Sums of Squares Relaxation of Polynomial Optimization Problems

Dynamical System and Numerical Analysys In honor of Tien-Yien Li Hsinchu, Taiwan, May 10 12, 2005

Masakazu Kojima Tokyo Institute of Technology, Tokyo, Japan

• An introduction to the recent development of SOS relaxation for computing global optimal solutions of POPs

- 1. POPs (Polynomial Optimization Problems)
- 2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
- 3. SOS relaxation of unconstrained POPs
- 4. Conversion of SOS relaxation into an SDP (Semidefinite Program)
- 5. Structured sparsity
- 6. SOS relaxation of constrained POPs
- 7. Numerical results
- 8. Concluding remarks

 $\mathbb{R}^{n} : \text{the } n\text{-dim Euclidean space.}$ $x = (x_{1}, \dots, x_{n}) \in \mathbb{R}^{n} : \text{a vector variable.}$ $f_{j}(x) : \text{a multivariate polynomial in } x \in \mathbb{R}^{n} \ (j = 0, 1, \dots, m).$ $\boxed{\text{POP: min } f_{0}(x) \text{ sub.to } f_{j}(x) \ge 0 \ (j = 1, \dots, m).}$ $\boxed{\text{Example: } n = 3$ $\min \quad f_{0}(x) \equiv x_{1}^{3} - 2x_{1}x_{2}^{2} + x_{1}^{2}x_{2}x_{3} - 4x_{3}^{2}$ $\text{sub.to} \quad f_{1}(x) \equiv -x_{1}^{2} + 5x_{2}x_{3} + 1 \ge 0,$ $f_{2}(x) \equiv x_{1}^{2} - 3x_{1}x_{2}x_{3} + 2x_{3} + 2 \ge 0,$ $f_{3}(x) \equiv -x_{1}^{2} - x_{2}^{2} - x_{3}^{2} + 1 \ge 0.$ $x_{1}(x_{1} - 1) = 0 \ (0\text{-1 integer}),$ $x_{2} \ge 0, \ x_{3} \ge 0, \ x_{2}x_{3} = 0 \ (\text{complementarity}).$ $\bullet \text{ Various problems can be described as POPs.}$ $\bullet \text{ A unified theoretical model for global optimization in non-linear and combinatorial optimization problems.}$

POP: min $f_0(x)$ s	ub.to j	$f_i(x) \ge 0 \ (i=1,\ldots,m),$
РОР	\Rightarrow	generalized Lagrangian dual
🕻 add valid LMIs	dual	\Downarrow
Polynomial SDP		$\Downarrow \text{ SOS } \underline{\text{relaxation}}$
(a) Global optimal solut	⇔ ions.	SDP[2]
(b) Large-scale SDPs red	quire en	normous computation.
(c) Proposed a sparse SI = $SDP[1] + "Exploiting"$	DP relang struc	xation tured sparsity".

 $\begin{array}{l} f(x) \ : \ \text{a nonnegative polynomial} & \Leftrightarrow \ f(x) \geq 0 \ (\forall x \in \mathbb{R}^n).\\ \mathcal{N}: \ \text{the set of nonnegative polynomials in } x \in \mathbb{R}^n.\\ \end{array}$ $f(x) \ : \ \text{an SOS} \ (\text{Sum of Squares}) \ \text{polynomial} \\ \uparrow \\ \exists \ \text{polynomials} \ g_1(x), \dots, g_k(x); \ f(x) = \sum_{i=1}^k g_i(x)^2.\\ \text{SOS}_*: \ \text{the set of SOS}. \ \text{Obviously}, \ \text{SOS}_* \subset \mathcal{N}.\\ \text{SOS}_{2r} = \{f \in \text{SOS}_*: \ \text{deg} \ f \leq 2r\}: \ \text{SOSs with degree ar most } 2r.\\ n = 2. \ f(x_1, x_2) = (x_1^2 - 2x_2 + 1)^2 + (3x_1x_2 + x_2 - 4)^2 \in \text{SOS}_4.\\ n = 2. \ f(x_1, x_2) = (x_1x_2 - 1)^2 + x_1^2 \in \text{SOS}_4.\\ \text{o In theory, } \text{SOS}_* \ (\text{SOS}) \subset \mathcal{N}. \ \text{SOS}_* \neq \mathcal{N} \ \text{in general.}\\ \text{o In theory, } \text{SOS}_* = \mathcal{N}. \ \{f \in \mathcal{N}: \ \text{deg} \ f \leq 2\} \equiv \text{SOS}_2.\\ \text{o In practice, } f(x) \in \mathcal{N} \setminus \text{SOS}_* \ \text{is rare.}\\ \text{o So we replace } \mathcal{N} \ \text{by SOS}_* \Longrightarrow \text{SOS Relaxations.} \end{array}$

 $\mathcal{P}: \min_{x \in \mathbb{R}^n} f(x), ext{ where } f ext{ is a polynomial with deg } f = 2r$

\$

 \mathcal{P} ': max ζ s.t $f(x) - \zeta \ge 0 \; (\forall x \in \mathbb{R}^n)$ \uparrow $f(x) - \zeta \in \mathcal{N} \; (\text{the nonnegative polynomials})$

Here x is an index describing inequality constraints. $\Sigma \subset SOS_{2r} \subset SOS_* \subset \mathcal{N} \Downarrow$ a subproblem of \mathcal{P}' = a relaxation of \mathcal{P}

 \mathcal{P} ": max ζ sub.to $f(x) - \zeta \in \Sigma$

 SOS_* ($SOS_{2r} =$) the set of SOS polynomials (with degree $\leq 2r$).

• the min.val of \mathcal{P} = the max.val of $\mathcal{P}' \geq$ the max.val of \mathcal{P} ".

• \mathcal{P} " can be solved as an SDP (Semidefinite Program) — next.

• In practice, we can exploit structured sparsity of the Hessian matrix of f to reduce the size of Σ — later.

Outline

 POPs (Polynomial Optimization Problems)
 Nonnegative polynomials and SOS (Sum of Squares) polynomials
 SOS relaxation of unconstrained POPs
 Conversion of SOS relaxation into an SDP (Semidefinite Program)
 Structured sparsity
 SOS relaxation of constrained POPs
 Numerical results
 Concluding remarks

What is an SDP (Semidefinite Program)?

• An extension of LP (Linear Program) to the space of symmetric matrices;

variable a vector $x \implies$ a symmetric matrix X. inequality $x \ge 0 \implies X \succeq O$ (positive semidefinite).

- Can be solved by the interior-point method.
- Lots of applications.

A primal dual pair of LPs: PLP: max $a_0 \cdot x$ s.t. $a_p \cdot x = b_p (p = 1, ..., m), x \ge 0$. DLP: min $\sum_{p=1}^{m} b_p y_p$ s.t. $\sum_{p=1}^{m} a_p y_p - a_0 \ge 0$. $a_p \in \mathbb{R}^n (p = 0, 1, 2, ..., m), b_p \in \mathbb{R} (p = 1, 2, ..., m)$. $x \in \mathbb{R}^n, y_p \in \mathbb{R} (p = 1, 2, ..., m)$: variable. $a_p \cdot x = \sum_{j=1}^{n} [a_p]_j x_j$ (the inner product). A primal dual pair of SDPs: PSDP: max $A_0 \bullet X$ s.t. $A_p \bullet X = b_p (p = 1, ..., m), X \succeq O$. DSDP: min $\sum_{p=1}^{m} b_p y_p$ s.t. $\sum_{p=1}^{m} A_p y_p - A_0 \succeq O$. S^n : the set of $n \times n$ real symmetric matrices. $X \succeq O : X \in S^n$ is positive semidefinite. $A_p \in S^n (p = 0, 1, 2, ..., m), b_p \in \mathbb{R} (p = 1, 2, ..., m)$. $X \in S^n, y_p \in \mathbb{R} (p = 1, 2, ..., m)$: variable. $A_p \bullet X = \sum_{i=1}^{n} \sum_{j=1}^{n} [A_p]_{ij} X_{ij}$ (the inner product).

Example.
$$n = 1$$
, SOS of at most deg.3 polynomials in $x \in \mathbb{R}$.
SOS₆ $\equiv \left\{ \sum_{i=1}^{k} g_i(x)^2 : k \ge 1, g_i(x) \text{ is at most deg.3 polynomial} \right\}$
 $= \left\{ \begin{pmatrix} 1 \\ x \\ x^2 \\ x^3 \end{pmatrix}^T V \begin{pmatrix} 1 \\ x \\ x^2 \\ x^3 \end{pmatrix} : V \text{ is } 4 \times 4 \text{ psd matrix} \right\}$
Example. $n = 2$, SOS of at most deg.2 polynomials in $x = (x_1, x_2)$.
SOS₄ $\equiv \left\{ \sum_{i=1}^{k} g_i(x)^2 : k \ge 1, g_i(x) \text{ is at most deg.2 polynomial} \right\}$
 $= \left\{ \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ x_1^2 \\ x_1^2 \\ x_2^2 \\ x_2^2 \end{pmatrix}^T V \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ x_1^2 \\ x_1x_2 \\ x_2^2 \end{pmatrix} : V \text{ is a } 6 \times 6 \text{ psd matrix} \right\}$

Generalized Rosenbrock function + Perturbation.

$$f(x) = \sum_{i=2}^{n} (100(x_i - x_{i-1}^2)^2 + (1 - x_i)^2) + \sum_{i=1}^{n} a_i x_i, \ 0 < a_i < 0.1.$$
• The Hessian matrix is sparse (tridiagonal).
Sparse relaxation

$$\max \zeta$$
s.t. $f(x) - \zeta \in \sum_{i=2}^{n} (SOS \text{ of } 2\text{-deg. poly in } x_{i-1}, x_i)$
Dense relaxation

$$\max \zeta$$
s.t. $f(x) - \zeta \in (SOS \text{ of } 2\text{-deg. poly in } x_1, x_2, \dots, x_n)$

$f(x) = \sum_{n=1}^{n-1} ($	(3 -	$(2x_i)x_i =$	- <i>x</i> : 1 -	$(2x_{i+1}+1)^2 + \sum_{i=1}^{n} a_i$	$x_i, 0 < a_i < 0.1.$				
$J(w) = \sum_{i=2}^{i=2}$	(0		<i>wi</i> -1	$\sum_{i=1}^{\infty} (i+1)^{i+1} + \sum_{i=1}^{\infty} (i+1)^{i+1}$	$aw_i, o < w_i < o.1$				
• The Hessi	an m	atrix is	sparse.						
Sparse rela	axatio	on							
$\max \zeta$		1							
s.t. $f(x)$	$-\zeta$	$\in \sum_{i=2}^{n-1} ($	SOS of	2-deg. poly in x_i	$_{-1}, x_i, x_{i+1})$				
-									
				cpu in sec.					
	n	$\epsilon_{\rm obj}$	$\epsilon_{\rm obj}$ sparse Lasserre's dense						
	10	1.9e-08	0.2	15.5					
	15	2.1e-08	0.3	804.5					
	200	3.2e-08	3.4						
	400	3.0e-08	6.7						
	800	3.0e-08	13.2						
			1	1	1				
the	lowe	r bound	for opt	. value – the app	rox. opt. value				
$\epsilon_{ob} = -$		nov [1]4	ho low	r bound for opt	valuell.				
obj	$\max\{1, \text{the lower bound for opt. value}\}$								

Outline

- 1. POPs (Polynomial Optimization Problems)
- 2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
- 3. SOS relaxation of unconstrained POPs
- 4. Conversion of SOS relaxation into an SDP (Semidefinite Program)
- 5. Structured sparsity
- 6. SOS relaxation of constrained POPs
- 7. Numerical results
- 8. Concluding remarks

- MATLAB for constructing sparse and dense SDP relaxation problems
- SeDuMi to solve SDPs.

Hardware

• 2.4GHz Xeon cpu with 6.0GB memory.

An optimal control problem from Coleman et al. 1995 $\min \, \frac{1}{M} \sum_{i=1}^{M-1} \left(y_i^2 + x_i^2 \right)$ $\min \frac{1}{M} \sum_{i=1}^{M} (y_i^2 + x_i^2)$ s.t. $y_{i+1} = y_i + \frac{1}{M} (y_i^2 - x_i), \quad (i = 1, \dots, M - 1), \quad y_1 = 1.$ Numerical results on sparse relaxation # of variables Mcpu€obj $\epsilon_{\rm feas}$ 600 11983.4e-08 2.2e-10 3.4 70013982.5e-08 8.1e-10 3.3 5.9e-08 1.6e-10 3.8 800 1598900 17981.4e-07 6.8e-10 4.51000 19986.3e-08 2.7e-10 5.0 $\epsilon_{obj} = \frac{|\text{the lower bound for opt. value} - \text{the approx. opt. value}|}{\max \{1, |th - 1, \dots\}}$ $\max\{1, |\text{the lower bound for opt. value}|\}$ $\epsilon_{\text{feas}} = \text{the maximum error in the equality constraints},$ cpu : cpu time in sec. to solve an SDP relaxation problem.

alkyl.gı	ns : a	benchm	ark prob	lem f	rom glob	oallib				
\min	$-6.3x_5x_8+5.04x_2+0.35x_3+x_4+3.36x_6$									
sub.to	$-0.820x_2 + x_5 - 0.820x_6 = 0,$									
	$0.98x_4 - x_7(0.01x_5x_{10} + x_4) = 0,$									
	$-x_2x_9 + 10x_3 + x_6 = 0,$									
	x_5x_1	$x_2 - x_2(1.1)$	12 + 0.13	$2x_9 -$	- 0.0067:	$x_0^2) = 0,$				
	x_8x_1	$x_{3} = 0.01x$	$_{9}(1.098 -$	- 0.03	$(38x_9) - 0$	$0.325x_7$	= 0.5	74,		
	$x_{10}x$	$_{14} + 22.23$	$x_{11} = 35.$	82,	- /	-		*		
	x_1x_1	$1 - 3x_8 =$	= -1.33,	-						
	lbd_i	$x_i < u$	bd_i (i =	1, 2, .	, 14).					
	-		• •							
			sparse		Lasse	rre's der	ise			
probler	n n	r 6 1	sparse	CDU	Lasse	rre's <mark>de</mark> r				
probler	n n	$r \epsilon_{\rm obj}$	sparse ϵ_{feas}	cpu	$\epsilon_{\rm obj}$	rre's der ϵ_{feas}	nse cpu			
probler alkyl	n n 14	$r \epsilon_{obj}$ 2 4.1e-03	$\frac{\text{sparse}}{\epsilon_{\text{feas}}}$	сри 0.9	Lasser [¢] obj 6.3e-06	rre's der $\epsilon_{\rm feas}$ 1.8e-02	nse cpu 17.6			
probler alkyl alkyl	n n 14 14	$r \epsilon_{obj}$ 2 4.1e-03 3 5.6e-10	sparse j [€] feas 3 2.7e-01) 2.0e-08	сри 0.9 6.9	${\rm Lassen} \ \epsilon_{\rm obj} \ 6.3 {\rm e}{ m -} 06$	rre's <mark>der</mark> [€] feas 1.8e-02 —	nse cpu 17.6 —			
problem alkyl alkyl r = r	n n 14 14 relaxat	$r \epsilon_{obj}$ 2 4.1e-03 3 5.6e-10	sparse [€] feas 2.7e-01 2.0e-08	сри 0.9 6.9	Lasser [€] obj 6.3e-06 —	rre's der 	nse cpu 17.6 —			
r = r	$\begin{array}{c c} n & n \\ 14 \\ 14 \\ \end{array}$	$ \begin{array}{c c} r & \epsilon_{obj} \\ \hline 2 & 4.1e-03 \\ 3 & 5.6e-10 \\ \hline \text{tion orden} \\ \text{lower bo} \\ \end{array} $	sparse j [€] feas 3 2.7e-01) 2.0e-08 c, und for o	cpu 0.9 6.9 opt. v	Lasser [¢] obj 6.3e-06 — value – tl	rre's der 	nse cpu 17.6 —	t. value		
$r = r$ $\epsilon_{obj} = \frac{1}{2}$	$\frac{n}{14}$ $\frac{14}{14}$ $\frac{14}{14}$	$ \begin{array}{c c} r & \epsilon_{obj} \\ \hline 2 & 4.1e-03 \\ 3 & 5.6e-10 \\ \hline \text{tion order} \\ \text{lower bo} \\ \hline \end{array} $	$\frac{\text{sparse}}{\text{j} \epsilon_{\text{feas}}}$ $\frac{2.7\text{e-}01}{2.0\text{e-}08}$ $\frac{1}{2.0\text{e}}$ $\frac{1}{2.0\text{e}}$	cpu 0.9 6.9 opt. v	Lasser ϵ_{obj} 6.3e-06 - value $-$ the second s	rre's der 	nse cpu 17.6 — ox. op	t. value ,		
problem alkyl alkyl r = r $\epsilon_{\rm obj} =$	$\frac{n}{14}$ $\frac{14}{14}$ $\frac{14}{14}$ $= \frac{ \text{the} }{ \text{the} }$ $= \text{the}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	sparse ϵ_{feas} 2.7e-01 2.0e-08 ϵ , und for ϵ $1, the construction in error in \epsilon_{feas}$	cpu 0.9 6.9 opt. v ower 1	$\begin{array}{c} \text{Lasser}\\ \hline \epsilon_{\text{obj}}\\ 6.3\text{e-}06\\ \hline \end{array}$	rre's der 	nse cpu 17.6 — ox. op alue }	t. value		
problem alkyl alkyl r = r $\epsilon_{obj} =$ ϵ_{feas}	$\frac{n}{14}$ $\frac{14}{14}$ $\frac{14}{14}$ $\frac{ \text{the} }{=}$ $= \text{the}$ $\frac{1}{2}$	$\begin{array}{c c} r & \epsilon_{obj} \\ \hline 2 & 4.1e-03 \\ \hline 3 & 5.6e-10 \\ \hline \\ \hline \\ tion order \\ lower bo \\ \hline \\ max \\ maximur \\ \hline \\ maximur \\ \hline \\ me in sec \\ \end{array}$	sparse ϵ^{ϵ} feas 2.7e-01 2.0e-08 ϵ , und for o 1, the lo n error in ϵ , to solv	cpu 0.9 6.9 opt. v ower 1 n the e an	Lasser ϵ_{obj} 6.3e-06 – value – tl bound for equality SDP rela	rre's der ^e feas 1.8e-02 — ne appro r opt. v. constra	nse cpu 17.6 	t. value ,		

Some other benchmark problems from globallib									
				sparse		Lasserre's dense			
problem	n	r	$\epsilon_{\rm obj}$	ϵ_{feas}	$_{\rm cpu}$	$\epsilon_{\rm obj}$	ϵ_{feas}	cpu	
ex3_1_1	8	3	6.3e-09	4.7e-04	5.5	0.7e-08	2.5e-03	597.8	
st_bpaf1b*	10	2	3.8e-08	2.8e-08	1.0	4.6e-09	7.2e-10	1.7	
${ m st_e07^{\star}}$	10	2	0.0e+00	8.1e-05	0.4	0.0e+00	8.8e-06	3.0	
$ex2_{1_{3}}$	13	2	5.1e-09	3.5e-09	0.5	1.6e-09	1.5e-09	7.7	
$ex9_{1_{1}}$	13	2	0.0	4.5e-06	1.5	0.0	9.2e-07	7.7	
$ex9_2_3^*$	16	2	0.0e+00	5.7e-06	2.3	0.0e+00	7.5e-06	49.7	
$ex2_1_8$	24	2	1.0e-05	$0.0\mathrm{e}{+00}$	304.6	3.4e-06	$0.0\mathrm{e}{+00}$	1946.6	

r = relaxation order,

 $\epsilon_{\rm obj} = \frac{|{\rm the \ lower \ bound \ for \ opt. \ value - the \ approx. \ opt. \ value|}}{\max\{1, |{\rm the \ lower \ bound \ for \ opt. \ value - the \ approx. \ opt. \ value|}}$

 $\epsilon_{\rm obj} = \frac{|\text{choice bound in the probability of the probability$

Some other benchmark problems from globallib									
				sparse		Lasserre's dense			
problem	n	r	$\epsilon_{\rm obj}$	$\epsilon_{\rm feas}$	$_{\rm cpu}$	€obj	ϵ_{feas}	cpu	
ex3_1_1	8	3	6.3e-09	4.7e-04	5.5	0.7e-08	2.5e-03	597.8	
st_bpaf1b*	10	2	3.8e-08	2.8e-08	1.0	4.6e-09	7.2e-10	1.7	
${ m st}_{ m e07}^{\star}$	10	2	0.0e+00	8.1e-05	0.4	0.0e+00	8.8e-06	3.0	
$ex2_1_3$	13	2	5.1e-09	3.5e-09	0.5	1.6e-09	1.5e-09	7.7	
ex9_1_1	13	2	0.0	4.5e-06	1.5	0.0	9.2e-07	7.7	
$ex9_2_3^{\star}$	16	2	0.0e+00	5.7e-06	2.3	0.0e+00	7.5e-06	49.7	
$ex2_1_8$ *	24	2	1.0e-05	0.0e+00	304.6	3.4e-06	0.0e+00	1946.6	

- $\bullet \star$ no tight optimal value before.
- The sparse relaxation attains approx. opt. solutions with the same quality as the dense relaxation.
- The sparse relaxation is much faster than the dense relaxation in large dim. and higher relaxation order cases.

