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S"™ : the set of n X n symmetric matrices
X, S e€ 8"y € R(1<p<m) : variables
Ag, Ay € 8", b, e R(1 <p<m) : given data

UeV = Z Z U;;Vi; for every U, V € R"*"
i=1 j=1
X >0 & X € 8" is positive semidefinite
X >0 & X € 8" is positive definite

Important features — SDP can be large-scale easily
e n X n matrix variables X, S € 8", each of which involves n(n 4+ 1)/2
real variables; for example, n = 2000 = n(n + 1)/2 = 2 million.

e m linear equality constraints in P or m A,’s € S".

U

¢ Exploit structured sparsity.
¢ Enormous computational power=- parallel computation.
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Structured sparsity

The aggregate sparsity pattern A:a symbolic n X n matrix:

A _d* if the (¢, 7)th element of A, is nonzero for Ip =0, ..., m,
“ 1 0 otherwise,

where x denotes a nonzero number.

Example: m =1

1200 0001 * x 0 %
2100 0310 ~ * % % 0
Ad=10040 "= |0100] = A= | 0xx0
0000 100 2 %00 *

Next — three types of structured sparsity



P:min AjeX subito A, e X =0b,(1<p<m), S">5X >0
D:max ) ' by, subto > ' Ay, +S=A, S">55=0

Structured sparsity

The aggregate sparsity pattern A:a symbolic n X n matrix:

A _d* if the (¢, 7)th element of A, is nonzero for Ip =0, ..., m,
“ 1 0 otherwise,

where x denotes a nonzero number.

Structured sparsity-1 : A is block-diagonal.

Then X, S has the same diagonal block structure as A.

R B, O O
A = O B, O |, B;: symmetric.
O O Bj

Example: CH3N : an SDP from quantum chemistry, Fukuda et al. 2005.
m = 20,709, n = 12,802, “the number of blocks in A” = 22,
the largest bl.size = 3,211 X 3,211, the average bl.size = 583 X 583.
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Structured sparsity
The aggregate sparsity pattern A:a symbolic n X n matrix:

A _d* if the (¢, 7)th element of A, is nonzero for Ip =0, ..., m,
“ 1 0 otherwise,

where x denotes a nonzero number.

Structured sparsity-2 : A has a sparse Cholesky factorization.

“a small bandwidth” “a small bandwidth + bordered”
( *x » O O O ( * « O O *\
R *x *  * O O R *x *  * O *
A= 1 : .8 ly, A= & - - , * : bl.matrix # O
O O > S O O *x ok %

\OO---**) \**---**)

e S has the same sparsity pattern as A but X is fully dense in general!
= the positive definite matrix completion in SDPARA-C.
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Structured sparsity
The aggregate sparsity pattern A:a symbolic n X n matrix:

A * if the (2, 7)th element of A, is nonzero for 3p = 0,...,m,
“ 1 0 otherwise,

where x denotes a nonzero number.

Structured sparsity-3 : block-diagonal A + blockwise orthogonality,
for most pairs (p,q) 1 < p < qg < m,
A, and A, do not share nonzero blocks; hence A, e A, = 0.
= the Schur complement matrix used in PDIPM becomes sparse.

A, O O O O O OO0 O
A= o0 00|, A=l04»n0]|, 4=(00 O
O 0O O O O O O As;

e An engineering application, Ben-Tal and Nemirovskii 1999.
e A sparse SDP relaxation of poly. opt. problem, Waki et al. 2005.
e Not incorporated in our software yet.
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Some existing numerical methods for SDPs
e IPMs (Interior-point methods)

— Primal-dual scaling, CSDP(Borchers), SDPA (Fujisawa-K-Nakata),
SDPT3(Todd-Toh-Tutuncu), SeDuMi(F.Sturm)
— Dual scaling, DSDP (Benson-Ye)

e Nonlinear programming approaches
— Spectral bundle method(Helmberg-Kiwiel)
— Gradient-based log-barrier method(Burer-Monteiro-Zhang)

— PENON(M. Kocvara) — Generalized augmented Lagrangian method
— Saddle point mirror-prox algorithm (Lu-Nemirovski-Monteiro)

e Medium scale SDPs (e.g. n, m = 1000) and high accuracy.
e Large scale SDPs (e.g., n=10,000) and low accuracy.

e Parallel implementation of SDPA, DSDP, Spectral bundle method
e SDPARA, SDPARA-C to solve large-scale SDPs with high accuracy.
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Advantages of primal-dual IPMs (interior-point methods)

e Highly accurate solutions. ¢f S.bundle and Gradient-based methods

e The number of iterations is small;
usually 20 — 100 iterations in practice, independent of sizes of SDPs.

Disadvantage of primal-dual IPMs (interior-point methods)

e Heavy computation in each iteration

U

Parallel execution of heavy computation in each iteration

10
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Generic primal-dual IPM on a single CPU = SDPA

Step 0: Choose (X,y,S) = (X% 4°8%); X~ 0 and S’ > 0. k =1.
Step 1: Compute a search direction (dX,dy,dS). = Bdy =r
Step 2: Choose o, and ayg;

X = X* 4 0, dX = O, S* = S§* + aydS = O, y*' = y* + aqdy.
Step 3: Let Kk =k + 1. Go to Step 1.

B : m X m fully dense except special cases, computed from A,, X, S.

Major time consumption (second) on a single cpu implemention.

parallel comp. part controlll theta6 maxG51
SDPARA < Elements of B 463.2 78.3 1.5
SDPARA < Cholesky fact. of B 31.7 209.8 3.0
SDPARA-C < dX 1.8 1.8 47.3
SDPARA-C < Other dense mat. comp. 1.0 4.1 86.5

Others 7.2 5.13 1.8

Total 505.2 292.3 140.2
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Generic primal-dual IPM on a single CPU = SDPA

Step 0: Choose (X,y,S) = (X% 4°8%; X~ 0O and S’> 0. k =1.
Step 1: Compute a search direction (dX,dy,dS). = Bdy = r
Step 2: Choose a;, and ayg;

Xk = xF 4 a,dX > O, Skl — 6% L aydS = O, y* = y* + audy.
Step 3: Let Kk =k + 1. Go to Step 1.

parallel
SDPA —m——————> SDPARA for large m < 30,000
eComputation of Schur but small n < 2,000

complement matrix B
eCholesky factorization of B
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Generic primal-dual IPM on a single CPU = SDPA

Step 0: Choose (X,y,S) = (X% 4°8%; X~ 0O and S’> 0. k =1.
Step 1: Compute a search direction (dX,dy,dS). = Bdy = r
Step 2: Choose a;, and ayg;

Xl = Xk 4 a,dX = O, 8*"' = §* + aqdS = O, y**' = y* 4+ aydy.
Step 3: Let Kk =k + 1. Go to Step 1.

parallel
SDPA —m——————> SDPARA for large m < 30,000
but small n < 2,000

4

4

e positive definite matrix Y
completion )

SDPARA-C for larger n
SDPARA + p.d. matrix completion = SDPARA-C.
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Numerical results on SDPARA

Hardware:
e PC cluster: 2XxXOpteron 2GHz cpus with 6(GB memory in each node.
e MPI (Message Passing Interface) for communication between CPUs.

e Myrinet-2000 between nodes, 2 times faster than gigabit ethernet.

Software:
e ScaLAPACK for parallel Cholesky factorization.
e All data A, b, are distributed to every node.
o Iterates {(X¥*,y"*, S*)} are stored and updated in each node.

e Some heavy computations (B and its Cholesky factization to solve
Bdy = r) are done in parallel and their results are distributed to all
nodes, but all other computations are done individually and indepen-
dently in each node.

e Primal and dual feasibilities, relative duality gaps < 1.0e°.
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SDPs from quantum chemistry, Fukuda et al. 2005.

atoms/molecules m n  #blocks the sizes of largest blocks
O 7230 5990 22 (1450, 1450, 450, .. .]
HF 15018 10146 22 (2520, 2520, 792, ...]
CH3N 20709 12802 22 (3211, 3211, 1014, .. .]
number of processors 16 64 128 256

O elements of B 10100.3 2720.4 1205.9 694.2
Chol.fact. of B 218.2 87.3 68.2 106.2
total 14250.6 4453.3 3281.1 2951.6

HF elements of B * * 13076.1 6833.0
Chol.fact. of B * * 520.2 671.0
total * * 26797.1 20780.7
CH;3N elements of B * * 34188.9 18003.3
Chol.fact. of B * * 1008.9 1309.9

* *

total 57034.8 45488.9
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The aggregate sparsity pattern matrix A:a symbolic n X n matrix:

A _d* if the (¢, 7)th element of A, is nonzero for Ip =0, ..., m,
“ 1 0 otherwise.

— the structured sparsity <= a sparse Cholesky factorization
oS =A)— Zg’:l A,y, has the sparsity as ;4, but X does not.

e Using the positive matrix completion, we can make X ! sparse!
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The aggregate sparsity pattern matrix A:a symbolic n X n matrix:

A _d* if the (¢, 7)th element of A, is nonzero for Ip =0, ..., m,
“ 1 0 otherwise.

— the structured sparsity <= a sparse Cholesky factorization

The aggregate sparsity pattern graph G(N, E), where
N ={1,2,...,n} and E={(¢,7): A;; = * }

— the structured sparsity <> dJ a sparse chordal extension
(V minimal cycle has at most 3 edges)
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2 1
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\ N

5—7 —6 5———7 —6
G(N, E) : not chordal G(N, E’) : chordal
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Example: m = 2, n = 4.

1001 X X2 X Xag Remember!
min | 0202 | o] K2 Koz KXo Xog COX—ZC--X--
0033 X X5 Xaz Xsay - 1<t
1239 X41 X42 X43 X44 2
9001 2006
sub.to 8833 e X = 6, 8383 e X =5, X>~0
1235 6 8014

e “the aggregate sparsity pattern” over all A,’s E = {(¢,7) in Red }

e X, (1,7)¢ E are unnecessary to evaluate the objective function and
the equality constraints, but necessary for X > O.

pd matrix completion: Suppose X;; € R ((z,5) € S) are given.
a) dX,;, € R ((2,7) & E); a completed matrix X is positive definite iff
(a) J
(;ﬁ g) , (g g) , (g g) are positive definite.
(b) We can compute such a completed matrix X with the property that
X ! has the same sparsity pattern as E.
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Example: m = 2, n = 4.

1001 X X2 X Xag Remember!
min | 0202 | o] K2 Koz KXo Xog COX—ZC--X--
0033 X X5 Xaz Xsay - 1<t
1239 X41 X42 X43 X44 2
9001 2006
sub.to 8833 e X = 6, gggg e X =5, X>~0
1235 6 8014

e “the aggregate sparsity pattern” over all A,’s E = {(¢,7) in Red }

e X, (1,7)¢ E are unnecessary to evaluate the objective function and
the equality constraints, but necessary for X > O.

e Using pd matrix completion, we can generate each iterate (X,y,S)
such that both X! and S have the same sparsity pattern as £ when
E is “nicely sparse” as above; G(IN, E) forms a chordal graph.

e In general, we need to extend G(N, E) to a chordal graph.
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Numerical results: large-size SDPs by SDPARA-C (64 CPUs)

Hardware:

e PC cluster: Athlon 1900+ (1.6 GHz) cpu with 768 MB memory in
each node

e MPI (Message Passing Interface) for communication between CPUs.

e Myrinet-2000 between nodes, 2 times faster than gigabit ethernet.

Software:
e SDPARA + the positive definite matrix completion.

e Primal and dual feasibilities, relative duality gaps < 1.0e™".
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Large-size SDPs by SDPARA-C (64 CPUs)

3 types of test Problems:

(a) SDP relaxations of randomly generated max. cut problems on lattice
graphs with size 10 X 1000, 10 x 2000 and 10 x 4000.

(b) SDP relaxations of randomly generated max. clique problems on
lattice graphs with size 10 X 500, 10 X 1000 and 10 X 2000.

(c) Randomly generated norm minimization problems
10

Fo — Z Fiyi
i=1

where F; : 10 X 9990, 10 X 19990 or 10 X 39990 and ||G|| = the square

root of the max. eigenvalue of GIG.

min. sub.to y; € R (¢ =1,2,...,10)

In all cases, the aggregate sparsity pattern consists of one block and is
very sparse.
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sub.to A, e X =b,(1<p<m), S">5X >0

Large-size SDPs by SDPARA-C (64 CPUs)

time | memory

Problem n m (s) (MB)
Cut(10x1000) 10000 10000 274.3 126

(a) Cut(10x2000) 20000 20000 | 1328.2 276
Cut(10x4000) 40000 40000 | 7462.0 720
Clique(10x500) 5000 9491 639.5 119

(b) Clique(10x1000) | 10000 18991 | 3033.2 259
Clique(10x2000) |20000 37991 | 15329.0 669
Norm(10x9990) |10000 11 409.5 164

(c) Norm(10x19990) | 20000 11| 1800.9 304
Norm(10x39990) | 40000 11| 7706.0 583
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Concluding Remarks.

Two types of sparse problems

AN

e m < n, A: very sparse —> SDPARA-C
e m >n —> SDPARA
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Comparison between SDPARAC and SDPARA where m < n.

maxG51,sdplib, max cut
m=1000, n=1000
#cpu SDPARA-C SDPARA

1 545 175

4 195 176

16 75 174

64 62 176

qpG51, sdplib torusg3-15 dimacs max cut
m=1000, n=2000 m=3,375, n=3,375

#cpu SDPARA-C SDPARA SDPARA-C SDPARA

1 2034 M(970MB) 10387 M(920MB)

4 575 M 3099 M

16 196 M 989 M

64 108 M 530 M

29



P:min AjeX subito A, e X =0b,(1<p<m), S">5X >0
D:max ) ' by, subto > ' Ay, +S=A, S">55=0

Comparison between SDPARAC and SDPARA where m > n.

control10, m=1326, n=(100,50) theta6, m=4375, n=300
#cpu SDPARA-C SDPARA #cpu SDPARA-C SDPARA
1 27437 429 1 2650 694

4 T488 128 4 695 147

16 2308 43 16 221 65

64 1036 22 64 100 37

In pd matrix completion: Heavy overheads to compute

B =A;XA;eS ' (1<i,j<m).

e X and S~ are not stored because they are dense.

e Sparse Cholesky factorizations of X! and S are stored and
used to compute B;;.
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(a) Two types of parallel primal-dual interior-point methods for SDPs

e Parallel implementation SDPARA of SDPA,
suitable for large m and smaller n.

m n (22 blocks) 16cpu  64cpu 128cpu 256c¢pu
O 7230 5990 (1450,...) 14251 4453 3281 2952
HF 15018 10146 (2520, ...) * * 26798 20781
CH,N 20709 12802 (3211, ...) * * 57035 45489

e SDPARA-C = SDPARA + pd matrix completion,
suitable for larger n and A : very sparse.

m n lcpu 4cpu 16cpu 64cpu
cut(10x4000) 40,000 40,000 7,462
norm(10x39,990) 11 40,000 7,706

torusg3-15 3,375 3,375 10378 3099 989 530
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(b) Future research

e Parallel sparse Cholesky fact. of the Schur complement mat. B.
This is necessary for sparse SDP relaxations of polynomial optimiza-
tion problems.

e Distribution of the data matrices Ay, ..., A,, among cpus to solve huge-
scale SDPs.
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