ϵ obj	# =	cpu
6	5e-11	923	8.8	5e-11	923	9.5
8	2e-10	2,507	78.3	2e-10	3,002	234.4
10	8e-12	4,091	132.4	out of	mem	
20	5e-11	12,011	414.2			
30	5e-11	19,931	717.8			
40	out of	mem				

$$\epsilon_{obj} = \frac{|最小値の下界 - 近似最小解|}{\max\{1, |最小値の下界|\}}$$

=: SDP の等式条件数, cpu:計算時間(秒)

● SDP は SeDuMi で解いている. 並列ソフトウェア SDPARA — 後述

- 1. 最適化の中での位置づけ
 - 1-1 半正定值計画問題
 - 1-2 多項式最適化問題
 - 1-3 この分野での私の主な研究
- 2. モーメント行列,半正定値計画緩和
- 3. 疎性の活用
- 4. ソフトウェア
 - 4-1 SparsePOP
 - 4-2 SFSDP
 - Sensor Network Localization 問題に対する疎性を活用 した SDP 緩和
 - Kim, Kojima, Waki '08
 - 4-3 SDPARA
- 5. おわりに

Sensor network localization 問題: s = 2 or 3.

 $\boldsymbol{x}^{p} \in \mathbb{R}^{s}$: sensor の位置, 座標 (未知) (p = 1, 2, ..., m), $\boldsymbol{x}^{r} = \boldsymbol{a}^{r} \in \mathbb{R}^{s}$: ancho の位置, 座標 (既知) (r = m + 1, ..., n), $d_{pq}^{2} = \|\boldsymbol{x}^{p} - \boldsymbol{x}^{q}\|^{2} + \epsilon_{pq}$ — 距離 (既知) for $(p,q) \in \mathcal{N}$, $\mathcal{N} = \{(p,q) : \|\boldsymbol{x}^{p} - \boldsymbol{x}^{q}\| \leq \rho = a \text{ radio range (既知)}\}$ ここで ϵ_{pq} : noise

m = 5, n = 9.1, ..., 5: sensor 6, 7, 8, 9: anchor 6 $\frac{d_{18}}{2}$

anchor の 位置は 既知 ∀ edge に対して距離が既知 sensor の位置を計算せよ \Rightarrow 非凸 2 次最適化問題 QOP ● SDP 緩和 +? — FSDP by Biswas-Ye '06, ESDP by Wang et al '07, ... for s = 2. ● 2次錐計画緩和 — Tseng '07 for s = 2.

3 つの方法の比較実験: sensor network localization 問題 m = sensor の個数, [0,1]² 上に random に分布 4 つの anchor [0,1]² の 4 隅に配置 ρ=radio range = 0.1, noise 無し FSDP — Biswas-Ye '06, 計算コストは高いが強力 SFSDP = FSDP + 疎性の活用, FSDP と等価 ESDP — FSDP のさらなる緩和, FSDP より弱い

	SeDuMi cpu time in second						
m	FSDP	SFSDP	ESDP				
500	389.1	35.0	62.5				
1000	3345.2	60.4	200.3				
2000		111.1	1403.9				
4000		182.1	11559.8				

m = 1000 sensors, noise 無し SFSDP = FSDP + 疎性の活用

m = 1000 sensors, noise 無し ESDP

3 dim, 500 sensors, radio range = 0.3, noise $\leftarrow N(0,0.1)$; (誤差を含んだ距離) $\hat{d}_{pq} = (1 + \epsilon_{pq})d_{pq}$ (真の距離) $\epsilon_{pq} \leftarrow N(0,0.1)$

SFSDP = FSDP + 疎性の活用

3 dim, 500 sensors, radio range = 0.3, noise $\leftarrow N(0,0.1)$; (誤差を含んだ距離) $\hat{d}_{pq} = (1 + \epsilon_{pq})d_{pq}$ (真の距離) $\epsilon_{pq} \leftarrow N(0,0.1)$

SFSDP = FSDP + 疎性の活用 + Gradient 法

- 1. 最適化の中での位置づけ
 - 1-1 半正定值計画問題
 - 1-2 多項式最適化問題
 - 1-3 この分野での私の主な研究
- 2. モーメント行列,半正定値計画緩和
- 3. 疎性の活用
- 4. ソフトウェア
 - 4-1 SparsePOP
 - 4-2 SFSDP
 - 4-3 SDPARA
 - SDPA(半正定値計画問題に対する主双対内点法ソフト ウェア)の並列版
 - 開発グループ: Fujisawa, Fukuda, Futakata,
 - Kobayashi, Kojima, K.Nakata, M.Nakata, Yamashita
 - On Line Solver

5. おわりに

min $f_R(\mathbf{x}) + f_B(\mathbf{x})$ の SDP 緩和問題 — 前述

The gneralized Rosenbrock function — 次数4の多項式

$$f_R(\boldsymbol{x}) = 1 + \sum_{i=2}^n \left(100(x_i - x_{i-1}^2)^2 + (1 - x_i^2)^2 \right)$$

The Broyden banded function — 次数6の多項式

$$f_B(\boldsymbol{x}) = \sum_{i=1}^n \left(x_i (2 + 5x_i^2) + 1 - \sum_{j \in J_i} (1 + x_j) x_j \right)^2$$

ただし, $J_i = \{j : j \neq i, \max\{1, i-5\} \le j \le \min\{n, i\}\}.$

		Sparse		Dense	e (Lasse	erre)
n	$\epsilon_{\sf obj}$	# =	cpu	ϵ obj	# =	cpu
8	2e-10	2,507	78	2e-10	3,002	234
10	8e-12	4,091	132	out of	mem	
20	5e-11	12,011	414			
30	5e-11	19,931	718			
40	out of	mem				

min $f_R(\mathbf{x}) + f_B(\mathbf{x})$ の SDP 緩和問題 — 前述

min $f_R(\mathbf{x}) + f_B(\mathbf{x})$ の SDP 緩和問題 — 前述

	SDP 緩和	SeDuMi	SDPARA, SDPA の並列版			的版
n	Schur 補完行列	1 cpu	1 cpu	4 cpu	16 cpu	64 cpu
20	12011	414	2763	632	199	90
			321	262	198	304
30	19931	718	o.m.	2628	719	283
			589	459	352	560
40	27851	o.m.	o.m.	6643	1738	691
			844	657	487	785
50	35771	o.m.	o.m.	0.m.	3701	1219
			1074	602	473	721

- SeDuMi on 2.66 GHz Dual-Core Xeon, 12GB
- SDPARA on 2.83 GHz Quad-Core Xeon, 8GB
 Schur 補完行列の密な並列 Cholesky 分解 (ScaLAPACK)
- SDPARA 疎な並列 Cholesky 分解 (MUMPS)

tensor
$$T = (t_{ijk})$$
 (3 次元行列) の近似問題
min $\sum_{i=1}^{\ell} \sum_{j=1}^{m} \sum_{k=1}^{n} (t_{ijk} - x_i y_j z_k)^2$ sub. to $0 \le x_i, y_j, z_k \le 1$
階数 1 の tensor での近似

	SDP 緩和問題	SDPARA cpu time (秒)			
$\ell m n$	Schur 補完行列の size	1 cpu	4 cpu	16 cpu	64 cpu
333	1559	19	9	4	4
444	4546	376	120	51	26
555	10952	4734	1133	404	164
666	23113	o.m.	9164	2653	1611

SDPARA on 2.83 GHz Quad-Core Xeon, 8GB
 一密な並列 Cholesky 分解 (ScaLAPACK)

1. 最適化の中での位置づけ

- 1-1 半正定值計画問題
- 1-2 多項式最適化問題
- 1-3 この分野での私の主な研究
- 2. モーメント行列,半正定値計画緩和
- 3. 疎性の活用
- 4. ソフトウェア
 - 4-1 SparsePOP
 - 4-2 SFSDP
 - 4-3 SDPARA

5. おわりに

半正定値計画問題 — 21 世紀の最適化問題
多項式最適化問題 — 大域最適化の数理モデル

- 半正定値計画問題 21 世紀の最適化問題
- 多項式最適化問題 大域最適化の数理モデル
- モーメント行列,半正定値計画緩和 (Lasserre '01)
- ソフトウェア SparsePOP, SFSDP, SDPARA
- 疎性の活用, 並列計算

- 半正定値計画問題 21 世紀の最適化問題
- 多項式最適化問題 大域最適化の数理モデル
- モーメント行列,半正定値計画緩和 (Lasserre '01)
- ソフトウェア SparsePOP, SFSDP, SDPARA
- 疎性の活用, 並列計算

今後に向けて

- 半正定値計画問題 21 世紀の最適化問題
- 多項式最適化問題 大域最適化の数理モデル
- モーメント行列,半正定値計画緩和 (Lasserre '01)
- ソフトウェア SparsePOP, SFSDP, SDPARA
- 疎性の活用, 並列計算
- 今後に向けて
 - OR, 工学をささえる最適化手法を!
 - 良質な最適化ソフトウェアを!

ありがとうございました