Exploiting Structured Sparsity in Linear and Nonlinear Semidefinite Programs

M. Kojima Tokyo Institute of Technology

October 21, 2010

At the Univiersity of California, San Diego

Kim, Kojima, Mevissen and Yamashita, "Exploiting sparsity in linear and nonlinear inequalities via positive semidefinite matrix completion", *Mathematical Programming* to appear.

Outline

- 0 Semidefinite Programming (SDP)
- 1 A simple example for 2 types of sparsities
- 2 Chordal graph
- 3 Domain-space sparsity
- 4 Range-space sparsity
- 5 Numerical results
- 6 Concluding remarks

Outline

0 Semidefinite Programming (SDP)

- 1 A simple example for 2 types of sparsities
- 2 Chordal graph
- 3 Domain-space sparsity
- 4 Range-space sparsity
- 5 Numerical results
- 6 Concluding remarks

A general linear (or nonlinear) SDP

= "Optimization problem involving an $n \times n$ real symmetric matrix variable X to be positive semidefinite"

A general linear (or nonlinear) SDP

in $\boldsymbol{u} \in \mathbb{R}^m$ $\boldsymbol{X} \in \mathbb{S}^n$

- = "Optimization problem involving an $n \times n$ real symmetric matrix variable X to be positive semidefinite"
- min. a linear (or nonlinear) function in $y \in \mathbb{R}^m$, $X \in \mathbb{S}^n$,
- sub. to linear (or nonlinear) equalities and inequalies

$$\boldsymbol{X} = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ \dots & \dots & \dots & \dots \\ X_{n1} & X_{n2} & \dots & X_{nn} \end{pmatrix} \succeq \boldsymbol{O}$$
(positive semidefinite).

Here \mathbb{S}^n denotes the space of $n \times n$ symmetric matrices.

- We can solve linear SDP by interior-point methods.
- We will discuss 2 types of conversions of a large-scale SDP satisfying a structured sparsiy to solve it efficiently.

Applications of SDPs

- System and control theory Linear matrix inequality
- Robust Optimization
- Machine learning
- Quantum chemistry
- Quantum computation
- Moment problems (Applied probablity)
- SDP relaxation —

Max cut, Max clique, Sensor network localization, Polynomial optimization

Design optimization of structures

9 . . .

In many applications, SDPs are large-scale and often satisfy a certain sparsity characterized by a chordal graph structure.

Outline

- 0 Semidefinite Programming (SDP)
- 1 A simple example for 2 types of sparsities
- 2 Chordal graph
- 3 Domain-space sparsity
- 4 Range-space sparsity
- 5 Numerical results
- 6 Concluding remarks

$$\underbrace{\text{SDP}: \min \sum_{i=1}^{n-1} (X_{ii} + b_i(X_{i,i+1} + X_{i+1,i})) + X_{nn} - (1)}_{\text{sub. to}}$$

$$\underbrace{\text{M}(\mathbf{X}) = \begin{pmatrix} 1 - X_{11} & 0 & \dots & X_{12} \\ 0 & 1 - X_{22} & \dots & X_{23} \\ \dots & \dots & \ddots & \dots \\ X_{21} & X_{32} & \dots & 1 - X_{nn} \end{pmatrix} \succeq \mathbf{O} - (2)$$

$$\underbrace{\mathbf{X} = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ \dots & \dots & \dots & \dots \\ X_{n1} & X_{n2} & \dots & X_{nn} \end{pmatrix}}_{\succeq \mathbf{O} \text{ (positive semidefinite)}$$

- The number of variables is n(n+1)/2; $X_{ij} = X_{ji}$.
- domain-space sparsity Only X_{ij} ($|i j| \le 1$) are used in
 (1), (2) among all variables X_{ij} ($1 \le i \le j \le n$).
- range-space sparsity (2) is diagonal + bordered.

$$\underbrace{\text{SDP}: \min \sum_{i=1}^{n-1} (X_{ii} + b_i(X_{i,i+1} + X_{i+1,i})) + X_{nn} - (1)}_{\text{sub. to}}$$

$$\underbrace{\text{M}(\mathbf{X}) = \begin{pmatrix} 1 - X_{11} & 0 & \dots & X_{12} \\ 0 & 1 - X_{22} & \dots & X_{23} \\ \dots & \dots & \ddots & \dots \\ X_{21} & X_{32} & \dots & 1 - X_{nn} \end{pmatrix} \succeq \mathbf{O} - (2)$$

$$\mathbf{X} = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ \dots & \dots & \dots & \dots \\ X_{n1} & X_{n2} & \dots & X_{nn} \end{pmatrix} \succeq \mathbf{O} \text{ (positive semidefinite)}$$

 \Downarrow conversion with exploiting the domain and range sparsities "smaller size" SDP equivalent to the original <u>SDP</u>

- Next, numerical results on the converted SDP
- Later, technical details on the conversion = the subject of this talk

Numerical results

- SeDuMi (MATLAB, a prima-dual interior-point method)
- 2.66 GHz Dual-Core Intel Xeon with 12GB memory

	SeDuMi elapsed time (second)		
size of X	Original SDP Converted SDP with exploiting		
= n		d-space & r-space sparsities	
10	0.2	0.1	
100	1091.4	0.6	
1000	_	6.3	
10000	_	99.2	

Outline

- 0 Semidefinite Programming (SDP)
- 1 A simple example for 2 types of sparsities
- 2 Chordal graph
- 3 Domain-space sparsity
- 4 Range-space sparsity
- 5 Numerical results
- 6 Concluding remarks
- Sparsity pattern will be described in terms of a graph.
- We will assume that the sparsity pattern graph has a sparse chordal extension to exploit the domain- and range-space sparsity in SDPs.

G(N, E) : a graph, $N = \{1, \ldots, n\}$ (nodes), $E \subset N \times N$ (edges)

chordal $\Leftrightarrow \forall$ cycle with more than 3 edges has a chord

Maximal cliques (node sets of maximal complete subgraphs)

Sparsity pattern is described in terms of a graph

Outline

- 0 Semidefinite Programming (SDP)
- 1 A simple example for 2 types of sparsities
- 2 Chordal graph
- 3 Domain-space sparsity
- 4 Range-space sparsity
- 5 Numerical results
- 6 Concluding remarks

d-space sparsity pattern graph G(N, F): $N = \{1, 2, ..., n\},\$

$$F = \begin{cases} (i,j) : & i \neq j, \ X_{ij} \text{ is necessary} \\ \text{to evaluate } f_0(\boldsymbol{y}, \boldsymbol{X}) \text{ or } \boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) \end{cases}$$

d-space sparsity pattern graph G(N, F): $N = \{1, 2, ..., n\},\$

$$F = \left\{ (i,j): \begin{array}{l} i \neq j, \ X_{ij} \text{ is necessary} \\ \text{to evaluate } f_0(\boldsymbol{y}, \boldsymbol{X}) \text{ or } f(\boldsymbol{y}, \boldsymbol{X}) \end{array} \right\}$$

min $f_0(\boldsymbol{y}, \boldsymbol{X}) = \sum_{i=1}^3 \left(y_i X_{ii} + X_{i,i+1} + X_{i+1,i} \right)$
sub. to
 $f(\boldsymbol{y}, \boldsymbol{X}) = \begin{pmatrix} 1 - X_{11} & X_{12} & y_1 & 2y_2 \\ X_{21} & 1 - X_{22} & X_{23} & 3y_3 \\ y_1 & X_{32} & 1 - X_{33} & X_{34} \\ 2y_2 & 3y_3 & X_{43} & 1 - X_{44} \end{pmatrix} \succeq \boldsymbol{O},$
 $\mathbb{S}^4 \ni \boldsymbol{X} \succeq \boldsymbol{O}$

d-space sparsity pattern graph G(N, F): $N = \{1, 2, ..., n\}$,

$$F = \left\{ (i,j) : \begin{array}{l} i \neq j, \ X_{ij} \text{ is necessary} \\ \text{to evaluate } f_0(\boldsymbol{y}, \boldsymbol{X}) \text{ or } \boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) \end{array} \right\}$$

 $\begin{array}{ll} \min & f_0(\boldsymbol{y}, \boldsymbol{X}) = \sum_{i=1}^3 \left(y_i X_{ii} + X_{i,i+1} + X_{i+1,i} \right) \\ \text{sub. to} & \\ \boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) = \begin{pmatrix} 1 - X_{11} & X_{12} & y_1 & 2y_2 \\ X_{21} & 1 - X_{22} & X_{23} & 3y_3 \\ y_1 & X_{32} & 1 - X_{33} & X_{34} \\ 2y_2 & 3y_3 & X_{43} & 1 - X_{44} \end{pmatrix} \succeq \boldsymbol{O}, \\ \mathbb{S}^4 \ni \boldsymbol{X} \succeq \boldsymbol{O} & \Rightarrow N = \{1, 2, 3, 4\} \end{array}$

• X_{ij} , $|i - j| \le 1$ are necessary to evaluate $f_0(\boldsymbol{y}, \boldsymbol{X})$, $f(\boldsymbol{y}, \boldsymbol{X})$ • $F = \{(i, i + 1) : i = 1, 2, 3\}$ G(N, F) = a chordal graph (1)

d-space sparsity pattern graph G(N, F): $N = \{1, 2, ..., n\},\$

$$F = \begin{cases} (i,j) : & i \neq j, \ X_{ij} \text{ is necessary} \\ \text{to evaluate } f_0(\boldsymbol{y}, \boldsymbol{X}) \text{ or } \boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) \end{cases}$$

d-space sparsity pattern graph G(N, F): $N = \{1, 2, ..., n\},\$

1

$$F = \left\{ (i, j) : \begin{array}{l} i \neq j, \ X_{ij} \text{ is necessary} \\ \text{to evaluate } f_0(\boldsymbol{y}, \boldsymbol{X}) \text{ or } \boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) \end{array} \right\}$$

$$\left\{ \begin{array}{l} G(N, E) : \text{ a chordal extension of } G(N, E) \\ C_1, C_2, \dots, C_\ell : \text{ the maximal cliques of } G(N, E) \end{array} \right\}$$

(P') min $f_0(\boldsymbol{y}, \boldsymbol{X})$ sub.to $\boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) \in \Omega$, $\boldsymbol{X}(C_p) \succeq \boldsymbol{O} \ (p = 1, \dots, \ell)$. Here $\boldsymbol{X}(C_p)$: a submatrix consisting of X_{ij} , $(i, j) \in C_p \times C_p$.

d-space sparsity pattern graph G(N, F): $N = \{1, 2, ..., n\},\$

1

Н

$$F = \left\{ (i,j): \begin{array}{l} i \neq j, \ X_{ij} \text{ is necessary} \\ \text{to evaluate } f_0(\boldsymbol{y}, \boldsymbol{X}) \text{ or } f(\boldsymbol{y}, \boldsymbol{X}) \end{array} \right\}$$

$$\left. \begin{array}{l} \left\{ \begin{array}{l} G(N,E): \text{ a chordal extension of } G(N,F) \\ C_1,C_2,\ldots,C_\ell: \text{ the maximal cliques of } G(N,E) \end{array} \right\}$$

$$(P') \min f_0(\boldsymbol{y}, \boldsymbol{X}) \text{ sub.to } f(\boldsymbol{y}, \boldsymbol{X}) \in \Omega, \ \boldsymbol{X}(C_p) \succeq \boldsymbol{O} \ (p = 1, \ldots, \ell).$$
Here $\boldsymbol{X}(C_p): \text{ a submatrix consisting of } X_{ij}, \ (i,j) \in C_p \times C_p.$

$$G(N,F) \xrightarrow{(1) \quad (6) \quad (5) \quad (2) \quad (3) \quad (4) \quad (2) \quad (3) \quad (4) \quad (5) \quad (5) \quad (5) \quad (2) \quad (5) \quad$$

d-space sparsity pattern graph G(N, F): $N = \{1, 2, ..., n\},\$

1

(P') min $f_0(\boldsymbol{y}, \boldsymbol{X})$ sub.to $\boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) \in \Omega$, $\boldsymbol{X}(C_p) \succeq \boldsymbol{O} \ (p = 1, \dots, \ell)$. Here $\boldsymbol{X}(C_p)$: a submatrix consisting of X_{ij} , $(i, j) \in C_p \times C_p$.

d-space sparsity pattern graph G(N, F): $N = \{1, 2, ..., n\},\$

$$F = \begin{cases} (i,j) : & i \neq j, \ X_{ij} \text{ is necessary} \\ \text{to evaluate } f_0(\boldsymbol{y}, \boldsymbol{X}) \text{ or } \boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) \end{cases}$$

$$\square G(N, E) : a chordal extension of $G(N, F)$
 C_1, C_2, \dots, C_ℓ : the maximal cliques of $G(N, E)$$$

(P') min $f_0(\boldsymbol{y}, \boldsymbol{X})$ sub.to $f(\boldsymbol{y}, \boldsymbol{X}) \in \Omega$, $\boldsymbol{X}(C_p) \succeq \boldsymbol{O} \ (p = 1, \dots, \ell)$. Here $\boldsymbol{X}(C_p)$: a submatrix consisting of X_{ij} , $(i, j) \in C_p \times C_p$.

● (P) \Leftrightarrow (P') is based on the positive definite matrix completion (Grone et al. 1984).

Outline

- 0 Semidefinite Programming (SDP)
- 1 A simple example for 2 types of sparsities
- 2 Chordal graph
- 3 Domain-space sparsity
- 4 Range-space sparsity
- 5 Numerical results
- 6 Concluding remarks

 $G(N, E) : a \text{ chordal graph with } N = \{1, \dots, n\} \text{ and}$ the max. cliques of $C_1, \dots, C_{\ell}. E^{\bullet} = E \cup \{(i, i) : i \in N\}.$ $\mathbb{S}^n(E^{\bullet}) = \{\mathbf{Y} \in \mathbb{S}^n : Y_{ij} = 0 \ (i, j) \notin E^{\bullet}\}.$ $\mathbb{S}^C_+ = \{\mathbf{Y} \succeq \mathbf{O} : Y_{ij} = 0 \text{ if } (i, j) \notin C \times C\} \text{ for } \forall C \subseteq N.$ Theorem (Agler, Helton, McCulough and Rodman 1988) Suppose $\mathbf{M} \in \mathbb{S}^n(E^{\bullet}). \ \mathbf{M} \succeq \mathbf{O} \text{ iff}$ $\mathbf{M} = \mathbf{Y}^1 + \mathbf{Y}^2 + \dots + \mathbf{Y}^{\ell} \text{ for } \exists \mathbf{Y}^k \in \mathbb{S}^{C_k}_+ \ (k = 1, \dots, \ell).$

G(N, E): a chordal graph with $N = \{1, \ldots, n\}$ and the max. cliques of C_1, \ldots, C_ℓ . $E^{\bullet} = E \cup \{(i, i) : i \in N\}$. $\mathbb{S}^n(E^{\bullet}) = \{ \mathbf{Y} \in \mathbb{S}^n : Y_{ij} = 0 \ (i,j) \notin E^{\bullet} \}.$ $\mathbb{S}^{C}_{+} = \{ \mathbf{Y} \succeq \mathbf{O} : Y_{ij} = 0 \text{ if } (i,j) \notin C \times C \} \text{ for } \forall C \subseteq N.$ Theorem (Agler, Helton, McCulough and Rodman 1988) Suppose $M \in \mathbb{S}^n(E^{\bullet})$. $M \succeq O$ iff $M = Y^1 + Y^2 + \cdots + Y^{\ell}$ for $\exists Y^k \in \mathbb{S}^{C_k}_+$ $(k = 1, \ldots, \ell)$. --(2) (3) $C_1 = \{1, 2\}, C_2 = \{2, 3\}.$ $M : \mathbb{R}^m \to \mathbb{S}^3(E^{\bullet}).$ $\boldsymbol{M}(\boldsymbol{u}) = \begin{pmatrix} M_{11}(\boldsymbol{u}) & M_{12}(\boldsymbol{u}) & 0 \\ M_{21}(\boldsymbol{u}) & M_{22}(\boldsymbol{u}) & M_{23}(\boldsymbol{u}) \\ 0 & M_{32}(\boldsymbol{u}) & M_{33}(\boldsymbol{u}) \end{pmatrix}$

 $G(N, E) : a \text{ chordal graph with } N = \{1, \dots, n\} \text{ and}$ the max. cliques of $C_1, \dots, C_{\ell}. E^{\bullet} = E \cup \{(i, i) : i \in N\}.$ $\mathbb{S}^n(E^{\bullet}) = \{\mathbf{Y} \in \mathbb{S}^n : Y_{ij} = 0 \ (i, j) \notin E^{\bullet}\}.$ $\mathbb{S}^C_+ = \{\mathbf{Y} \succeq \mathbf{O} : Y_{ij} = 0 \text{ if } (i, j) \notin C \times C\} \text{ for } \forall C \subseteq N.$ Theorem (Agler, Helton, McCulough and Rodman 1988) Suppose $\mathbf{M} \in \mathbb{S}^n(E^{\bullet}). \ \mathbf{M} \succeq \mathbf{O} \text{ iff}$ $\mathbf{M} = \mathbf{Y}^1 + \mathbf{Y}^2 + \dots + \mathbf{Y}^{\ell} \text{ for } \exists \mathbf{Y}^k \in \mathbb{S}^{C_k}_+ \ (k = 1, \dots, \ell).$

 $(1) - (2) - (3) \quad C_1 = \{1, 2\}, \ C_2 = \{2, 3\}. \quad \mathbf{M} : \mathbb{R}^m \to \mathbb{S}^3(E^{\bullet}).$

 $oldsymbol{M}(oldsymbol{u}) \succeq oldsymbol{O}$

G(N, E): a chordal graph with $N = \{1, \ldots, n\}$ and the max. cliques of C_1, \ldots, C_ℓ . $E^{\bullet} = E \cup \{(i, i) : i \in N\}$. $\mathbb{S}^n(E^{\bullet}) = \{ \mathbf{Y} \in \mathbb{S}^n : Y_{ij} = 0 \ (i,j) \notin E^{\bullet} \}.$ $\mathbb{S}^{C}_{+} = \{ \mathbf{Y} \succeq \mathbf{O} : Y_{ij} = 0 \text{ if } (i, j) \notin C \times C \} \text{ for } \forall C \subseteq N.$ Theorem (Agler, Helton, McCulough and Rodman 1988) Suppose $M \in \mathbb{S}^n(E^{\bullet})$. $M \succeq O$ iff $M = Y^1 + Y^2 + \cdots + Y^{\ell}$ for $\exists Y^k \in \mathbb{S}^{C_k}_+$ $(k = 1, \ldots, \ell)$. (3) $C_1 = \{1, 2\}, \ C_2 = \{2, 3\}. \ \mathbf{M} : \mathbb{R}^m \to \mathbb{S}^3(E^{\bullet}).$ $M(\boldsymbol{u}) \succeq \boldsymbol{O} \qquad M(\boldsymbol{u}) = \begin{pmatrix} Y_{11}^{1} & Y_{12}^{1} & 0 \\ Y_{12}^{1} & Y_{22}^{1} & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & Y_{22}^{2} & Y_{23}^{2} \\ 0 & Y_{32}^{2} & Y_{33}^{2} \end{pmatrix}$ $M_{11} = Y_{11}^{1}, M_{12} = Y_{12}^{1}, \\M_{22} = Y_{22}^{1} + Y_{22}^{2}, \\M_{23} = Y_{23}^{2}, M_{33} = Y_{33}^{2}, \\\Box \succeq \boldsymbol{O}, \ \Box \succeq \boldsymbol{O} \end{pmatrix} \Leftrightarrow \begin{cases} \begin{pmatrix} M_{11}(\boldsymbol{u}) & M_{12}(\boldsymbol{u}) \\ M_{21}(\boldsymbol{u}) & Y_{22}^{1} \end{pmatrix} \succeq \boldsymbol{O}, \\M_{22}(\boldsymbol{u}) - Y_{22}^{1} & M_{23}(\boldsymbol{u}) \\ M_{32}(\boldsymbol{u}) & M_{33}(\boldsymbol{u}) \end{pmatrix} \succeq \boldsymbol{O} \end{cases}$ $oldsymbol{M}(oldsymbol{u}) \succeq oldsymbol{O}$

Summary of the d-space and r-space conversion methods:

Sparsity characterized by a chordal graph structure

SDP (linear, polynomial, nonlinear) each large-scale matrix variable ↓ exploiting d-space sparsity multiple smaller matrix variables each large-scale matrix inequality ↓ exploiting r-space sparsity multiple smaller matrix inequalities

→ SparseCoLO for linear SDP

 \Downarrow if SDP is linear \Downarrow relaxation if SDP is polynomial Linear SDP with multiple smaller matrix variables and matrix

inequalities

Summary of the d-space and r-space conversion methods:

Sparsity characterized by a chordal graph structure

SDP (linear, polynomial, nonlinear) each large-scale matrix variable ↓ exploiting d-space sparsity multiple smaller matrix variables each large-scale matrix inequality ↓ exploiting r-space sparsity multiple smaller matrix inequalities

→ SparseCoLO for linear SDP

 \Downarrow if SDP is linear \Downarrow relaxation if SDP is polynomial

Linear SDP with multiple smaller matrix variables and matrix inequalities

SparsePOP = sparse SDP relaxation (Waki et. al '06) :

 $\begin{array}{ccc} \mathsf{POP} & \Rightarrow & \boxed{\mathsf{Poly. SDP}} \Rightarrow & \mathsf{Linear SDP} \\ & \mathsf{adding valid poly.} & & \mathsf{relaxation} \\ & \mathsf{mat. inequalities} \leftarrow & \mathsf{sparsity} \end{array}$

Outline

- 0 Semidefinite Programming (SDP)
- 1 A simple example for 2 types of sparsities
- 2 Chordal graph
- 3 Domain-space sparsity
- 4 Range-space sparsity
- **5** Numerical results
- 6 Concluding remarks

Test Problems

- (a) SDP relaxation of quadratic optimization problems (QOPs)
- (b) Linear SDP relaxation of randomly generated sparse quadratic SDPs
- (c) Polynomial optimization problems (POPs)
- We apply SparseCoLO+ SDPA to (a) and (b), where SparseCoLO — MATLAB software for the d-space and r-space conversion methods, SDPA — a primal-dual interior-point method for SDPs.
- We apply SparsePOP + SDPA to (c), where SparsePOP — a sparse SDP relaxation for POPs using the d-space conversion method.
- 3.06 GHz Intel Core 2 Duo with 8 GB memory.

(a) Linear SDP relaxation of sparse QOPs

Sparse		No. of	E. time in seconds	
Linear SDP	size X	equalities	no sparsity	d-space
M1000.05	1000	1000	41.2	0.5
M1000.15	1000	1000	39.6	52.7
thetaG11	801	2401	41.8	6.9
qpG11	1600	800	112.5	3.1
sensor1000	1002	11010	271.8	18.3
sensor4000	4002	47010	o.mem.	56.0

Sparse Linear SDP M1000.?? thetaG11 qpG11 sensor???? sparse QOP

- \leftarrow max cut problems with diff. edge densities
- minimization of the Lovasz theta function
- \Leftarrow a box constrained QOP

M1000.05

0.5 second

41.5 second

. – p.24/35

M1000.15

d-space sparsity pattern

d–space sparsity pattern with the symmetric min. deg. ordering (symamd, MATLAB)

Before conversion one $1000 \times 1000 \ X \succeq O$

39.6 second

⇒ After conversion 47 smaller $X_k \succeq O$ max. size = 91 × 91 ave. size = 36.6 × 36.6 52.5 second

sensor1000

d-space sparsity pattern

d–space sparsity pattern with the symmetric min. deg. ordering (symamd, MATLAB)

Before conversion one $1002 \times 1002 \ \mathbf{X} \succeq \mathbf{O}$

271.3 second

⇒ After conversion 914 smaller $X_k \succeq O$ max. size = 34×34 ave. size = 6.2×6.2 18.3 second

sensor4000

56.0

ave. size = 5.3×5.3

out of memory

Quadratic SDP: min $c^T x$ sub to $M(x) \succeq O$, where $M : \mathbb{R}^s \to \mathbb{S}^n$ whose (i, j) element is given by $M_{ij}(x) = (1, x^T) Q_{ij} \begin{pmatrix} 1 \\ x \end{pmatrix} = Q_{ij} \bullet \begin{pmatrix} 1 & x^T \\ x & xx^T \end{pmatrix}, \forall x \in \mathbb{R}^s.$ Here $Q \bullet Y =$ trace $Q^T Y$ (the inner product of Q and Y).

$$\begin{split} & \mathsf{SDP:} \min \, \boldsymbol{c}^T \boldsymbol{x} \text{ sub to } \widehat{\boldsymbol{M}}(\boldsymbol{x}, \boldsymbol{X}) \succeq \boldsymbol{O}, \begin{pmatrix} \boldsymbol{x}_0 & \boldsymbol{x}^T \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \succeq \boldsymbol{O}, \ \boldsymbol{x}_0 = 1, \\ & \mathsf{where} \ \widehat{\boldsymbol{M}} : \mathbb{R}^s \times \mathbb{S}^s \to \mathbb{S}^n \text{ whose } (i, j) \text{ element is given by} \\ & \widehat{M}_{ij}(\boldsymbol{x}, \boldsymbol{X}) = \boldsymbol{Q}_{ij} \bullet \begin{pmatrix} 1 & \boldsymbol{x}^T \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \text{ for every } \boldsymbol{x} \in \mathbb{R}^s, \boldsymbol{X} \in \mathbb{S}^s, \end{split}$$

↑ Linear SDP relaxation

Quadratic SDP: min $c^T x$ sub to $M(x) \succeq O$, where $M : \mathbb{R}^s \to \mathbb{S}^n$ whose (i, j) element is given by $M_{ij}(x) = (1, x^T) Q_{ij} \begin{pmatrix} 1 \\ x \end{pmatrix} = Q_{ij} \bullet \begin{pmatrix} 1 & x^T \\ x & xx^T \end{pmatrix}, \forall x \in \mathbb{R}^s.$ Here $Q \bullet Y =$ trace $Q^T Y$ (the inner product of Q and Y).

$$\begin{array}{l} \text{SDP: min } \boldsymbol{c}^{T}\boldsymbol{x} \text{ sub to } \widehat{\boldsymbol{M}}(\boldsymbol{x},\boldsymbol{X}) \succeq \boldsymbol{O}, \begin{pmatrix} \boldsymbol{x}_{0} & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \succeq \boldsymbol{O}, \ \boldsymbol{x}_{0} = 1, \\ \text{where } \widehat{\boldsymbol{M}} : \mathbb{R}^{s} \times \mathbb{S}^{s} \to \mathbb{S}^{n} \text{ whose } (i,j) \text{ element is given by} \\ \widehat{M}_{ij}(\boldsymbol{x},\boldsymbol{X}) &= \boldsymbol{Q}_{ij} \bullet \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \text{ for every } \boldsymbol{x} \in \mathbb{R}^{s}, \boldsymbol{X} \in \mathbb{S}^{s}, \end{array}$$

$$\begin{array}{l} \text{SDP: min } \boldsymbol{c}^{T}\boldsymbol{x} \text{ sub to } \widehat{\boldsymbol{M}}(\boldsymbol{x},\boldsymbol{X}) \succeq \boldsymbol{O}, \begin{pmatrix} \boldsymbol{x}_{0} & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \succeq \boldsymbol{O}, \ \boldsymbol{x}_{0} = 1, \\ \text{where } \widehat{\boldsymbol{M}} : \mathbb{R}^{s} \times \mathbb{S}^{s} \to \mathbb{S}^{n} \text{ whose } (i,j) \text{ element is given by} \\ \widehat{M}_{ij}(\boldsymbol{x},\boldsymbol{X}) &= \boldsymbol{Q}_{ij} \bullet \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \text{ for every } \boldsymbol{x} \in \mathbb{R}^{s}, \boldsymbol{X} \in \mathbb{S}^{s}, \end{array}$$

d-space sparsity ($\forall Q_{ij}$) and r-space sparsity (\widehat{M}) (s = 40, n = 41)

$$\begin{array}{l} \text{SDP: min } \boldsymbol{c}^{T}\boldsymbol{x} \text{ sub to } \widehat{\boldsymbol{M}}(\boldsymbol{x},\boldsymbol{X}) \succeq \boldsymbol{O}, \begin{pmatrix} \boldsymbol{x}_{0} & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \succeq \boldsymbol{O}, \ \boldsymbol{x}_{0} = 1, \\ \text{where } \widehat{\boldsymbol{M}} : \mathbb{R}^{s} \times \mathbb{S}^{s} \to \mathbb{S}^{n} \text{ whose } (i,j) \text{ element is given by} \\ \widehat{M}_{ij}(\boldsymbol{x},\boldsymbol{X}) &= \boldsymbol{Q}_{ij} \bullet \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \text{ for every } \boldsymbol{x} \in \mathbb{R}^{s}, \boldsymbol{X} \in \mathbb{S}^{s}, \end{array}$$

$$\begin{array}{l} \text{SDP: min } \boldsymbol{c}^{T}\boldsymbol{x} \text{ sub to } \widehat{\boldsymbol{M}}(\boldsymbol{x},\boldsymbol{X}) \succeq \boldsymbol{O}, \begin{pmatrix} \boldsymbol{x}_{0} & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \succeq \boldsymbol{O}, \ \boldsymbol{x}_{0} = 1, \\ \text{where } \widehat{\boldsymbol{M}} : \mathbb{R}^{s} \times \mathbb{S}^{s} \to \mathbb{S}^{n} \text{ whose } (i,j) \text{ element is given by} \\ \widehat{M}_{ij}(\boldsymbol{x},\boldsymbol{X}) &= \boldsymbol{Q}_{ij} \bullet \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \text{ for every } \boldsymbol{x} \in \mathbb{R}^{s}, \boldsymbol{X} \in \mathbb{S}^{s}, \end{array}$$

		SDPA elapsed time in seconds			
S	n	no sparsity	d-space	r-space	d- & r-space
40	41	1.4	0.3	1.3	0.2
80	81	33.5	1.7	34.6	0.8
160	161	1427.1	19.6	1483.0	4.1
320	321	-	262.2	-	31.8

(c) SDP relaxation of POPs by SparsePOP+SDPA — 1 alkyl from globalib

$$\begin{array}{ll} \min & -6.3x_5x_8 + 5.04x_2 + 0.35x_3 + x_4 + 3.36x_6\\ \text{sub.to} & -0.820x_2 + x_5 - 0.820x_6 = 0,\\ & 0.98x_4 - x_7(0.01x_5x_{10} + x_4) = 0,\\ & -x_2x_9 + 10x_3 + x_6 = 0,\\ & x_5x_{12} - x_2(1.12 + 0.132x_9 - 0.0067x_9^2) = 0,\\ & x_8x_{13} - 0.01x_9(1.098 - 0.038x_9) - 0.325x_7 = 0.574,\\ & x_{10}x_{14} + 22.2x_{11} = 35.82,\\ & x_1x_{11} - 3x_8 = -1.33, \ \text{lbd}_i \le x_i \le \text{ubd}_i \ (i = 1, 2, \dots, 14). \end{array}$$

no sparsity	d-sp	bace epa	rsity
E. time	E. time	ϵ_{obj}	ϵ feas
> 10,000	1.3	8.2e-6	8.5e-10

 ϵ_{obj} = approx. min. val. - lower bd. for the min. val.,

 ϵ_{feas} = the max. error in equalities.

(c) SDP relaxation of POPs by SparsePOP+SDPA — 2 Minimize the Broyden tridiagonal function $f_B(x)$ over \mathbb{R}^n .

$$f_B(\boldsymbol{x}) = \sum_{i=1}^{n} \left((3 - 2x_i)x_i - x_{i-1} - 2x_{i+1} + 1 \right)^2,$$

where $x_0 = 0$ and $x_{n+1} = 0$.

	no sparsity	d-space	
n	E. time	E. time	ϵ obj
10	1.80	0.04	4.4e-9
20	916.95	0.08	1.5e-9
5000	o.mem.	29.44	5.1e-5
10000	o.mem.	59.52	9.2e-4

 ϵ_{obj} = an approx. min. val. - a l. bound for the min. val..

Outline

- 0 Semidefinite Programming (SDP)
- 1 A simple example for 2 types of sparsities
- 2 Chordal graph
- 3 Domain-space sparsity
- 4 Range-space sparsity
- 5 Numerical results
- 6 Concluding remarks

Two types of sparsities of large-scale SDPs which are characterized by a chordal graph structure:

- (a) Domain-space sparsity
- (b) Range-space sparsity
- Numerical methods for converting large-scale SDPs into smaller SDPs by exploiting (a) and (b).

Linear,	each large-scale matrix variable
polynomial or	\Downarrow exploiting (a) Domain-space sparsity
nonlinear	multiple smaller matrix variables
SDP	each large-scale matrix inequality
	Use the second state is a second state with the second state withet withet with the second state withet with the second sta
	multiple smaller matrix inequalities

Two types of sparsities of large-scale SDPs which are characterized by a chordal graph structure:

- (a) Domain-space sparsity
- (b) Range-space sparsity
- Numerical methods for converting large-scale SDPs into smaller SDPs by exploiting (a) and (b).

Linear, polynomial or	each large-scale matrix variable ↓ exploiting (a) Domain-space sparsity
nonlinear	multiple smaller matrix variables
SDP	each large-scale matrix inequality
	ψ exploiting (b) Range-space sparsity
	multiple smaller matrix mequalities

- Very effective when SDP is sparse.
- Overheads in domain- & range-space conversion methods; adding equalities, real variables and/or matrix variables. Hence, less effective if SDP is denser.