Conversion Methods for Large Scale SDPs to Exploit Their Structured Sparsity

The 4th Sino-Japanese Optimization Meeting

Tainan, Taiwan August 27, 2008

Masakazu Kojima

Tokyo Institute of Technology

1. Introduction

— Semidefinite Programs (SDPs) and their conversion —

- 2. Two kinds of sparsities
 - 2-1. Aggregated sparsity and positive definite matrix completion
 - 2-2. Correlative sparsity and sparsity of the Schur complement matrix in SDP with small mat. variables
- 3. Conversion to a c-sparse LMI form SDP with small mat. variables
- 4. An application to sensor network localization
- 5. Concluding remarks

1. Introduction

- Semidefinite Programs (SDPs) and their conversion -

- 2. Two kinds of sparsities
 - 2-1. Aggregated sparsity and positive definite matrix completion
 - 2-2. Correlative sparsity and sparsity of the Schur complement matrix in SDP with small mat. variables
- 3. Conversion to a c-sparse LMI form SDP with small mat. variables
- 4. An application to sensor network localization
- 5. Concluding remarks

min $A_0 \bullet X$ sub.to $A_p \bullet X = b_p \ (p = 1, \dots, m), \ S^n \ni X \succeq O$

Here

 $oldsymbol{A}_p \in \mathcal{S}^n$ the linear space of n imes n symmetric matrices

with the inner product
$$A_p \bullet X = \sum_{i, j} [A_p]_{ij} X_{ij}$$
.

 $b_p \in \mathbb{R}, \ \mathbf{X} \succeq \mathbf{O} \ \Leftrightarrow \ \mathbf{X} \in S^n$ is positive semidefinite.

Lots of Applications to Various Problems

- Systems and control theory Linear Matrix Inequality
- SDP relaxations of combinatorial and nonconvex problems
 - Max cut and max clique problems
 - Quadratic assignment problems
 - Polynomial optimization problems
- Robust optimization
- Quantum chemistry
- Moment problems (applied probability)
- Sensor network localization problem later

min $A_0 \bullet X$ sub.to $A_p \bullet X = b_p \ (p = 1, \dots, m), \ S^n \ni X \succeq O$

SDP can be large-scale easily

• $n \times n$ mat. variable X involves n(n+1)/2 real variables;

$$n = 2000 \Rightarrow n(n+1)/2 \approx 2$$
 million

• *m* linear equality constraints or $m \ A_p$'s $\in S^n$

 \Diamond How can we solve a larger scale SDP?

- (a) Use more powerful computer system such as clusters and grids of computers parallel computation.
- (b) Develop new numerical methods for SDPs.
- (c) Improve primal-dual interior-point methods.
- (d) Convert a large sparse SDP to an SDP which existing pdipms can solve efficiently:
 - multiple but small size mat. variables.
 - a sparse Schur complement mat. (a coef. mat. of a sys. of equations solved at ∀ iteration of the pdipm).

An SDP example — Conversion makes a critical difference

min $\sum_{p=1}^m x_p + I \bullet X$							
sub.to $a_p x_p + A_p \bullet X = 2, x_p \ge 0 \ (p = 1, \dots, m), \ X \succeq O.$							
Here $a_p \in (0,1)$ and $\boldsymbol{A}_p \in \mathcal{S}^k$ are generated randomly.							
		SeDuMi	conv.+SeDuMi				
m	k	cpu time in sec.	cpu time in sec.				
1000	10	29.6	4.3				
2000	10	360.4	10.3				
4000	10		20.9				

- x_p is an LP variable which appears in a single equality constraint.
- X is an SDP variable matrix which appears in all equality constraints, and its size is small.
- How can we formulate and exploit more general structured sparsity?

Outline of the conversion

structured sparsity used	a large scale and structured sparse SDP	technique
aggregated sparsity	\downarrow	positive definite mat. completion
	an SDP with small SDP cones and shared variables among SDP cones	
correlative sparsity	\Rightarrow	conversion to LMI form SDP or conversion to Equality form SDP
	a c-sparse SDP with small mat. variables (<i>i.e.</i> , small SDP cones)	

- 1. Introduction
 - Semidefinite Programs (SDPs) and their conversion -
- 2. Two Kinds of Sparsities
 - 2-1. Aggregated sparsity and positive definite matrix completion (Fukuda et al. '01, Nakata et al. '03)
 - 2-2. Correlative sparsity and sparsity pattern of the Schur complement matrix
- 3. Conversion to a c-sparse LMI form SDP with small mat. variables
- 4. An application to sensor network localization
- 5. Concluding remarks

min $A_0 \bullet X$ sub.to $A_p \bullet X = b_p \ (p = 1, \dots, m), \ S^n \ni X \succeq O$

 A_* : $n \times n$ aggregated sparsity pattern mat.

$$[A_*]_{ij} = \begin{cases} \star & \text{if } i = j \text{ or } [A_p]_{ij} \neq 0 \text{ for some } p = 0, \dots, m, \\ 0 & \text{otherwise} \end{cases}$$

SDP : a-sparse if A_* allows a sparse Cholesky factorization

Two typical cases

1: bandwidth along diagonal 2: arrow 📐

$$\boldsymbol{A}_{*} = \begin{pmatrix} * & * & 0 & 0 & 0 \\ * & * & * & 0 & 0 \\ 0 & * & * & * & 0 \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix} \qquad \boldsymbol{A}_{*} = \begin{pmatrix} * & 0 & 0 & 0 & * \\ 0 & * & 0 & 0 & * \\ 0 & 0 & * & 0 & * \\ 0 & 0 & 0 & * & * \\ * & * & * & * & * \end{pmatrix}$$

• X : fully dense, so standard pdipms can not effectively utilize this type of sparsity \Rightarrow pos.def.mat.completion

min $A_0 \bullet X$ sub.to $A_p \bullet X = b_p \ (p = 1, \dots, m), \ S^n \ni X \succeq O$

 A_* : $n \times n$ aggregated sparsity pattern mat.

$$[A_*]_{ij} = \begin{cases} \star & \text{if } i = j \text{ or } [A_p]_{ij} \neq 0 \text{ for some } p = 0, \dots, m, \\ 0 & \text{otherwise} \end{cases}$$

SDP : a-sparse if A_* allows a sparse Cholesky factorization

 $\begin{array}{l} & G(N,E): \text{ the asp graph, an undirected graph with} \\ & \mathbb{N} = \{1,\ldots,n\}, \ E = \{(i,j): [A_*]_{ij} = \star \text{ and } i < j\}. \\ & G(N,\overline{E}): \text{ a chordal extension of } G(N,E). \\ & C_1,\ldots,C_\ell \subset N: \text{ the family of maximal cliques of } G(N,\overline{E}). \end{array}$

 $SDP \equiv$ an SDP with shared variables among small SDP cones:

$$\begin{array}{ll} \min & \sum_{(i,j)\in\widetilde{E}} \ [A_0]_{ij}X_{ij} \\ \text{sub.to} & \sum_{(i,j)\in\widetilde{E}} \ [A_p]_{ij}X_{ij} = b_p \ (\forall p), \ \boldsymbol{X}(C_r) \succeq \boldsymbol{O} \ (r = 1, \dots, \ell), \\ \\ \text{where } \boldsymbol{X}(C_r) : \text{the submatrix of } \boldsymbol{X} \text{ consisting of } X_{ij} \ (i, j \in C_r). \end{array}$$

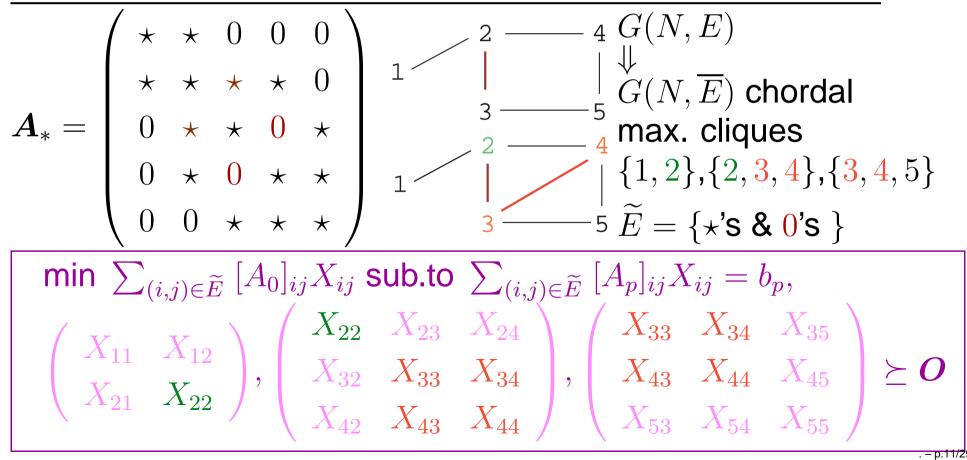
$$\begin{array}{l} \text{Here } \widetilde{E} = \{(i,j): (i,j), (j,i)\in\overline{E} \text{ or } i = j\} \Longrightarrow \text{Section 3.} \end{array}$$

min $A_0 \bullet X$ sub.to $A_p \bullet X = b_p \ (p = 1, \dots, m), \ S^n \ni X \succeq O$

 A_* : $n \times n$ aggregated sparsity pattern mat.

$$[A_*]_{ij} = \begin{cases} \star & \text{if } i = j \text{ or } [A_p]_{ij} \neq 0 \text{ for some } p = 0, \dots, m, \\ 0 & \text{otherwise} \end{cases}$$

SDP : a-sparse if A_* allows a sparse Cholesky factorization



min $A_0 \bullet X$ sub.to $A_p \bullet X = b_p \ (p = 1, \dots, m), \ \mathcal{S}^n \ni X \succeq O$

As an example: U aggregated sparsity

$$\min \sum_{(i,j)\in \widetilde{E}} [A_0]_{ij} X_{ij} \text{ sub.to } \sum_{(i,j)\in \widetilde{E}} [A_p]_{ij} X_{ij} = b_p \text{ and} \\ \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}, \begin{pmatrix} X_{22} & X_{23} & X_{24} \\ X_{32} & X_{33} & X_{34} \\ X_{42} & X_{43} & X_{44} \end{pmatrix}, \begin{pmatrix} X_{33} & X_{34} & X_{35} \\ X_{43} & X_{44} & X_{45} \\ X_{53} & X_{54} & X_{55} \end{pmatrix} \succeq \mathbf{O}$$

(an SDP with smaller SDP cones and shared variables) \implies

Conversion into a standard form SDP to apply IPM — 2 ways

$$\begin{array}{l} \text{Primal form SDP with small mat. variables:} \\ \text{min "linear obj. in } Y_{ij}^{r}\text{s" sub.to "linear eq. in } Y_{ij}^{r}\text{s" and} \\ \left(\begin{array}{c} Y_{11}^{1} & Y_{12}^{1} \\ Y_{21}^{1} & Y_{22}^{1} \end{array}\right), \left(\begin{array}{c} Y_{11}^{2} & Y_{12}^{2} & Y_{13}^{2} \\ Y_{21}^{2} & Y_{22}^{2} & Y_{22}^{2} & Y_{23}^{2} \\ Y_{31}^{2} & Y_{32}^{2} & Y_{33}^{2} \end{array}\right), \left(\begin{array}{c} Y_{11}^{3} & Y_{12}^{3} & Y_{13}^{3} \\ Y_{21}^{3} & Y_{22}^{3} & Y_{23}^{3} \\ Y_{31}^{3} & Y_{32}^{3} & Y_{33}^{3} \end{array}\right) \succeq O, \\ Y_{22}^{1} = Y_{11}^{2}, \ Y_{22}^{2} = Y_{11}^{3}, \ Y_{23}^{2} = Y_{12}^{3}, \ Y_{33}^{2} = Y_{22}^{3}. \end{array}$$

min $A_0 \bullet X$ sub.to $A_p \bullet X = b_p \ (p = 1, \dots, m), \ S^n \ni X \succeq O$

As an example: \Downarrow aggregated sparsity

$$\min \sum_{(i,j)\in \widetilde{E}} [A_0]_{ij} X_{ij} \text{ sub.to } \sum_{(i,j)\in \widetilde{E}} [A_p]_{ij} X_{ij} = b_p \text{ and} \\ \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}, \begin{pmatrix} X_{22} & X_{23} & X_{24} \\ X_{32} & X_{33} & X_{34} \\ X_{42} & X_{43} & X_{44} \end{pmatrix}, \begin{pmatrix} X_{33} & X_{34} & X_{35} \\ X_{43} & X_{44} & X_{45} \\ X_{53} & X_{54} & X_{55} \end{pmatrix} \succeq \mathbf{O}$$

(an SDP with smaller SDP cones and shared variables) \implies

Conversion into a standard form SDP to apply IPM — 2 ways

LMI form SDP with small mat. variables — later

1. Introduction

- Semidefinite Programs (SDPs) and their conversion -

- 2. Two kinds of sparsities
 - 2-1. Aggregated sparsity and positive definite matrix completion
 - 2-2. Correlative sparsity and sparsity of the Schur complement matrix in SDP with small mat. variables
- 3. Conversion to a c-sparse LMI form SDP with small mat. variables
- 4. An application to sensor network localization
- 5. Concluding remarks

$$\begin{array}{l} \text{SDP with small matrix variables:}\\ \min & \sum_{r=1}^{\ell} \boldsymbol{A}_{0r} \bullet \boldsymbol{X}_{r}\\ \text{sub.to} & \sum_{r=1}^{\ell} \boldsymbol{A}_{pr} \bullet \boldsymbol{X}_{r} = b_{p} \ (p = 1, \ldots, m), \ \boldsymbol{X}_{r} \succeq \boldsymbol{O} \ (\forall r) \\ \\ \Downarrow & \boldsymbol{A}_{p\diamond} = \text{diag} \ (\boldsymbol{A}_{p1}, \ldots, \boldsymbol{A}_{p\ell}), \ \boldsymbol{X}_{\diamond} = \text{diag} \ (\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\ell}), \\ \boldsymbol{A}_{p\diamond} \bullet \boldsymbol{X}_{\diamond} = \sum_{r=1}^{\ell} \boldsymbol{A}_{pr} \bullet \boldsymbol{X}_{r}. \end{array}$$

$$\begin{array}{l} \text{SDP: min } \boldsymbol{A}_{0\diamond} \bullet \boldsymbol{X}_{\diamond} \text{ sub.to } \boldsymbol{A}_{p\diamond} \bullet \boldsymbol{X}_{\diamond} = b_{p} \ (\forall p), \ \boldsymbol{X}_{\diamond} \succeq \boldsymbol{O} \\ \\ m \times m \ \boldsymbol{R}_{*} : \text{ correlative sparsity pattern (csp) mat.} \\ [R_{*}]_{pq} = \begin{cases} 0 & \text{if } \boldsymbol{A}_{p\diamond} \text{ and } \boldsymbol{A}_{q\diamond} \text{ are bw-comp}, \\ \star & \text{otherwise.} \end{cases} \end{array}$$

 $oldsymbol{A}_{p\diamond}$ and $oldsymbol{A}_{q\diamond}$: block-wise complementary $\label{eq:Apr}$ $oldsymbol{A}_{pr} = oldsymbol{O}$ or $oldsymbol{A}_{qr} = oldsymbol{O}$ for every $r = 1, \dots, \ell;$

$$\begin{array}{l} \begin{array}{l} \text{SDP with small matrix variables:}\\ \min & \sum_{r=1}^{\ell} A_{0r} \bullet X_{r}\\ \text{sub.to} & \sum_{r=1}^{\ell} A_{pr} \bullet X_{r} = b_{p} \ (p = 1, \ldots, m), \ X_{r} \succeq O \ (\forall r) \\ \\ \psi & A_{p\diamond} = \operatorname{diag} (A_{p1}, \ldots, A_{p\ell}), \ X_{\diamond} = \operatorname{diag} (X_{1}, \ldots, X_{\ell}), \\ A_{p\diamond} \bullet X_{\diamond} = \sum_{r=1}^{\ell} A_{pr} \bullet X_{r}. \end{array}$$

$$\begin{array}{l} \text{SDP: min } A_{0\diamond} \bullet X_{\diamond} \text{ sub.to } A_{p\diamond} \bullet X_{\diamond} = b_{p} \ (\forall p), \ X_{\diamond} \succeq O \\ \\ m \times m \ R_{*}: \text{ correlative sparsity pattern (csp) mat.} \\ [R_{*}]_{pq} = \begin{cases} 0 & \text{if } A_{p\diamond} \text{ and } A_{q\diamond} \text{ are bw-comp}, \\ \star & \text{otherwise.} \end{cases} \\ \\ A_{1\diamond} = \operatorname{diag}(A_{11}, \ O, \ O, \ O \) \\ A_{2\diamond} = \operatorname{diag}(\ O, A_{22}, \ O, \ O \) \\ \end{array} \right) \Rightarrow \begin{array}{l} R_{*} = \begin{pmatrix} \star & 0 \ 0 \ \star \\ 0 \ \star & 0 \ \star \end{pmatrix}$$

 $\begin{array}{c} \boldsymbol{A}_{3\diamond} = \operatorname{diag}(\boldsymbol{O}, \boldsymbol{O}, \boldsymbol{A}_{33}, \boldsymbol{O}) & \overrightarrow{\boldsymbol{A}_{*}} = \left(\begin{array}{ccc} 0 & 0 & \star & \star \\ \mathbf{A}_{4\diamond} = \operatorname{diag}(\boldsymbol{A}_{41}, \boldsymbol{A}_{42}, \boldsymbol{A}_{43}, \boldsymbol{A}_{44}) & & \left(\begin{array}{ccc} 0 & 0 & \star & \star \\ \star & \star & \star & \star \end{array} \right) \\ \exists \text{ sparse Cholesky factorization} \end{array}$

$$\begin{array}{l} \begin{array}{l} \text{SDP with small matrix variables:} \\ \min & \sum_{r=1}^{\ell} \boldsymbol{A}_{0r} \bullet \boldsymbol{X}_{r} \\ \text{sub.to} & \sum_{r=1}^{\ell} \boldsymbol{A}_{pr} \bullet \boldsymbol{X}_{r} = b_{p} \ (p = 1, \ldots, m), \ \boldsymbol{X}_{r} \succeq \boldsymbol{O} \ (\forall r) \\ \\ \psi & \boldsymbol{A}_{p\diamond} = \operatorname{diag} \left(\boldsymbol{A}_{p1}, \ldots, \boldsymbol{A}_{p\ell} \right), \ \boldsymbol{X}_{\diamond} = \operatorname{diag} \left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\ell} \right), \\ \boldsymbol{A}_{p\diamond} \bullet \boldsymbol{X}_{\diamond} = \sum_{r=1}^{\ell} \boldsymbol{A}_{pr} \bullet \boldsymbol{X}_{r}. \end{array}$$

$$\begin{array}{l} \text{SDP: min } \boldsymbol{A}_{0\diamond} \bullet \boldsymbol{X}_{\diamond} \text{ sub.to } \boldsymbol{A}_{p\diamond} \bullet \boldsymbol{X}_{\diamond} = b_{p} \ (\forall p), \ \boldsymbol{X}_{\diamond} \succeq \boldsymbol{O} \\ \\ m \times m \ \boldsymbol{R}_{*} : \text{ correlative sparsity pattern (csp) mat.} \\ [R_{*}]_{pq} = \begin{cases} 0 & \text{if } \boldsymbol{A}_{p\diamond} \text{ and } \boldsymbol{A}_{q\diamond} \text{ are bw-comp}, \\ \star & \text{otherwise.} \end{cases} \end{array}$$

■ R_{*} = the sparsity pattern of the Schur complement mat. = a coef. mat. of equations solved at ∀ iteration of the pdipm by the Cholesky fact.

SDP : c-sparse if \mathbf{R}_* allows a sparse Cholesky factorization

c-sparse SDP with small mat. variables — target of conversion

Outline of the conversion

structured sparsity used	a large scale and structured sparse SDP	technique
aggregated sparsity	\downarrow	positive definite mat. completion
	an SDP with small SDP cones and shared variables among SDP cones	
correlative sparsity	$\downarrow \qquad \qquad$	conversion to LMI form SDP or conversion to Equality form SDP
	a c-sparse SDP with small mat. variables (<i>i.e.,</i> small SDP cones)	

1. Introduction

- Semidefinite Programs (SDPs) and their conversion -

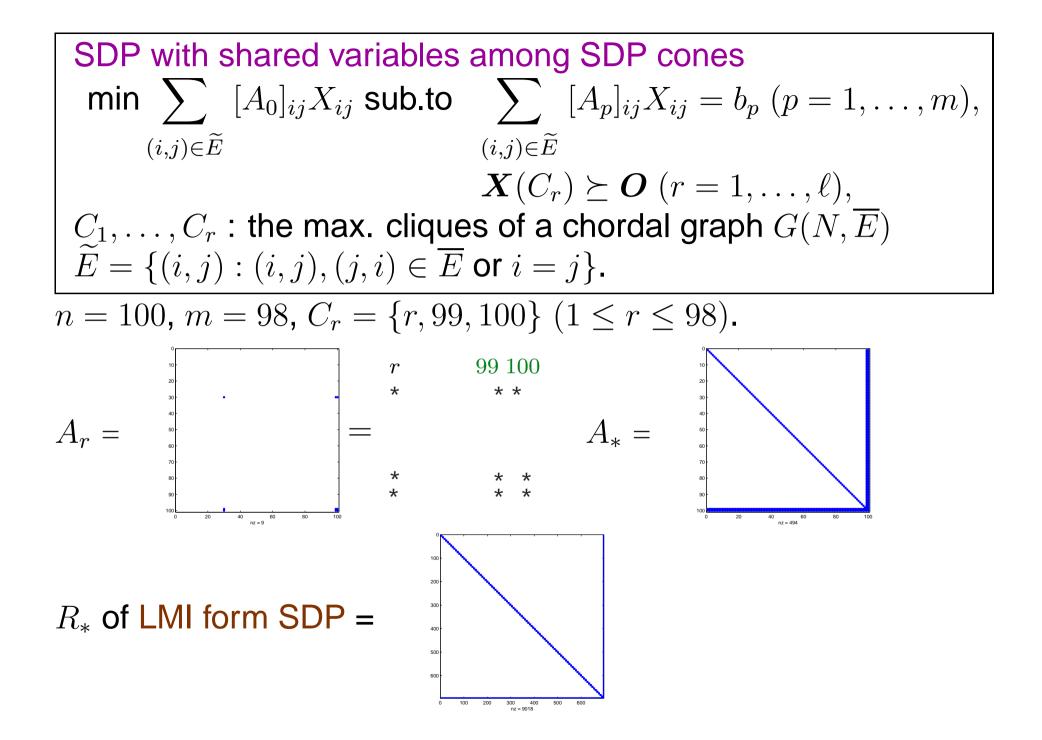
- 2. Two kinds of sparsities
 - 2-1. Aggregated sparsity and positive definite matrix completion
 - 2-2. Correlative sparsity and sparsity of the Schur complement matrix in SDP with small mat. variables
- 3. Conversion to a c-sparse LMI form SDP with small mat. variables
- 4. An application to sensor network localization
- 5. Concluding remarks

$$\begin{array}{l} \text{SDP with shared variables among SDP cones} \\ \min \sum_{(i,j)\in\widetilde{E}} [A_0]_{ij}X_{ij} \text{ sub.to } & \sum_{(i,j)\in\widetilde{E}} [A_p]_{ij}X_{ij} = b_p \ (p = 1, \ldots, m), \\ & \boldsymbol{X}(C_r) \succeq \boldsymbol{O} \ (r = 1, \ldots, \ell), \\ & C_1, \ldots, C_r \text{ : the max. cliques of a chordal graph } G(N, \overline{E}) \\ & \widetilde{E} = \{(i,j): (i,j), (j,i)\in\overline{E} \text{ or } i = j\}. \end{array}$$

Represent each $\boldsymbol{X}(C_r)$ as $\boldsymbol{X}(C_r) = \sum \boldsymbol{E}_{ij}(C_r)X_{ij},$

where
$$E_{ij}(C_r)$$
: a sym. mat. with 1 at some one or two elements and 0 elsewhere. Then, a c-sparse LMI form SDP having eq. const.

$$\min \sum_{(i,j)\in \widetilde{E}} [A_0]_{ij} X_{ij} \text{ sub.to } \sum_{\substack{(i,j)\in \widetilde{E}\\\sum_{i,j\in C_r,i\leq j}} [A_p]_{ij} X_{ij} = b_p \ (\forall p),$$



1. Introduction

- Semidefinite Programs (SDPs) and their conversion -

- 2. Two kinds of sparsities
 - 2-1. Aggregated sparsity and positive definite matrix completion
 - 2-2. Correlative sparsity and sparsity of the Schur complement matrix in SDP with small mat. variables
- 3. Conversion to a c-sparse LMI form SDP with small mat. variables
- 4. An application to sensor network localization
- 5. Concluding remarks

Sensor network localization problem: Let s = 2 or 3.

 $\begin{array}{rcl} \boldsymbol{x}^{p} \in \mathbb{R}^{s} & : & \text{unknown location of sensors } (p = 1, 2, \ldots, m), \\ \boldsymbol{x}^{r} = \boldsymbol{a}^{r} \in \mathbb{R}^{s} & : & \text{known location of anchors } (r = m + 1, \ldots, n), \\ d_{pq} & = & \|\boldsymbol{x}^{p} - \boldsymbol{x}^{q}\| + \epsilon_{pq} - \text{given for } (p, q) \in \mathcal{N}, \\ \mathcal{N} & = & \{(p, q) : \|\boldsymbol{x}^{p} - \boldsymbol{x}^{q}\| \leq \rho = \text{a given radio range}\} \\ \text{Here } \epsilon_{pq} \text{ denotes a noise.} \end{array}$

m = 5, n = 9.1,...,5: sensors 6,7,8,9: anchors



Anchors' positions are fixed. A distance is given for \forall edge. Compute locations of sensors.

 \Rightarrow Some nonconvex QOPs

• SDP relaxation +? — FSDP by Biswas-Ye '06, ESDP by Wang et al '07, ... for s = 2.

SOCP relaxation — Tseng '07 for
$$s = 2$$
.

. – p.23/29

Numerical results on 4 methods (a), (b), (c) and (d) applied to a sensor network localization problem with

m = the number of sensors dist. randomly in $[0, 1]^2$,

4 anchors located at the corner of $[0, 1]^2$,

 $\rho = radio distance = 0.1$, no noise.

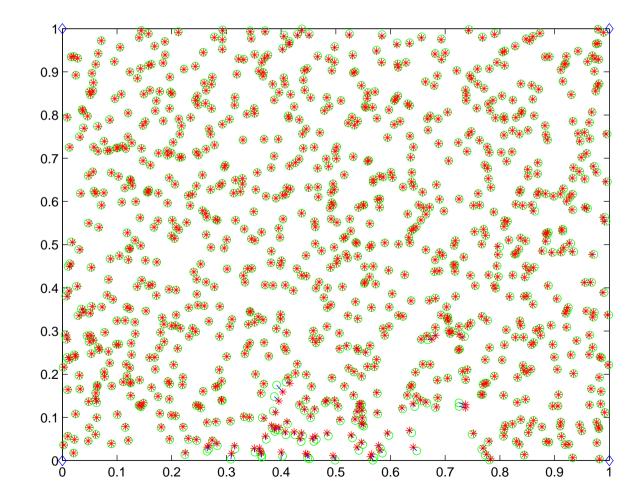
(a) FSDP (b) FSDP + Conv. to LMI form SDP, as strong as (a)

(c) FSDP + Conv. to equality form SDP as strong as (a)

(d) ESDP — a further relaxation of FSDP, weaker than (a);

	SeDu	Mi cpu	SeDuMi parameters		
m	(a)	(b)	(C)	(d)	pars.free=0;
500	389.1	35.0	69.5	62.5	.eps=1.0e-5
1000	3345.2	60.4	178.8	200.3	\Rightarrow a-sparsity,
2000		111.1	326.0	1403.9	c-sparsity
4000		182.1	761.0	11559.8	in (a) and (b)

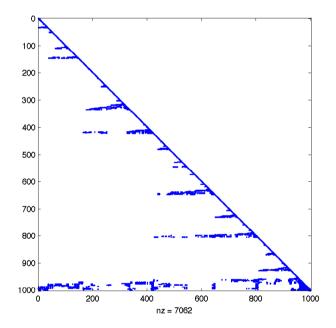
A sensor network localization problem with 1000 sensors dist. randomly in $[0, 1]^2$, 4 anchors located at the corner of $[0, 1]^2$, ρ = radio distance = 0.1, no noise (b) FSDP+Conversion to an LMI form SDP

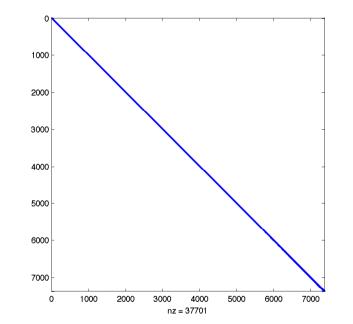


anchor : true : computed : * deviation : — A Cholesky fact. of the a-sparsity pattern matrix A_* with the symm. min. deg. ordering

(a) FSDP (Biswas-Ye '06) (b) FSDP + Conversion

to an LMI form SDP





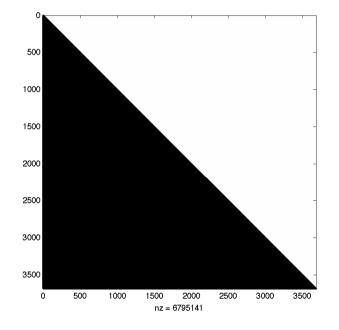
 1002×1002 , nz = 7062 nz density = 0.014

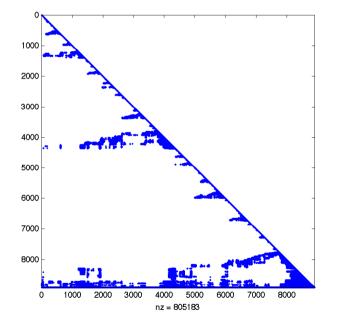
 7381×7381 , nz = 37,701 nz density = 0.0014

A Cholesky fact. of the c-sparsity pattern matrix R_* (= the Schur comp. matrix) with the symm. min. deg. ordering

(a) FSDP (Biswas-Ye '06)

(b) FSDP + Conversion to an LMI form SDP





3686 × 3686, nz = 6,795,141 nz density = 1.00 3345.2 second 8916 × 8916, nz = 805,183 nz density = 0.020 60.4 second

1. Introduction

- Semidefinite Programs (SDPs) and their conversion -

- 2. Two kinds of sparsities
 - 2-1. Aggregated sparsity and positive definite matrix completion
 - 2-2. Correlative sparsity and sparsity of the Schur complement matrix in SDP with small mat. variables
- 3. Conversion to a c-sparse LMI form SDP with small mat. variables
- 4. An application to sensor network localization
- 5. Concluding remarks

- Conversion of a large scale SDP into an SDP having small mat. variables and a sparse Schur complement mat. by exploiting the structured sparsity,
 - aggregated sparsity,
 - correlative sparsity.
- 2. Two different methods:
 - Conversion to an LMI form SDP.
 - Conversion to an equality form SDP
- 3. An application to sensor network localization. \Rightarrow S. Kim's talk on Aug. 30.

Thank you!