Exploiting Sparsity of SDPs (Semidefinite Programs) and Their Applications to POPs (Polynomial Optimization Problems)

Masakazu Kojima, Tokyo Institute of Technology

 The 3rd Sino-Japanese Optimization Meeting November 2, 2005 SingaporeThe mian purpose is to show how important exploiting sparsity is in solving SDPs and the applications to POPs.

Outline

1. SDP (semidefinite program) and its dual
2. Primal-dual IPM (Interior-Point Method)
3. Various types of structured sparsities
4. Numerical results: structured sparsities + parallel
5. POPs (Polynomial Optimization Problems)
6. Rough sketch of SDP relaxation of POPs
7. Exploiting structured sparsity
8. Numerical results on POPs
9. Summary and concluding remarks

Sparsity of SSPs is based on joint works with K. Fujisawa, M. Fukuda, K. Murota and K. Nakata

Sparse SDP relaxation is based on joint works with S. Kim, M. Muramatsu and H. Waki

Outline

1. SDP (semidefinite program) and its dual
2. Primal-dual IPM
3. Various types of structured sparsities
4. Numerical results: structured sparsities + parallel
5. POPs (Polynomial Optimization Problems)
6. Rough sketch of SDP relaxation of POPs
7. Exploiting structured sparsity
8. Numerical results on POPs
9. Summary and concluding remarks

$$
\begin{array}{llll}
\hline \mathcal{P}: \min & A_{0} \bullet X & \text { sub.to } A_{p} \bullet X=b_{p}(1 \leq p \leq m), \mathcal{S}^{n} \ni X \succeq O \\
\mathcal{D}: \max & \sum_{p=1}^{m} b_{p} y_{p} \text { sub.to } \sum_{p=1}^{m} A_{p} y_{p}+S=A_{0}, \mathcal{S}^{n} \ni S \succeq O
\end{array}
$$

$$
\begin{aligned}
\mathcal{S}^{n} & : \text { the set of } n \times n \text { symmetric matrices } \\
X, S & \in \mathcal{S}^{n}, y_{p} \in R(1 \leq p \leq m): \text { variables } \\
A_{0}, A_{p} & \in \mathcal{S}^{n}, b_{p} \in R(1 \leq p \leq m): \text { given data } \\
U \bullet V & =\sum_{i=1}^{n} \sum_{j=1}^{n} U_{i j} V_{i j} \text { for every } U, V \in R^{n \times n} \\
X \succeq O & \Leftrightarrow X \in \mathcal{S}^{n} \text { is positive semidefinite }
\end{aligned}
$$

Important features - SDP can be large-scale easily

- $n \times n$ matrix variables $X, S \in \mathcal{S}^{n}$, each of which involves $n(n+1) / 2$ real variables; for example, $n=2000 \Rightarrow n(n+1) / 2 \approx 2$ million.
- m linear equality constraints in \mathcal{P} or $m A_{p}$'s $\in \mathcal{S}^{n}$.

$$
\Downarrow
$$

Exploit sparsity and structured sparsity.
\bigcirc Enormous computational power \Rightarrow parallel computation.

$$
\begin{array}{llll}
\mathcal{P}: \min & A_{0} \bullet X & \text { sub.to } A_{p} \bullet X=b_{p}(1 \leq p \leq m), \mathcal{S}^{n} \ni X \succeq O \\
\mathcal{D}: \max & \sum_{p=1}^{m} b_{p} y_{p} & \text { sub.to } \quad \sum_{p=1}^{m} A_{p} y_{p}+S=A_{0}, \mathcal{S}^{n} \ni S \succeq O
\end{array}
$$

Outline

1. SDP (semidefinite program) and its dual
2. Primal-dual IPM (Interior-Point Method)
3. Various types of structured sparsities
4. Numerical results: structured sparsities + parallel
5. POPs (Polynomial Optimization Problems)
6. Rough sketch of SDP relaxation of POPs
7. Exploiting structured sparsity
8. Numerical results on POPs
9. Concluding remarks

$$
\begin{array}{llll}
\hline \mathcal{P}: \min & A_{0} \bullet X & \text { sub.to } & A_{p} \bullet X=b_{p}(1 \leq p \leq m), S^{n} \ni X \succeq O \\
\mathcal{D}: \max & \sum_{p=1}^{m} b_{p} y_{p} & \text { sub.to } \quad \sum_{p=1}^{m} A_{p} y_{p}+S=A_{0}, \mathcal{S}^{n} \ni S \succeq O
\end{array}
$$

Generic primal-dual IPM on a single CPU \Rightarrow SDPA

```
Step 0: Choose \((X, y, S)=\left(X^{0}, y^{0}, S^{0}\right) ; X^{0} \succ O\) and \(S^{0} \succ O . k=1\).
Step 1: Compute a search direction \((d \boldsymbol{X}, d y, d S) . \Rightarrow B d y=r\)
Step 2: Choose \(\alpha_{p}\) and \(\alpha_{d}\);
    \(X^{k+1}=X^{k}+\alpha_{p} d X \succ O, S^{k+1}=S^{k}+\alpha_{d} d S \succ O, y^{k+1}=y^{k}+\alpha_{d} d y\).
Step 3: Let \(k=k+1\). Go to Step 1.
```

$B: m \times m$ dense in general, computed from $A_{1}, \ldots, A_{m}, X, S$.
Major time consumption (second) on a single cpu implemention.

part	control11	theta6	maxG51
Elements of B	463.2	78.3	1.5
Cholesky fact. of B	31.7	209.8	3.0
$d X$	1.8	1.8	47.3
Other dense mat. comp.	1.0	4.1	86.5
Others	7.2	5.13	1.8
Total	505.2	292.3	140.2

| $\mathcal{P}: \min$ | $A_{0} \bullet X$ | sub.to $A_{p} \bullet X=b_{p}(1 \leq p \leq m), \mathcal{S}^{n} \ni X \succeq O$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathcal{D}: \max$ | $\sum_{p=1}^{m} b_{p} y_{p}$ | sub.to $\sum_{p=1}^{m} A_{p} y_{p}+S=A_{0}, \mathcal{S}^{n} \ni S \succeq O$ |

$B: m \times m$ dense in general, computed from $A_{1}, \ldots, A_{m}, X, S$.

$$
B_{p q}=X A_{p} S^{-1} \bullet A_{q}(1 \leq p \leq q \leq m)
$$

Suppose that p is fixed.
How do we compute $B_{p q}(p \leq q \leq m)$ in large sclale \& sparse cases?
X : dense, S^{-1} : dense, A_{1}, \ldots, A_{m} : a few dense (or mildly dense), most sparse, $f_{q} \equiv$ the number of nonzeros in $A_{q}(p \leq q \leq m)$.

Three formula for computing $B_{p q}(p \leq q \leq m)$
(Fujisawa-Kojima-Nakata '97)

	Formula \mathcal{F}_{1} (for dense)	\# of \times
1.	$F=A_{p} S^{-1}$	$n f_{p}$
2.	$G=X F$	n^{3}
3.	$B_{p q}=G \bullet A_{q}$	$f_{q}(p \leq q \leq m)$
Total	$B_{p q}(p \leq q \leq m)$	$n f_{p}+n^{3}+\sum_{q=p}^{m} f_{q}$

$$
\begin{array}{llll}
\mathcal{P}: \min & A_{0} \bullet X & \text { sub.to } & A_{p} \bullet X=b_{p}(1 \leq p \leq m), \mathcal{S}^{n} \ni X \succeq O \\
\mathcal{D}: \max & \sum_{p=1}^{m} b_{p} y_{p} & \text { sub.to } \quad \sum_{p=1}^{m} A_{p} y_{p}+S=A_{0}, \mathcal{S}^{n} \ni S \succeq O
\end{array}
$$

$B: m \times m$ dense in general, computed from $A_{1}, \ldots, A_{m}, X, S$.

$$
B_{p q}=X A_{p} S^{-1} \bullet A_{q}(1 \leq p \leq q \leq m)
$$

Suppose that p is fixed.
How do we compute $B_{p q}(p \leq q \leq m)$ in large sclale \& sparse cases?
X : dense, S^{-1} : dense,
A_{1}, \ldots, A_{m} : a few dense (or mildly dense), most sparse, $f_{q} \equiv$ the number of nonzeros in $A_{q}(p \leq q \leq m)$.

	Formula \mathcal{F}_{2} (for mildly dense)	\# of \times
1.	$F=A_{p} S^{-1}$	$n f_{p}$
2.	$B_{p q}=\sum_{\alpha=1}^{n} \sum_{\beta=1}^{n}\left[A_{q}\right]_{\alpha \beta}\left(\sum_{\gamma=1}^{n} X_{\alpha \gamma} F_{\gamma \beta}\right)$	$(n+1) f_{q}(p \leq q \leq m)$
Total	$B_{p q}(p \leq q \leq m)$	$n f_{p}+(n+1) \sum_{q=p}^{m} f_{q}$

$$
\begin{array}{llll}
\mathcal{P}: \min & A_{0} \bullet X & \text { sub.to } A_{p} \bullet X=b_{p}(1 \leq p \leq m), \mathcal{S}^{n} \ni X \succeq O \\
\mathcal{D}: \max & \sum_{p=1}^{m} b_{p} y_{p} & \text { sub.to } \quad \sum_{p=1}^{m} A_{p} y_{p}+S=A_{0}, \mathcal{S}^{n} \ni S \succeq O
\end{array}
$$

$B: m \times m$ dense in general, computed from $A_{1}, \ldots, A_{m}, X, S$.

$$
B_{p q}=X A_{p} S^{-1} \bullet A_{q}(1 \leq p \leq q \leq m)
$$

Suppose that p is fixed.
How do we compute $B_{p q}(p \leq q \leq m)$ in large sclale \& sparse cases?
X : dense, S^{-1} : dense, A_{1}, \ldots, A_{m} : a few dense (or mildly dense), most sparse, $f_{q} \equiv$ the number of nonzeros in $A_{q}(p \leq q \leq m)$.

Formula \mathcal{F}_{3} (for sparse)	\# of \times
$\boldsymbol{B}_{p q}=\sum_{\gamma=1}^{n} \sum_{e=1}^{n}\left[\boldsymbol{A}_{q}\right]_{\gamma e}\left(\sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} \boldsymbol{X}_{\gamma \alpha}\left[\boldsymbol{A}_{p}\right]_{\alpha \beta}\left[S^{-1}\right]_{\beta_{e}}\right)$	$\left(2 f_{p}+1\right) f_{q}(\boldsymbol{p} \leq \boldsymbol{q} \leq m)$
$\boldsymbol{B}_{p q}(\boldsymbol{p} \leq \boldsymbol{q} \leq m)$	$\left(2 f_{p}+1\right) \sum_{q=p}^{m} f_{q}$

$$
\begin{array}{llll}
\mathcal{P}: \min & A_{0} \bullet X & \text { sub.to } A_{p} \bullet X=b_{p}(1 \leq p \leq m), \mathcal{S}^{n} \ni X \succeq O \\
\mathcal{D}: \max & \sum_{p=1}^{m} b_{p} y_{p} & \text { sub.to } \quad \sum_{p=1}^{m} A_{p} y_{p}+S=A_{0}, \mathcal{S}^{n} \ni S \succeq O
\end{array}
$$

$B: m \times m$ dense in general, computed from $A_{1}, \ldots, A_{m}, X, S$.

$$
B_{p q}=X A_{p} S^{-1} \bullet A_{q}(1 \leq p \leq q \leq m)
$$

Suppose that p is fixed.
How do we compute $B_{p q}(p \leq q \leq m)$ in large sclale \& sparse cases?
X : dense, S^{-1} : dense,
A_{1}, \ldots, A_{m} : a few dense (or mildly dense), most sparse, $f_{q} \equiv$ the number of nonzeros in $A_{q}(p \leq q \leq m)$.

		Typical cases$p=1, m=n$	
Formula	$\#$ of \times for $B_{p q}(p \leq q \leq n)$	$f_{q}=n^{2}$	$f_{q}=2$
\mathcal{F}_{1} (for dense)	$n f_{p}+n^{3}+\sum_{q-p}^{n l} f_{q}$	$O\left(n^{3}\right)$	$O\left(n^{3}\right)$
\mathcal{F}_{2} (for mildly dense)	$n f_{p}+(n+1) \sum_{q=p}^{m} f_{q}$	$\boldsymbol{O}\left(\mathrm{n}^{4}\right)$	$O\left(n^{2}\right)$
\mathcal{F}_{3} (for sparse)	$\left(2 f_{p}+1\right) \sum_{\eta=p}^{\omega /} f_{q}$	$O\left(n^{5}\right)$	$O(n)$

$$
\begin{array}{llll}
\mathcal{P}: \min & A_{0} \bullet X & \text { sub.to } & A_{p} \bullet X=b_{p}(1 \leq p \leq m), \mathcal{S}^{n} \ni X \succeq O \\
\mathcal{D}: \max & \sum_{p=1}^{m} b_{p} y_{p} & \text { sub.to } \quad \sum_{p=1}^{m} A_{p} y_{p}+S=A_{0}, \mathcal{S}^{n} \ni S \succeq O
\end{array}
$$

$B: m \times m$ dense in general, computed from $A_{1}, \ldots, A_{m}, X, S$.

$$
B_{p q}=X A_{p} S^{-1} \bullet A_{q}(1 \leq p \leq q \leq m)
$$

Suppose that p is fixed.
How do we compute $B_{p q}(p \leq q \leq m)$ in large sclale \& sparse cases?
X : dense, S^{-1} : dense, A_{1}, \ldots, A_{m} : a few dense (or mildly dense), most sparse, $f_{q} \equiv$ the number of nonzeros in $A_{q}(p \leq q \leq m)$.

Numerical evaluation of Formula $\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{F}_{3}$

problem	m n	epu time / iteration second		Their suitable combination used in SDPA
		$\mathcal{F}_{1} \quad \mathcal{F}_{2}$	\mathcal{F}_{3}	
QAP	1021101	61.329 .5	-	4.5
GP	501500	7247.252 .0	6341.6	29.3
MC	944300	2472.243 .0	1.4	1.3

$$
\begin{array}{llll}
\mathcal{P}: \min & A_{0} \bullet X & \text { sub.to } A_{p} \bullet X=b_{p}(1 \leq p \leq m), \mathcal{S}^{n} \ni X \succeq O \\
\mathcal{D}: \max & \sum_{p=1}^{m} b_{p} y_{p} & \text { sub.to } \quad \sum_{p=1}^{m} A_{p} y_{p}+S=A_{0}, \mathcal{S}^{n} \ni S \succeq O
\end{array}
$$

$B: m \times m$ dense in general, computed from $A_{1}, \ldots, A_{m}, X, S$.

$$
B_{p q}=X A_{p} S^{-1} \bullet A_{q}(1 \leq p \leq q \leq m)
$$

Suppose that p is fixed.
How do we compute $B_{p q}(p \leq q \leq m)$ in large sclale \& sparse cases?
X : dense, S^{-1} : dense, A_{1}, \ldots, A_{m} : a few dense (or mildly dense), most sparse, $f_{q} \equiv$ the number of nonzeros in $A_{q}(p \leq q \leq m)$.
$X:$ dense, $S^{-1}:$ dense
In some cases, $S=A_{0}-\sum_{p=1}^{m} A_{p} y_{p}$ is sparse and X^{-1} can be sparse.
Use S and X^{-1} instead of S^{-1} and X !
\Rightarrow SDPARA-C (the positive definite matrix completion technique)
\Rightarrow Later

$$
\begin{array}{llll}
\mathcal{P}: \min & A_{0} \bullet X & \text { sub.to } A_{p} \bullet X=b_{p}(1 \leq p \leq m), \mathcal{S}^{n} \ni X \succeq O \\
\mathcal{D}: \max & \sum_{p=1}^{m} b_{p} y_{p} & \text { sub.to } \quad \sum_{p=1}^{m} A_{p} y_{p}+S=A_{0}, \mathcal{S}^{n} \ni S \succeq O
\end{array}
$$

Outline

1. SDP (semidefinite program) and its dual
2. Primal-dual IPM
3. Various types of structured sparsities
4. Numerical results: structured sparsities + parallel
5. POPs (Polynomial Optimization Problems)
6. Rough sketch of SDP relaxation of POPs
7. Exploiting structured sparsity
8. Numerical results on POPs
9. Summary and concluding remarks

$$
\begin{array}{llll}
\mathcal{P}: \min & A_{0} \bullet X & \text { sub.to } A_{p} \bullet X=b_{p}(1 \leq p \leq m), \mathcal{S}^{n} \ni X \succeq O \\
\mathcal{D}: \max & \sum_{p=1}^{m} b_{p} y_{p} & \text { sub.to } \quad \sum_{p=1}^{m} A_{p} y_{p}+S=A_{0}, \mathcal{S}^{n} \ni S \succeq O
\end{array}
$$

Structured sparsity

The aggregate sparsity pattern \widehat{A} : a symbolic $n \times n$ matrix:

$$
\widehat{A}_{i j}=\left\{\begin{array}{l}
\star \text { if the }(i, j) \text { th element of } A_{p} \text { is nonzero for } \exists p=0, \ldots, m \\
0 \text { otherwise }
\end{array}\right.
$$

where \star denotes a nonzero number.
Example: $m=1$

$$
A_{0}=\left(\begin{array}{llll}
1 & 2 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), A_{1}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 3 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 2
\end{array}\right) \Rightarrow \widehat{A}=\left(\begin{array}{cccc}
\star & \star & 0 & \star \\
\star & \star & \star & 0 \\
0 & \star & \star & 0 \\
\star & 0 & 0 & \star
\end{array}\right)
$$

Next - three types of structured sparsity

$$
\begin{array}{llll}
\mathcal{P}: \min & A_{0} \bullet X & \text { sub.to } A_{p} \bullet X=b_{p}(1 \leq p \leq m), \mathcal{S}^{n} \ni X \succeq O \\
\mathcal{D}: \max & \sum_{p=1}^{m} b_{p} y_{p} \text { sub.to } \sum_{p=1}^{m} A_{p} y_{p}+S=A_{0}, \mathcal{S}^{n} \ni S \succeq O
\end{array}
$$

Structured sparsity

The aggregate sparsity pattern \widehat{A} : a symbolic $n \times n$ matrix:
$\widehat{A}_{i j}=\left\{\begin{array}{l}\star \text { if the }(i, j) \text { th element of } A_{p} \text { is nonzero for } \exists p=0, \ldots, m, \\ 0 \text { otherwise, }\end{array}\right.$
where \star denotes a nonzero number.
Structured sparsity-1: \widehat{A} is block-diagonal.
Then X, S have the same diagonal block structure as \widehat{A}.

$$
\widehat{A}=\left(\begin{array}{ccc}
B_{1} & O & O \\
O & B_{2} & O \\
O & O & B_{3}
\end{array}\right), B_{i}: \text { symmetric. }
$$

Example: $\mathrm{CH}_{3} \mathrm{~N}$: an SDP from quantum chemistry, Fukuda et al. 2005. $m=20,709, n=12,802$, "the number of blocks in \widehat{A} " $=22$, the largest bl.size $=3,211 \times 3,211$, the average bl.size $=583 \times 583$.

$$
\begin{array}{llll}
\mathcal{P}: \min & A_{0} \bullet X & \text { sub.to } A_{p} \bullet X=b_{p}(1 \leq p \leq m), \mathcal{S}^{n} \ni X \succeq O \\
\mathcal{D}: \max & \sum_{p=1}^{m} b_{p} y_{p} & \text { sub.to } \quad \sum_{p=1}^{m} A_{p} y_{p}+S=A_{0}, \mathcal{S}^{n} \ni S \succeq O
\end{array}
$$

Structured sparsity

The aggregate sparsity pattern \widehat{A} : a symbolic $n \times n$ matrix:
$\widehat{A}_{i j}=\left\{\begin{array}{l}\star \text { if the }(i, j) \text { th element of } A_{p} \text { is nonzero for } \exists p=0, \ldots, m, \\ 0 \text { otherwise, }\end{array}\right.$
where \star denotes a nonzero number.
Structured sparsity-2 : \widehat{A} has a sparse Cholesky factorization.
"a small bandwidth" "a small bandwidth + bordered"

$$
\widehat{A}=\left(\begin{array}{ccccc}
\star & \star & O & O & O \\
\star & \star & \star & O & O \\
\vdots & \cdots & \cdots & \cdots & \vdots \\
O & O & \star & \star & \star \\
O & O & \cdots & \star & \star
\end{array}\right), \hat{A}=\left(\begin{array}{ccccc}
\star & \star & O & O & \star \\
\star & \star & \star & O & \star \\
\vdots & \cdots & \cdots & \ddots & \vdots \\
O & O & \star & \star & \star \\
\star & \star & \cdots & \star & \star
\end{array}\right), \quad \star: \text { bl.matrix } \neq O
$$

- S : the same sparsity pattern as \bar{A}. $\bullet X$: fully dense.
- X^{-1} : the same sparsity pattern as $\widehat{A} \Rightarrow$ Use X^{-1} instead X (the positive deflnite matrix completion used in SDPARA-C)

$$
\begin{array}{llll}
\hline \mathcal{P}: \min & A_{0} \bullet X & \text { sub.to } A_{p} \bullet X=b_{p}(1 \leq p \leq m), S^{n} \ni X \succeq O \\
\mathcal{D}: \max & \sum_{p=1}^{m} b_{p} y_{p} & \text { sub.to } \quad \sum_{p=1}^{m} A_{p} y_{p}+S=A_{0}, \mathcal{S}^{n} \ni S \succeq O
\end{array}
$$

Structured sparsity

The aggregate sparsity pattern \widehat{A} : a symbolic $n \times n$ matrix:
$\widehat{A}_{i j}=\left\{\begin{array}{l}\star \text { if the }(i, j) \text { th element of } A_{p} \text { is nonzero for } \exists p=0, \ldots, m, \\ 0 \text { otherwise, }\end{array}\right.$
where \star denotes a nonzero number.
Structured sparsity-3 : block-diagonal $\widehat{A}+$ blockwise orthogonality, for most pairs $(p, q) 1 \leq p<q \leq m$, A_{p} and A_{q} do not share nonzero blocks; hence $A_{p} \bullet A_{q}=0$. \Rightarrow the Schur complement matrix B used in PDIPM becomes sparse.

$$
A_{1}=\left(\begin{array}{ccc}
A_{11} & O & O \\
O & O & O \\
O & O & O
\end{array}\right), A_{2}=\left(\begin{array}{ccc}
O & O & O \\
O & A_{22} & O \\
O & O & O
\end{array}\right), A_{3}=\left(\begin{array}{ccc}
O & O & O \\
O & O & O \\
O & O & A_{33}
\end{array}\right) .
$$

- An engineering application, Ben-Tal and Nemirovskii 1999.
- A sparse SDP relaxation of poly. opt. problem, Waki et al. 2005.
- Incorporated in SDPT3 and SeDuMi but not in SDPA.

$$
\begin{array}{llll}
\mathcal{P}: \min & A_{0} \bullet X & \text { sub.to } A_{p} \bullet X=b_{p}(1 \leq p \leq m), \mathcal{S}^{n} \ni X \succeq O \\
\mathcal{D}: \max & \sum_{p=1}^{m} b_{p} y_{p} & \text { sub.to } \quad \sum_{p=1}^{m} A_{p} y_{p}+S=A_{0}, \mathcal{S}^{n} \ni S \succeq O
\end{array}
$$

Outline

1. SDP (semidefinite program) and its dual
2. Primal-dual IPM
3. Various types of structured sparsities
4. Numerical results: structured sparsities + parallel
5. POPs (Polynomial Optimization Problems)
6. Rough sketch of SDP relaxation of POPs
7. Exploiting structured sparsity
8. Numerical results on POPs
9. Summary and concluding remarks

$$
\begin{array}{llll}
\hline \mathcal{P}: \min & \boldsymbol{A}_{0} \bullet X & \text { sub.to } & \boldsymbol{A}_{p} \bullet X=b_{p}(1 \leq p \leq m), \mathcal{S}^{n} \ni X \succeq O \\
\mathcal{D}: \max & \sum_{p=1}^{m} b_{p} y_{p} \text { sub.to } & \sum_{p=1}^{m} \boldsymbol{A}_{p} y_{p}+S=\boldsymbol{A}_{0}, \mathcal{S}^{n} \ni S \succeq O \\
\hline
\end{array}
$$

SDPs from quantum chemistry, Fukuda et al. 2005.

atoms/molecules	m	n	\#blocks the sizes of largest blocks	
O	7230	5990	22	$[1450,1450,450, \ldots]$
HF	15018	10146	22	$[2520,2520,792, \ldots]$
$\mathrm{CH}_{3} \mathrm{~N}$	20709	12802	22	$[3211,3211,1014, \ldots]$

number of processors	16	64	128	256	
O	elements of B	10100.3	2720.4	1205.9	694.2
	Chol.fact. of B	218.2	87.3	68.2	106.2
	total	14250.6	4453.3	3281.1	2951.6
HF	elements of B	$*$		13076.1	6833.0
	Chol.fact. of B	$*$	$*$	520.2	671.0
	total	$*$	$*$	26797.1	20780.7
$\mathrm{CH}_{3} \mathrm{~N}$	elements of B	$*$		$*$	34188.9
	Chol.fact. of B	$*$		18003.3	
	total	$*$		1008.9	1309.9
				57034.8	45488.9

$$
\begin{array}{lll}
\mathcal{P}: \min & A_{0} \bullet X & \text { sub.to } A_{p} \bullet X=b_{p}(1 \leq p \leq m), \mathcal{S}^{n} \ni X \succeq O \\
\mathcal{D}: \max & \sum_{p=1}^{m} b_{p} y_{p} \text { sub.to } \sum_{p=1}^{m} A_{p} y_{p}+S=A_{0}, \mathcal{S}^{n} \ni S \succeq O
\end{array}
$$

Large-size SDPs by SDPARA-C (64 CPUs)
3 types of test Problems:
(a) SDP relaxations of randomly generated max. cut problems on lattice graphs with size $10 \times 1000,10 \times 2000$ and 10×4000.
(b) SDP relaxations of randomly generated max. clique problems on lattice graphs with size $10 \times 500,10 \times 1000$ and 10×2000.
(c) Randomly generated norm minimization problems

$$
\min .\left\|F_{0}-\sum_{i=1}^{10} F_{i} y_{i}\right\| \text { sub.to } y_{i} \in \mathbb{R}(i=1,2, \ldots, 10)
$$

where $F_{i}: 10 \times 9990,10 \times 19990$ or 10×39990 and $\|G\|=$ the square root of the max. eigenvalue of $G^{T} G$.

In all cases, the aggregate sparsity pattern consists of one block and is very sparse.

$$
\begin{array}{llll}
\mathcal{P}: \min & A_{0} \bullet X & \text { sub.to } A_{p} \bullet X=b_{p}(1 \leq p \leq m), \mathcal{S}^{n} \ni X \succeq O \\
\mathcal{D}: \max & \sum_{p=1}^{m} b_{p} y_{p} & \text { sub.to } \quad \sum_{p=1}^{m} A_{p} y_{p}+S=A_{0}, \mathcal{S}^{n} \ni S \succeq O
\end{array}
$$

Large-size SDPs by SDPARA-C (64 CPUs)

Outline

1. SDP (semidefinite program) and its dual
2. Primal-dual IPM
3. Various types of structured sparsities
4. Numerical results: structured sparsities + parallel
5. POPs (Polynomial Optimization Problems)
6. Rough sketch of SDP relaxation of POPs
7. Exploiting structured sparsity
8. Numerical results on POPs
9. Summary and concluding remarks
\mathbb{R}^{n} : the n-dim Euclidean space.
$x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$: a vector variable.
$f_{p}(x)$: a multivariate polynomial in $x \in \mathbb{R}^{n}(p=0,1, \ldots, m)$.
POP: $\min f_{0}(x)$ sub.to $f_{p}(x) \geq 0(p=1, \ldots, m)$.
Example: $n=3$

$$
\begin{aligned}
\min & f_{0}(x) \equiv x_{1}^{3}-2 x_{1} x_{2}^{2}+x_{1}^{2} x_{2} x_{3}-4 x_{3}^{2} \\
\text { sub.to } & f_{1}(x) \equiv-x_{1}^{2}+5 x_{2} x_{3}+1 \geq 0 \\
& f_{2}(x) \equiv x_{1}^{2}-3 x_{1} x_{2} x_{3}+2 x_{3}+2 \geq 0 \\
& f_{3}(x) \equiv-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}+1 \geq 0 \\
& x_{1}\left(x_{1}-1\right)=0(0-1 \text { integer }) \\
& x_{2} \geq 0, x_{3} \geq 0, x_{2} x_{3}=0 \text { (complementarity) }
\end{aligned}
$$

- Various problems can be described as POPs.
- A unified theoretical model for global optimization in nonlinear and combinatorial optimization problems.

$$
\text { POP: } \min f_{0}(x) \text { sub.to } f_{p}(x) \geq 0(p=1, \ldots, m)
$$

Some Examples: Unconstrained cases.

Minimize the genalized Rosenbrock funcion

$$
f_{0}(x)=\sum_{i=1}^{n-1} 100\left(x_{i+1}-x_{i}^{2}\right)^{2}+\left(1-x_{i+1}\right)^{2}
$$

- \bar{x} : a global minimizer \Leftrightarrow an \bar{x} and an exact lower bound ζ such that $f(\bar{x})=\zeta \leq f(x)$ for every x.
- How to exploit sparsity of polynomials \Rightarrow the sparsity pattern of the Hessian matrix of $f(x)$

$$
\text { POP: } \min f_{0}(x) \text { sub.to } f_{p}(x) \geq 0(p=1, \ldots, m) \text {. }
$$

Some Examples: Constrained case 2

$$
\begin{array}{ll}
\hline \text { alkyl.gms : a benchmark problem from globallib } \\
\text { min } & -6.3 x_{5} x_{8}+5.04 x_{2}+0.35 x_{3}+x_{4}+3.36 x_{6} \\
\text { sub.to } & -0.820 x_{2}+x_{5}-0.820 x_{6}=0, \\
& 0.98 x_{4}-x_{7}\left(0.01 x_{5} x_{10}+x_{4}\right)=0, \\
& -x_{2} x_{9}+10 x_{3}+x_{6}=0, \\
& x_{5} x_{12}-x_{2}\left(1.12+0.132 x_{9}-0.0067 x_{9}^{2}\right)=0, \\
& x_{8} x_{13}-0.01 x_{9}\left(1.098-0.038 x_{9}\right)-0.325 x_{7}=0.574, \\
& x_{10} x_{14}+22.2 x_{11}=35.82, \\
& x_{1} x_{11}-3 x_{8}=-1.33, \\
& \operatorname{lbd}_{i} \leq x_{i} \leq \operatorname{ubd}_{i}(i=1,2, \ldots, 14) .
\end{array}
$$

- How to exploit sparsity of polynomials
the sparsity pattern of the Hessian matrices of $f_{0}(x)$ $+$
the set of variables involved in $f_{p}(x)(p=1,2, \ldots, m)$
For example, $0.98 x_{4}-x_{7}\left(0.01 x_{5} x_{10}+x_{4}\right)$ involves $x_{4}, x_{5}, x_{7}, x_{10}$.

$$
\text { POP: } \min f_{0}(x) \text { sub.to } f_{p}(x) \geq 0(p=1, \ldots, m)
$$

Outline

1. SDP (semidefinite program) and its dual
2. Primal-dual IPM
3. Various types of structured sparsities
4. Numerical results: structured sparsities + parallel
5. POPs (Polynomial Optimization Problems)
6. Rough sketch of SDP relaxation of POPs
7. Exploiting structured sparsity
8. Numerical results on POPs
9. Summary and concluding remarks

$$
\text { POP: } \min f_{0}(x) \text { sub.to } f_{p}(x) \geq 0(p=1, \ldots, m)
$$

SDP relaxation (Lasserre 2001) from a practical point of view.
(a) Linearization \Longrightarrow relaxation.
(b) Strengthening the relaxation by valid poly. matrix inequalities (before $(\mathrm{a})) \Longrightarrow$ a poly. SDP equiv. to POP.

$$
\begin{aligned}
& \text { Represent a polynomial } f \text { as } f(x)=\sum \alpha \in \mathcal{G} c(\alpha) x^{\alpha}, \text { where } \\
& \mathcal{G}=\text { a finite subset of } \mathbb{Z}_{+}^{n} \equiv\left\{\alpha \in \mathbb{R}^{n}: \alpha_{i} \text { is an integer } \geq 0\right\} \\
& x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}} \text { for } \forall x \in \mathbb{R}^{n} \text { and } \forall \alpha \in \mathbb{Z}_{+}^{n}
\end{aligned}
$$

Replacing each x^{α} by a single variable $y_{\alpha} \in \mathrm{R}$, we have the linearization of $f(x): F(y)=F\left(\left(y_{\alpha}: \alpha \in \mathcal{G}\right)\right)=\sum_{\alpha \in \mathcal{G}} c(\alpha) y_{\alpha}$.

Example

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =2 x_{1}-3 x_{1}^{2}+4 x_{1} x_{2}^{3} \\
& =2 x^{(1,0)}-3 x^{(2,0)}+4 x^{(1,3)} \\
& \Downarrow(\text { (a) Linearization } \\
F\left(y_{(1,0)}, y_{(2,0)}, y_{(1,3)}\right) & =2 y_{(1,0)}-3 y_{(2,0)}+4 y_{(1,3)} .
\end{aligned}
$$

$$
\text { POP: } \min f_{0}(x) \text { sub.to } f_{p}(x) \geq 0(p=1, \ldots, m)
$$

SDP relaxation (Lasserre 2001) from a practical point of view.
(a) Linearization \Longrightarrow relaxation.
(b) Strengthening the relaxation by valid poly. matrix inequalities (before $(\mathrm{a})) \Longrightarrow$ a poly. SDP equiv. to POP.
For \forall finite $\mathcal{G} \subset \mathbb{Z}_{+}^{n}$, let $u(x ; \mathcal{G})$ denote a column vector of x^{α}
$(\alpha \in \mathcal{G})$. Then
(i) rank 1 sym.matrix $u(x ; \mathcal{G}) u(x ; \mathcal{G})^{T} \succeq O$ for $\forall x \in \mathbb{R}^{n}$.
(ii) $f_{p}(x) u(x ; \mathcal{G}) u(x ; \mathcal{G})^{T} \succeq O$ if $f_{p}(x) \geq 0$.

Example of (ii). $n=2 . \mathcal{G}=\{(0,0),(1,0)\}$.

$$
\begin{aligned}
& \quad\left(1-x_{1} x_{2}\right)\binom{1}{x_{1}}\binom{1}{x_{1}}^{T} \succeq O \quad \\
& \quad \Leftrightarrow\left(\begin{array}{cc}
1-x_{1} x_{2} & x_{1}-x_{1}^{2} x_{2} \\
x_{1}-x_{1}^{2} x_{2} & x_{1}^{2}-x_{1}^{3} x_{2}
\end{array}\right) \succeq O \\
& \Downarrow \\
& \begin{array}{l}
1-x_{1} x_{2} \geq 0
\end{array} \\
& \Downarrow \text { (a) Linearization } \\
& \begin{array}{l}
\text { (a) Linearization } \\
1-y_{(1,1)} \geq 0
\end{array} \\
& \qquad\left(\begin{array}{cc}
1-y_{(1,1)} & y_{(1,0)}-y_{(2,1)} \\
y_{(1,0)}-y_{(2,1)} & y_{(2,0)}-y_{(3,1)}
\end{array}\right) \succeq O \\
& \text { LMI is stronger! }
\end{aligned}
$$

$$
\text { POP: } \min f_{0}(x) \text { sub.to } f_{p}(x) \geq 0(p=1, \ldots, m)
$$

SDP relaxation (Lasserre 2001) from a practical point of view.
(a) Linearization \Longrightarrow relaxation.
(b) Strengthening the relaxation by valid poly. matrix inequalities (before $(\mathrm{a})) \Longrightarrow$ a poly. SDP equiv. to POP.
For \forall finite $\mathcal{G} \subset \mathbb{Z}_{+}^{n}$, let $u(x ; \mathcal{G})$ denote a column vector of x^{α} $(\alpha \in \mathcal{G})$. Then
(i) rank 1 sym.matrix $u(x ; \mathcal{G}) u(x ; \mathcal{G})^{T} \succeq O$ for $\forall x \in \mathbb{R}^{n}$.
(ii) $f_{p}(x) u(x ; \mathcal{G}) u(x ; \mathcal{G})^{T} \succeq O$ if $f_{p}(x) \geq 0$.

Let $\mathcal{G}_{p}(p=1, \ldots, q>m)$ be finite subsets of \mathbb{Z}_{+}^{n}.

$$
\begin{array}{|ll}
\hline \text { Polynomial SDP }\left(\mathcal{G}_{p} \text { 's }\right) \\
\text { min } & f_{0}(x) \\
\text { sub.to } & f_{p}(x) u\left(x, \mathcal{G}_{p}\right) u\left(x, \mathcal{G}_{p}\right)^{T} \succeq O(p=1, \ldots, m) \Leftarrow \text { (ii) } \\
& u\left(x, \mathcal{G}_{p}\right) u\left(x, \mathcal{G}_{p}\right)^{T} \succeq O(p=m+1, \ldots, q) \Leftarrow(\text { i) } \\
\hline
\end{array}
$$

Apply (a) \Rightarrow Linear $\operatorname{SDP}\left(\mathcal{G}_{p}\right.$'s $)=$ SDP relaxation of POP
Exploiting sparsity
\Rightarrow How to choose sparse \mathcal{G}_{p} 's depending on sparsity of $f_{p}(x)$
relaxation order $r=$ the max. degree of poly. in $u\left(x, \mathcal{G}_{p}\right)$

$$
\text { POP: } \min f_{0}(x) \text { sub.to } f_{p}(x) \geq 0(p=1, \ldots, m)
$$

Outline

1. SDP (semidefinite program) and its dual
2. Primal-dual IPM
3. Various types of structured sparsities
4. Numerical results: structured sparsities + parallel
5. POPs (Polynomial Optimization Problems)
6. Rough sketch of SDP relaxation of POPs
7. Exploiting structured sparsity
8. Numerical results on POPs
9. Summary and concluding remarks

$$
\text { POP: } \min _{x} \in \mathbb{R}^{n} f_{0}(x)
$$

G. Rosenbrock func: $f_{0}(x)=\sum_{i=1}^{n-1} 100\left(x_{i+1}-x_{i}^{2}\right)^{2}+\left(1-x_{i+1}\right)^{2}$.

Dense relaxation $=$ Linearization of

$$
\min f_{0}(x) \text { s.t. } u(x, \mathcal{G}) u(x, \mathcal{G})^{T} \succeq O,
$$

where $u(x, \mathcal{G})=\left(1, x_{1}, \ldots, x_{n}, x_{1}^{2}, x_{1} x_{2}, \ldots, x_{2}^{2}, x_{2} x_{3}, \ldots, x_{n}^{2}\right)^{T}$ the col. vector of all monomials in x_{1}, \ldots, x_{n} with deg. $\leq \mathbf{2}$.

- relaxation order $r=2$ (the max. degree of poly. in $u(x, \mathcal{G})$).
- The size of $u(x, \mathcal{G}) u(x, \mathcal{G})^{T}=\binom{n+2}{2} ; \geq 20,000$ if $n=200$.

POP: $\min _{x \in \mathbb{R}^{n}} f_{0}(x)$
H : the sparsity pattern of the Hessian matrix of f_{0}

$$
H_{i j}=\left\{\begin{array}{l}
\star \text { if } i=j \text { or } \partial^{2} f_{0}(x) / \partial x_{i} \partial x_{j} \not \equiv 0, \\
0 \text { otherwise. }
\end{array}\right.
$$

\exists sparse Cholesky fact. of H.
G. Rosenbrock func: $f_{0}(x)=\sum_{i=1}^{n-1} 100\left(x_{i+1}-x_{i}^{2}\right)^{2}+\left(1-x_{i+1}\right)^{2}$.

- The Hessian matrix is sparse (tridiagonal).

Sparse relaxation $=$ Linearization of $\min f_{0}(x)$ s.t. $\left(\begin{array}{c}1 \\ x_{i} \\ x_{i+1} \\ x_{i}^{2} \\ x_{i} x_{i+1} \\ x_{i+1}^{2}\end{array}\right)\left(\begin{array}{c}1 \\ x_{i} \\ x_{i+1} \\ x_{i}^{2} \\ x_{i} x_{i+1} \\ x_{i+1}^{2}\end{array}\right) T \succeq O(i=1, \ldots, n-1)$

- relaxation order $r=2$ (the max. degree of poly. in $u(x, \mathcal{G})$).
- Much smaller than Dense relaxation; the size is linear in n.

$$
\text { POP: } \min f_{0}(x) \text { sub.to } f_{p}(x) \geq 0(p=1, \ldots, m)
$$

Outline

1. SDP (semidefinite program) and its dual
2. Primal-dual IPM
3. Various types of structured sparsities
4. Numerical results: structured sparsities + parallel
5. POPs (Polynomial Optimization Problems)
6. Rough sketch of SDP relaxation of POPs
7. Exploiting structured sparsity
8. Numerical results on POPs
9. Summary and concluding remarks

Numerical results on POPs

Software

- MATLAB for constructing sparse and dense SDP relaxation problems - SeDuMi to solve SDPs.

Hardware

- 2.4 GHz Xeon cpu with 6.0 GB memory.

G.Rosenbrock function:

$$
f(x)=\sum_{i=2}^{n}\left(100\left(x_{i}-x_{i-1}^{2}\right)^{2}+\left(1-x_{i}\right)^{2}\right)
$$

- Two minimizers on $\mathbb{R}^{n}: x_{1}= \pm 1, x_{i}=1(i \geq 2)$.
- Sparse can not handle multiple minimizers effectively.
- Perturb the function or add $x_{1} \geq 0 \Rightarrow$ unique minimizer.
- relaxation order $r=2$ (the max. degree of poly. in $u(x, \mathcal{G})$).

cpu in sec.				cpu in sec.	
Sparse	$\epsilon_{\text {Obj }}$	n	$\epsilon_{\text {Obj }}$	Sparse	Dense
0.2	$5.1 \mathrm{e}-04$	10	$2.5 \mathrm{e}-08$	0.2	10.6
0.3	$1.8 \mathrm{e}-03$	15	$6.5 \mathrm{e}-08$	0.2	756.6
4.6	$5.9 \mathrm{e}-03$	400	$2.5 \mathrm{e}-06$	3.7	-
8.6	$8.3 \mathrm{e}-03$	800	$5.5 \mathrm{e}-06$	6.8	-

$\epsilon_{\mathrm{obj}}=\frac{\mid \text { the lower bound for opt. value }- \text { the approx. opt. value } \mid}{\max \{1, \mid \text { the lower bound for opt. value } \mid\}}$.
G.Rosenbrock function:

$$
f(x)=\sum_{i=2}^{n}\left(100\left(x_{i}-x_{i-1}^{2}\right)^{2}+\left(1-x_{i}\right)^{2}\right)
$$

- Two minimizers on $\mathbb{R}^{n}: x_{1}= \pm 1, x_{i}=1(i \geq 2)$.
- Sparse can not handle multiple minimizers effectively.
- Perturb the function or add $x_{1} \geq 0 \Rightarrow$ unique minimizer.
- relaxation order $r=2$ (the max. degree of poly. in $u(x, \mathcal{G})$).

cpu in sec.				cpu in sec.	
Sparse	$\epsilon_{\text {Obj }}$	n	$\epsilon_{\text {Obj }}$	Sparse	Dense
0.2	$5.1 \mathrm{e}-04$	10	$2.5 \mathrm{e}-08$	0.2	10.6
0.3	$1.8 \mathrm{e}-03$	15	$6.5 \mathrm{e}-08$	0.2	756.6
4.6	$5.9 \mathrm{e}-03$	400	$2.5 \mathrm{e}-06$	3.7	-
8.6	$8.3 \mathrm{e}-03$	800	$5.5 \mathrm{e}-06$	6.8	-

When $n=800$, SDP relaxation problem:

- $A_{p}: 4794 \times 4794(p=1,2, \ldots, 7,988) \Rightarrow B: 7,988 \times 7,988$.
- Each A_{p} consiss of 799 diagonal blocks with the size 6×6 matrices.
- $A_{p} \bullet A_{q}=0$ for most pairs $(p, q) \Rightarrow$ a sparse Chol. fact. of B.

An optimal control problem from Coleman et al. 1995

$$
\left.\begin{array}{ll}
\min & \frac{1}{M} \sum_{i=1}^{M-1}\left(y_{i}^{2}+x_{i}^{2}\right) \\
\text { s.t. } & y_{i+1}=y_{i}+\frac{1}{M}\left(y_{i}^{2}-x_{i}\right), \quad(i=1, \ldots, M-1), \quad y_{1}=1 .
\end{array}\right\}
$$

Numerical results on sparse relaxation ($r=2$)

M	\# of variables	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	cpu
600	1198	$3.4 \mathrm{e}-08$	$2.2 \mathrm{e}-10$	3.4
700	1398	$2.5 e-08$	$8.1 \mathrm{e}-10$	3.3
800	1598	$5.9 \mathrm{e}-08$	$1.6 e-10$	3.8
900	1798	$1.4 \mathrm{e}-07$	$6.8 \mathrm{e}-10$	4.5
1000	1998	$6.3 \mathrm{e}-08$	$2.7 \mathrm{e}-10$	5.0

$$
\begin{aligned}
& \epsilon_{\mathrm{obj}}=\frac{\mid \text { the lower bound for opt. value }- \text { the approx. opt. value } \mid}{\max \{1, \mid \text { the lower bound for opt. value } \mid\}} \\
& \epsilon_{\text {feas }}=\text { the maximum error in the equality constraints, } \\
& \mathrm{cpu}: \text { cpu time in sec. to solve an SDP relaxation problem. }
\end{aligned}
$$

alkyl.gms : a benchmark problem from globallib

$$
\begin{array}{ll}
\min & -6.3 x_{5} x_{8}+5.04 x_{2}+0.35 x_{3}+x_{4}+3.36 x_{6} \\
\text { sub.to } & -0.820 x_{2}+x_{5}-0.820 x_{6}=0, \\
& 0.98 x_{4}-x_{7}\left(0.01 x_{5} x_{10}+x_{4}\right)=0, \\
& -x_{2} x_{9}+10 x_{3}+x_{6}=0, \\
& x_{5} x_{12}-x_{2}\left(1.12+0.132 x_{9}-0.0067 x_{9}^{2}\right)=0, \\
& x_{8} x_{13}-0.01 x_{9}\left(1.098-0.038 x_{9}\right)-0.325 x_{7}=0.574, \\
& x_{10} x_{14}+22.2 x_{11}=35.82, \\
& x_{1} x_{11}-3 x_{8}=-1.33, \\
& \operatorname{lbd}_{i} \leq x_{i} \leq \operatorname{ubd}(i=1,2, \ldots, 14) .
\end{array}
$$

		Sparse			Dense		
problem	n	r	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	cpu	$\epsilon_{\text {obj }}$	
$\epsilon_{\text {feas }}$	cpu						
alkyl	14	2	$4.1 \mathrm{e}-03$	$2.7 \mathrm{e}-01$	0.9	$6.3 \mathrm{e}-06$	
alkyl	14	3	$5.6 \mathrm{e}-10$	$2.0 \mathrm{e}-08$	6.9	17.6	

$r=$ relaxation order,
$\epsilon_{\text {obj }}=\frac{\mid \text { the lower bound for opt. value - the approx. opt. value } \mid}{\max \{1, \mid \text { the lower bound for opt. value }\}}$,
$\epsilon_{\text {feas }}=$ the maximum error in the equality constraints, cpu : cpu time in sec. to solve an SDP relaxation problem.

Some other benchmark problems from globallib

		Sparse			Dense		
problem	n	r	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	cpu	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$
ex3_1_1	8	3	$6.3 \mathrm{e}-09$	$4.7 \mathrm{e}-04$	3.3	$0.7 \mathrm{e}-08$	$2.5 \mathrm{e}-03$
211.4							
ex5_4_2	8	3	$8.1 \mathrm{e}-07$	$3.2 \mathrm{e}-02$	5.5	$0.7 \mathrm{e}-08$	$2.5 \mathrm{e}-03$
st_e07	10	2	$0.0 \mathrm{e}+00$	$8.1 \mathrm{e}-05$	0.4	$0.0 \mathrm{e}+00$	$8.8 \mathrm{e}-06$
ex2_1_3	13	2	$5.1 \mathrm{e}-09$	$3.5 \mathrm{e}-09$	0.5	$1.6 \mathrm{e}-09$	$1.5 \mathrm{e}-09$
ex9_1_1	13	2	0.0	$4.5 \mathrm{e}-06$	1.5	7.7	
ex9_2_3	16	2	$0.0 \mathrm{e}+00$	$5.7 \mathrm{e}-06$	2.3	$0.0 \mathrm{e}+00$	$9.2 \mathrm{e}-07$
ex2_1_8	24	2	$1.0 \mathrm{e}-05$	$0.0 \mathrm{e}+00$	304.6	7.7	
ex5_2_2_c2	9	2	$1.0 \mathrm{e}-02$	$7.2 \mathrm{e}+01$	2.1	$1.3 \mathrm{e}-06$	$0.0 \mathrm{e}-04$
ex5_00	$2.7 \mathrm{e}-01$	1946.6					
ex_2_c2	9	3	$5.8 \mathrm{e}-04$	$8.9 \mathrm{e}-01$	332.9	-	-

- ex5_2_2_c2 $(r=2)$ - Dense is better.
- Sparse attains approx. opt. solutions with the same quality as Dense except ex5_2_2_c2.
- Sparse is much faster than Dense in large dim. and higher relaxation order cases.

Outline

1. SDP (semidefinite program) and its dual
2. Primal-dual IPM
3. Various types of structured sparsities
4. Numerical results: structured sparsities + parallel
5. POPs (Polynomial Optimization Problems)
6. Rough sketch of SDP relaxation of POPs
7. Exploiting structured sparsity
8. Numerical results on POPs
9. Summary and concluding remarks

$$
\begin{array}{llll}
\hline \text { SDP: } & & \\
(\mathcal{P}) \min & A_{0} \bullet X & \text { sub.to } & A_{p} \bullet X=b_{p}(1 \leq p \leq m), \mathcal{S}^{n} \ni X \succeq O \\
(\mathcal{D}) \max & \sum_{p=1}^{m} b_{p} y_{p} & \text { sub.to } \quad \sum_{p=1}^{m} A_{p} y_{p}+S=A_{0}, \mathcal{S}^{n} \ni S \succeq O
\end{array}
$$

```
POP: min fo(x) sub.to }\mp@subsup{f}{p}{}(x)\geq0(1\leqp\leqm)
```

Exploiting sparsity in SDPs

- Computing $B_{p q}=X A_{p} S^{-1} \bullet A_{q}(1 \leq p \leq q \leq m)$ in three formula $\mathcal{F}_{1}, \mathcal{F}_{2}$ and \mathcal{F}_{3}.
- Structured sparsity using the aggregated sparsity pattern \widehat{A} over \boldsymbol{A}_{p} $(1 \leq p \leq m)$.
- Numerical results on exploiting sparsity + parallel computation.

Exploiting sparsity in Lasserre's SDP relaxation of POPs

- Although the sparse SDP relaxation does not guarantee the global convergence and it is weaker than the original dense SDP relaxation, it is very powerful in practice.

> | SDP: | | | |
| :--- | :--- | :--- | :--- |
| $(\mathcal{P}) \min$ | $A_{0} \bullet X$ | sub.to | $A_{p} \bullet X=b_{p}(1 \leq p \leq m), \mathcal{S}^{n} \ni X \succeq O$ |
| $(\mathcal{D}) \max$ | $\sum_{p=1}^{m} b_{p} y_{p}$ sub.to $\quad \sum_{p=1}^{m} A_{p} y_{p}+S=A_{0}, \mathcal{S}^{n} \ni S \succeq O$ | | |

POP: $\min f_{0}(x)$ sub.to $f_{p}(x) \geq 0(1 \leq p \leq m)$.
Some Future Works

- Solving larger scale SDPs and POPs.
(a) Exploiting sparsity in POPs and SDPs + parallel computation.
(b) Numerical stability.
- Incorporating sparse SDP relaxations into the branch-and-bound method.
- Practical implementation of a sparse SDP relaxation of polynomial SDPs and SOCPs, which were proposed in Kojima '03 and KojimaMuramatsu '04, respectively.

