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M ∈ S
n
+ (n × n positive semidefinite matrices, shape). Define

ϕ(x, c) ≡ (x − c)T M(x − c),∀x ∈ R
n,∀c ∈ R

n (center),

Ellipsoidal set E(c, γ) ≡ {x ∈ R
n : ϕ(x, c) ≤ γ} , ∀γ > 0 (size).

Problem: Given a semialgebraic set F , find a minimum (in γ)
ellipsoidal set E(c, γ) which encloses F .

Application to error bounds in Polynomial Optimization Problem

POP : minimize f0(x) subject to fk(x) ≥ 0 (k = 1, 2, . . . , p).
Here fk : R

n → R : a polynomial (k = 0, 1, . . . , p).

x̂ : an approx. opt. solution; fk(x̂) ≥ 0 (k = 1, 2, . . . , p). Let
F = {x ∈ R

n : fk(x) ≥ 0, (k = 1, 2, . . . , p), f0(x) ≤ f0(x̂)}.

F ⊂ E(c, γ) =⇒ E(c, γ) contains x̂, all opt. sol. of POP.

M = I ⇒ ‖x − c‖2 ≤ γ for ∀ opt. sol. x

M = diag(1, 0, . . . , 0) ⇒ |x1 − c1|
2 ≤ γ for ∀ opt. sol. x

Implemented in the Matlab software SparsePOP (Waki
et.al) for solving POPs by the sparse SDP relaxation.
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M ∈ S
n
+ (n × n positive semidefinite matrices, shape). Define

ϕ(x, c) ≡ (x − c)T M(x − c),∀x ∈ R
n,∀c ∈ R

n (center),

Ellipsoidal set E(c, γ) ≡ {x ∈ R
n : ϕ(x, c) ≤ γ} , ∀γ > 0 (size).

F : a semialgebraic subset of R
n.

min-max
formulation

γ∗ = min
c∈R

n

max
x∈F

ϕ(x, c) = max
x∈F

ϕ(x, c∗).

Suppose that M = the 2 × 2 identity matrix

c

x E(γ,c)

F

c*

x

E(γ∗,c*)
F
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M ∈ S
n
+ (n × n positive semidefinite matrices, shape). Define

ϕ(x, c) ≡ (x − c)T M(x − c),∀x ∈ R
n,∀c ∈ R

n (center),

Ellipsoidal set E(c, γ) ≡ {x ∈ R
n : ϕ(x, c) ≤ γ} , ∀γ > 0 (size).

F : a semialgebraic subset of R
n.

min-max
formulation

γ∗ = min
c∈R

n

max
x∈F

ϕ(x, c) = max
x∈F

ϕ(x, c∗). Lifting
⇒

Ĉ ≡ the convex hull of {(x,W ) = (x,xxT ) ∈ R
n × S

n : x ∈ F}.
m "min-max = max min" in the lifting space

concave maxization γ∗ = max
(x,W )∈ bC

M • W − xT Mx.

M • W : the inner product of M and W , i.e.
∑

i,j MijWij.

⇓

Relax the intractable Ĉ by a tractable convex C;

Ĉ ⊂ C ⊂

{
(x,W ) ∈ R

n × S
n :

(
1 xT

x W

)
� O

}
.

SDP-SOCP γ̂ = max
(x,W )∈C

M • W − xT Mx ⇒ γ∗ ≤ γ̂.
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M ∈ S
n
+ (n × n positive semidefinite matrices, shape). Define

ϕ(x, c) ≡ (x − c)T M(x − c),∀x ∈ R
n,∀c ∈ R

n (center),

Ellipsoidal set E(c, γ) ≡ {x ∈ R
n : ϕ(x, c) ≤ γ} , ∀γ > 0 (size).

F described by quadratic inequalities

F =
{
x ∈ R

n : αk + 2bT
k x + xT Qkx ≥ 0 (1 ≤ k ≤ p)

}

=

{
x ∈ R

n :

(
αk bT

k

bk Qk

)
•

(
1 xT

x xxT

)
≥ 0 (1 ≤ k ≤ p)

}
,

Ĉ = convex hull of
{
(x,xxT ) : x ∈ F

}
⊂ C, where

C =






(x,W ) :

(
αk bT

k

bk Qk

)
•

(
1 xT

x W

)
≥ 0 (1 ≤ k ≤ p),

(
1 xT

x W

)
� O






,

SDP-
SOCP

γ̂ = max
(x,W )∈C

M • W − xT Mx = M • Ŵ − ĉT Mĉ

=⇒ F ⊂ E(ĉ, γ̂). Replace ≥ 0 by = 0 ⇒ Next applications!
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A Sensor Network Localization Problem with Exact Distance
xp ∈ R

s : unknown location of sensors (p = 1, 2, . . . ,m),

xr = ar ∈ R
s : known location of anchors (r = m + 1, . . . , n),

d2
pq = ‖xp − xq‖2 — given for (p, q) ∈ N (1)

N = {(p, q) : ‖xp − xq‖ ≤ ρ = a given radio range}

m = 5, n = 9.
1, . . . , 5: sensors
6, 7, 8, 9: anchors

Anchors’ positions are known.
A distance is given for ∀ edge.
Compute locations of sensors.
⇒ Nonconvex QOPs

SDP relaxation — FSDP by
Biswas-Ye ’06.
SFSDP by Kim, Kojima, Waki
’09 = a sparse version of
FSDP .
...
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A Sensor Network Localization Problem with Exact Distance
xp ∈ R

s : unknown location of sensors (p = 1, 2, . . . ,m),

xr = ar ∈ R
s : known location of anchors (r = m + 1, . . . , n),

d2
pq = ‖xp − xq‖2 — given for (p, q) ∈ N (1)

N = {(p, q) : ‖xp − xq‖ ≤ ρ = a given radio range}

When ρ is not large enough or N does not contain enough
number of pairs of p and q, the system of quadratic
equations (1) is underdetermined and/or its SDP relaxation
is too weak to locate all sensors uniquely.
Our method computes cp ∈ R

s and γp > 0 for each sensor p

such that the distance from cp to its unknown location xp is
bounded by (γp)1/2.

c
p

(γ

xp

  p)1/2
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m = 200 sensors randomly distributed in [0, 1]2, n − m = 4
anchors at the corner of [0, 1]2, ρ = 0.14.
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0.9

1

* : cp = a computed location of censor p.
the true location ◦ of sensor p is within (γp)1/2 ≤ 0.18 from cp
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m = 200 sensors randomly distributed in [0, 1]2, n − m = 4
anchors at the corner of [0, 1]2, ρ = 0.14.
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1

* : cp = a computed location of censor p

the true location ◦ of sensor p is within (γp)1/2 ≤ 0.18 from cp

◦ ◦ : the edge (xp,xq) with a given exact distance
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m = 200 sensors randomly distributed in [0, 1]2, n − m = 4
anchors at the corner of [0, 1]2, ρ = 0.15.
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1

* : cp = a computed location of censor p.
the true location ◦ of sensor p is within (γp)1/2 ≤ 0.04 from cp
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m = 200 sensors randomly distributed in [0, 1]2, n − m = 4
anchors at the corner of [0, 1]2, ρ = 0.15.
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* : cp = a computed location of censor p

the true location ◦ of sensor p is within (γp)1/2 from cp

◦ ◦ : the edge (xp,xq) with a given exact distance
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m = 200 sensors randomly distributed in [0, 1]2, n − m = 4
anchors at the corner of [0, 1]2, ρ = 0.16.
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1

* : cp = a computed location of censor p.
the true location ◦ of sensor p is within (γp)1/2 ≤ 6.0e-3 from cp
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m = 200 sensors randomly distributed in [0, 1]2, n − m = 4
anchors at the corner of [0, 1]2, ρ = 0.16.
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* : cp = a computed location of censor p

the true location ◦ of sensor p is within (γp)1/2 from cp

◦ ◦ : the edge (xp,xq) with a given exact distance
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Concluding Remarks

We can apply the proposed method to:

Sensor network localization problems with inexact distance
involving measurement error (but the results are not
sharp).

Polynomial optimization problems involving a 0-1 variable x

to determine whether x = 0 or x = 1.

Polynomial optimization problems involving a pair of
variables x ≥ 0, y ≥ 0 with complementarity xy = 0 to
determine whether x > 0 or y > 0.
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