半正定値行列補完における双対性と そのSDPへの応用

東京工業大学 情報理工学研究科 数理・計算科学専攻 小島政和

「計算と最適化の新展開」研究部会(SCOPE) 中央大学 後楽園キャンパス 2009年3月21日

- Kim,Koj,Mevissen,Yamashita Jan.09 理論
- Fukuda,Nakata,Fujisawa,Kojima,Murota '01, '03 の拡張
- Fujisawa, Kim, Koj, Okamoto, Yamashita Feb.09 Software

目次

- 1. 半正定值計画問題
- 2. 半正定值補完
- 3. domain-space sparsity
- 4. 半正定値補完における双対性と range-space sparsity
- 5. correlative sparsity
- 6. 計算実験結果
- 7. おわりに

目次

- 1. 半正定值計画問題
- 2. 半正定值補完
- 3. domain-space sparsity
- 4. 半正定値補完における双対性と range-space sparsity
- 5. correlative sparsity
- 6. 計算実験結果
- 7. おわりに

半正定値計画問題 (SDP) は線形計画 (LP) の拡張

LP: minimize $-X_{11} - 2X_{12} - 5X_{22}$ subject to $2X_{11} + 3X_{12} + X_{22} = 7, X_{11} + X_{12} \ge 1,$ $X_{11} \ge 0, X_{12} \ge 0, X_{22} \ge 0.$

SDP: minimize $-X_{11} - 2X_{12} - 5X_{22}$ subject to $2X_{11} + 3X_{12} + X_{22} = 7, X_{11} + X_{12} \ge 1,$ $X_{11} \ge 0, X_{12} \ge 0, X_{22} \ge 0,$ $\begin{pmatrix} X_{11} & X_{12} \\ X_{12} & X_{22} \end{pmatrix} \succeq O$ (半正定値).

共通:実変数 X₁₁, X₁₂, X₂₂ に関する線形目的関数
共通:実変数 X₁₁, X₁₂, X₂₂ に関する線形等式・不等式条件
違い:SDP:半正定値条件
共通:許容領域は凸.違い:多面体 VS 凸集合
共通:主双対内点法

半正定値計画問題 (SDP) は線形計画 (LP) の拡張

LP: minimize $-X_{11} - 2X_{12} - 5X_{22}$ subject to $2X_{11} + 3X_{12} + X_{22} = 7, X_{11} + X_{12} \ge 1,$ $X_{11} \ge 0, X_{12} \ge 0, X_{22} \ge 0.$

SDP: minimize $-X_{11} - 2X_{12} - 5X_{22}$ subject to $2X_{11} + 3X_{12} + X_{22} = 7, X_{11} + X_{12} \ge 1,$ $X_{11} \ge 0, X_{12} \ge 0, X_{22} \ge 0,$ $\begin{pmatrix} X_{11} & X_{12} \\ X_{12} & X_{22} \end{pmatrix} \succeq O$ (半正定値).

半正定値計画問題 (SDP) は線形計画 (LP) の拡張

LP: minimize $-X_{11} - 2X_{12} - 5X_{22}$ subject to $2X_{11} + 3X_{12} + X_{22} = 7, X_{11} + X_{12} \ge 1,$ $X_{11} \ge 0, X_{12} \ge 0, X_{22} \ge 0.$

SDP: minimize $-X_{11} - 2X_{12} - 5X_{22}$ subject to $2X_{11} + 3X_{12} + X_{22} = 7, X_{11} + X_{12} \ge 1,$ $X_{11} \ge 0, X_{12} \ge 0, X_{22} \ge 0,$ $\begin{pmatrix} X_{11} & X_{12} \\ X_{12} & X_{22} \end{pmatrix} \succeq O$ (半正定値).

 $n \times n$ 実対称行列 A:半正定值

⇔ A の固有値がすべて非負,または,

2 次形式 $\boldsymbol{u}^T \boldsymbol{A} \boldsymbol{u} \ge 0$ for $\forall \boldsymbol{u} \in \mathbb{R}^n$

例:分散共分散行列

半正定値計画問題の応用例

- システムと制御 線形行列不等式
- Robust Optimization
- 機械学習
- 金融工学
- 建造物の構造安定性解析
- 量子化学
- 量子計算
- モーメント問題, モーメント行列 (応用確率論)
- 半正定值計画緩和
 - ▶ グラフの最大カット問題,最大クリーク問題
 - Sensor Network Localization Problem
 - 多項式最適化問題

等式標準形 SDP とその双対問題

主問題 min $A_0 \bullet X$		
sub.to $A_p \bullet X = b_p \ (1 \le p \le m), \ \mathbb{S}^n \ni X \succeq O.$		
\mathbb{S}^n : $n \times n$ 対称行列からなる線形空間,		
$A_p \in \mathbb{S}^n$: データ, $n \times n$ 対称行列 $(0 \le p \le m)$,		
$b_p \in \mathbb{R}$: データ, 実数 $(1 \le p \le m)$,		
$X \in \mathbb{S}^n$: $n \times n$ 変数, 対称行列;		
$\boldsymbol{X} = (X_{ij}) = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{nn} \end{pmatrix} \in \mathbb{S}^n,$		
$oldsymbol{A}_pullet oldsymbol{X}$ = $\sum_{i=1}^n \sum_{j=1}^n [oldsymbol{A}_p]_{ij} oldsymbol{X}_{ij}$ (内積)		
双対問題 max $b^T y$		
$\qquad \qquad $		

3 種類の疎性:簡単な例題
$$A_0: n \times n \ 3 \pm j = j$$

min $\sum_{i=1}^{n-1} (A_{ii}^0 X_{ii} + A_{i,i+1}^0 X_{i,i+1} + A_{i+1,i}^0 X_{i+1,i}) + A_{nn}^0 X_{nn}$ — (1)
sub. to (行列不等式, 対角+縁付き)
 $M(X) = \begin{pmatrix} 1 - X_{11} & 0 & \dots & X_{12} \\ 0 & 1 - X_{22} & \dots & X_{23} \\ \dots & \dots & \ddots & \dots \\ X_{21} & X_{32} & \dots & 1 - X_{nn} \end{pmatrix} \succeq O$ (2)
 $X = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ \dots & \dots & \dots & \dots \\ X_{n1} & X_{n2} & \dots & X_{nn} \end{pmatrix} \succeq O$ (半正定值条件)

• domain-space sparsity — (1), (2) で使われている変数 X_{ij} ?

- range-space sparsity (2) は対角+縁付き
- (隠れた)相関疎性 (2) では各 X_{ij} はたかだか 1 回出現

3 種類の疎性:簡単な例題 ↓ 疎性を活用した変換を適用

$$\min \sum_{i=1}^{n-1} \left(A_{ii}^{0} X_{ii} + 2A_{i,i+1}^{0} X_{i,i+1} \right) + A_{nn}^{0} X_{nn} \text{ sub.to}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} X_{11} & -X_{12} \\ -X_{12} & -z_{1} \end{pmatrix} \succeq \boldsymbol{O},$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} X_{ii} & -X_{i,i+1} \\ -X_{i,i+1} & z_{i-1} - z_{i} \end{pmatrix} \succeq \boldsymbol{O} \ (i = 2, 3, \dots, n-2),$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} X_{n-1,n-1} & -X_{n-1,n} \\ -X_{n-1,n} & X_{n,n} + z_{n-2} \end{pmatrix} \succeq \boldsymbol{O},$$

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} -X_{ii} & -X_{i,i+1} \\ -X_{i,i+1} & -X_{i+1,i+1} \end{pmatrix} \succeq \boldsymbol{O} \ (i = 1, 2, \dots, n-1).$$

3n-3 変数
3n-3 個の2×2 行列不等式

3 種類の疎性:簡単な例題

	計算時間,秒(S	chur 補完行列のサイズ)
n	変換前	変換後
10	0.2 (55)	0.1 (27)
100	1091.4 (5,050)	0.6 (297)
1000	-	6.3 (2,997)
10000	-	99.2 (29,997)

● 変換後の SDP の Schur 補完行列 (主双対内点法の各反復で解 く線形方程式の正定値な係数行列)の疎性 (n = 10, 100) ● 変換前は完全に密な行列

目次

- 1. 半正定值計画問題
- 2. 半正定值補完 ⇐ Grone et. al 1984
- 3. domain-sparsity
- 4. 半正定値補完における双対性と range-space sparsity
- 5. correlative sparsity
- 6. 計算実験結果
- 7. おわりに

3×3不完全対称行列

$$oldsymbol{X} = egin{pmatrix} 3 & 3 & \ 3 & 3 & 2 \ & 2 & 2 \end{pmatrix}$$

は, (1,3) 要素 = (3,1) 要素に2を定めて、3×3半正定値対称行列

$$\overline{\boldsymbol{X}} = \begin{pmatrix} 3 & 3 & 2 \\ 3 & 3 & 2 \\ 2 & 2 & 2 \end{pmatrix}$$

に補完できる. • (1,3) 要素 = (3,1) 要素 = 0 では半正定値にはならない!

 $E^{\bullet} = E \cup \{(i,i) : i \in N\},\$

 $\mathbb{S}^{n}(E,?) = E^{\bullet}$ の要素のみ値をもつ $n \times n$ 不完全対称行列の集合 $\mathbb{S}^{n}_{+}(E,?) = \{ \mathbf{X} \in \mathbb{S}^{n}(E,?) : \exists \overline{\mathbf{X}} \in \mathbb{S}^{n}_{+}; \overline{X}_{ij} = X_{ij} \text{ if } (i,j) \in E^{\bullet} \}$ ただし, $(i,j) \geq (j,i) \ i \ l = -\overline{\mathcal{A}}, (i,i) \ i \ E \ l = L \ l \leq L \ \ l \leq L \ \ l \leq L \ l$

 $E^{\bullet} = E \cup \{(i,i) : i \in N\},\$

 $S^n(E,?) = E^{\bullet}$ の要素のみ値をもつ $n \times n$ 不完全対称行列の集合

 $\mathbb{S}^n_+(E,?) = \{ \mathbf{X} \in \mathbb{S}^n(E,?) : \exists \overline{\mathbf{X}} \in \mathbb{S}^n_+; \overline{X}_{ij} = X_{ij} \text{ if } (i,j) \in E^{\bullet} \}$

 $E^{\bullet} = E \cup \{(i,i) : i \in N\},\$ $S^n(E,?) = E^{\bullet}$ の要素のみ値をもつ $n \times n$ 不完全対称行列の集合 $\mathbb{S}^n_+(E,?) = \{ \boldsymbol{X} \in \mathbb{S}^n(E,?) : \exists \overline{\boldsymbol{X}} \in \mathbb{S}^n_+; \overline{X}_{ij} = X_{ij} \text{ if } (i,j) \in E^{\bullet} \}$ $\mathbb{S}^C = \{ \boldsymbol{X} \in \mathbb{S}^n : X_{ij} = 0 \text{ if } (i,j) \notin C \times C \} \quad \forall C \subseteq N$ $\boldsymbol{X}(C) = \widetilde{\boldsymbol{X}} \in \mathbb{S}^{C}; \widetilde{X}_{ij} = X_{ij} ((i, j) \in C \times C) \ \forall \boldsymbol{X} \in \mathbb{S}^{n}$ 例えば, $C = \{3, 6\} \subset N \mathcal{O}$ とき, X(C) $\begin{pmatrix} X_{11} & & & X_{16} \\ X_{22} & & & X_{26} \\ & & X_{33} & X_{34} & & X_{36} \\ & & X_{43} & X_{44} & X_{45} \\ & & & X_{54} & X_{55} & X_{56} \\ X_{61} & X_{62} & X_{63} & & X_{65} & X_{66} \end{pmatrix}$ X• $X \in \mathbb{S}^n(E,?) \succeq \mathfrak{FZ}$. $X \in \mathbb{S}^n_+(E,?) \Rightarrow X(C) \succeq O \forall \text{ clique } C$ • G(N, E)が chordal graph であれば " \leftarrow " も真

. – p.15/59

 $E^{\bullet} = E \cup \{(i,i) : i \in N\},\$

 $S^{n}(E,?) = E^{\bullet} \mathcal{O} 要素のみ値をもつ n \times n \, \overline{A} 完全対称行列 \mathcal{O} 集合$ $S^{n}_{+}(E,?) = \{ \mathbf{X} \in S^{n}(E,?) : \exists \overline{\mathbf{X}} \in S^{n}_{+}; \overline{X}_{ij} = X_{ij} \text{ if } (i,j) \in E^{\bullet} \}$ $S^{C} = \{ \mathbf{X} \in S^{n} : X_{ij} = 0 \text{ if } (i,j) \notin C \times C \} \ \forall C \subseteq N$ $\mathbf{X}(C) = \widetilde{\mathbf{X}} \in S^{C}; \widetilde{X}_{ij} = X_{ij} ((i,j) \in C \times C) \ \forall \mathbf{X} \in S^{n}$

 $E^{\bullet} = E \cup \{(i,i) : i \in N\},\$

 $S^{n}(E,?) = E^{\bullet} \quad \text{の要素のみ値をもつ} \quad n \times n \quad \text{不完全対称行列の集合}$ $S^{n}_{+}(E,?) = \{ \mathbf{X} \in S^{n}(E,?) : \exists \overline{\mathbf{X}} \in S^{n}_{+}; \overline{X}_{ij} = X_{ij} \text{ if } (i,j) \in E^{\bullet} \}$ $S^{C} = \{ \mathbf{X} \in S^{n} : X_{ij} = 0 \text{ if } (i,j) \notin C \times C \} \quad \forall C \subseteq N$

 $\boldsymbol{X}(C) = \widetilde{\boldsymbol{X}} \in \mathbb{S}^{C}; \widetilde{X}_{ij} = X_{ij} ((i,j) \in C \times C) \forall \boldsymbol{X} \in \mathbb{S}^{n}$

(a)

$$G(N, E)$$
: chordal \Leftrightarrow 任意の長さ4以上
の cycle は chord を持つ

G(N, E)↓ chordal 拡張

 $E^{\bullet} = E \cup \{(i,i) : i \in N\},\$

 $S^{n}(E,?) = E^{\bullet} \mathcal{O} 要素のみ値をもつ n \times n \, \overline{A} 完全対称行列 \mathcal{O} 集合$ $S^{n}_{+}(E,?) = \{ \mathbf{X} \in S^{n}(E,?) : \exists \overline{\mathbf{X}} \in S^{n}_{+}; \overline{X}_{ij} = X_{ij} \text{ if } (i,j) \in E^{\bullet} \}$ $S^{C} = \{ \mathbf{X} \in S^{n} : X_{ij} = 0 \text{ if } (i,j) \notin C \times C \} \ \forall C \subseteq N$ $\mathbf{X}(C) = \widetilde{\mathbf{X}} \in S^{C}; \widetilde{X}_{ij} = X_{ij} ((i,j) \in C \times C) \ \forall \mathbf{X} \in S^{n}$

 $E^{\bullet} = E \cup \{(i,i) : i \in N\},\$ $S^n(E,?) = E^{\bullet}$ の要素のみ値をもつ $n \times n$ 不完全対称行列の集合 $\mathbb{S}^n_+(E,?) = \{ \boldsymbol{X} \in \mathbb{S}^n(E,?) : \exists \overline{\boldsymbol{X}} \in \mathbb{S}^n_+; \overline{X}_{ij} = X_{ij} \text{ if } (i,j) \in E^{\bullet} \}$ $\mathbb{S}^C = \{ \boldsymbol{X} \in \mathbb{S}^n : X_{ij} = 0 \text{ if } (i,j) \notin C \times C \} \quad \forall C \subseteq N$ $\boldsymbol{X}(C) = \widetilde{\boldsymbol{X}} \in \mathbb{S}^{C}; \widetilde{X}_{ij} = X_{ij} ((i, j) \in C \times C) \ \forall \boldsymbol{X} \in \mathbb{S}^{n}$ $\begin{pmatrix} X_{11} & & X_{16} \\ X_{22} & & X_{26} \\ & X_{33} & X_{34} & X_{36} \\ & X_{43} & X_{44} & X_{45} & X_{46} \\ & & X_{54} & X_{55} & X_{56} \\ X_{61} & X_{62} & X_{63} & X_{64} & X_{65} & X_{66} \end{pmatrix}$ (a) G(N,Ē) chordal graph X =• $X \in \mathbb{S}^n(E,?)$ とすると

 $X \in \mathbb{S}^n_+(\overline{E},?) \Leftrightarrow X(C) \succeq O \forall$ 極大 clique C 極大 clique : {1,6}, {2,6}, {3,4,6}, {4,5,6}

目次

- 1. 半正定值計画問題
- 2. 半正定值補完
- 3. domain-space sparsity
 - Fukuda,Kojima,Murota,Nakata '01
 - Nakata, Fujisawa, Fukuda, Kojima, Murota '03
 - Kim,Kojima,Mevissen,Yamashita '09 Nonlinear
- 4. 半正定値補完における双対性と range-space sparsity
- 5. correlative sparsity
- 6. 計算実験結果
- 7. おわりに

対称行列変数 $X \succeq O$ を含む非線形最適化問題 (P) min $f_0(y, X)$ sub.to $f(y, X) \in \Omega, X \in \mathbb{S}^n_+$ ただし, $f_0 : \mathbb{R}^s \times \mathbb{S}^n \to \mathbb{R}, f : \mathbb{R}^s \times \mathbb{S}^n \to \mathbb{R}^m, \Omega \subset \mathbb{R}^m$.

d-space sparsity pattern graph G(N, F)

- $N = \{1, 2, \dots, n\}$
- $F = \{(i,j): i \neq j, X_{ij} \mathcal{O} \ it f_0(\boldsymbol{y}, \boldsymbol{X}) \ or \ \boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) \ k \& \mathcal{B} \}$

対称行列変数 X ≻ O を含む非線形最適化問題 (P) min $f_0(\boldsymbol{y}, \boldsymbol{X})$ sub.to $\boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) \in \Omega, \ \boldsymbol{X} \in \mathbb{S}^n_+$ ただし, $f_0: \mathbb{R}^s \times \mathbb{S}^n \to \mathbb{R}, \, \boldsymbol{f}: \mathbb{R}^s \times \mathbb{S}^n \to \mathbb{R}^m, \, \boldsymbol{\Omega} \subset \mathbb{R}^m.$ d-space sparsity pattern graph G(N, F) $N = \{1, 2, \dots, n\}$ $F = \{(i,j): i \neq j, X_{ij} \mathcal{O} \\$ 値は $f_0(\boldsymbol{y}, \boldsymbol{X})$ or $\boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X})$ に必要 } min $A_0(y) \bullet X$ ただし $A_0(y) : n \times n$ 3 重対角 sub. to (行列不等式, 対角+縁付き) $\boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) = \begin{pmatrix} 1 - X_{11} & 0 & \dots & X_{12} \\ 0 & 1 - X_{22} & \dots & X_{23} \\ \dots & \dots & \ddots & \dots \\ X_{21} & X_{32} & \dots & 1 - X_{nn} \end{pmatrix} \succeq \boldsymbol{O}, \ \boldsymbol{X} \in \mathbb{S}^n_+$

対称行列変数 X ≻ O を含む非線形最適化問題 (P) min $f_0(\boldsymbol{y}, \boldsymbol{X})$ sub.to $\boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) \in \Omega, \ \boldsymbol{X} \in \mathbb{S}^n_+$ ただし, $f_0: \mathbb{R}^s \times \mathbb{S}^n \to \mathbb{R}, f: \mathbb{R}^s \times \mathbb{S}^n \to \mathbb{R}^m, \Omega \subset \mathbb{R}^m$. d-space sparsity pattern graph G(N, F) $N = \{1, 2, \dots, n\}$ $F = \{(i,j): i \neq j, X_{ij} \mathcal{O} \\$ 値は $f_0(\boldsymbol{y}, \boldsymbol{X})$ or $\boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X})$ に必要 } ただし $oldsymbol{A}_0(oldsymbol{y}):n imes n$ 3重対角 min $A_0(y) \bullet X$ sub. to (行列不等式, 対角+縁付き) $\boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) = \begin{pmatrix} 1 - X_{11} & 0 & \dots & X_{12} \\ 0 & 1 - X_{22} & \dots & X_{23} \\ \dots & \dots & \ddots & \dots \\ X_{21} & X_{32} & \dots & 1 - X_{nn} \end{pmatrix} \succeq \boldsymbol{O}, \ \boldsymbol{X} \in \mathbb{S}^n_+$

• $f_0(\boldsymbol{y}, \boldsymbol{X})$ or $\boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X})$ の評価には X_{ij} , $|i - j| \leq 1$ のみ必要

$$F = \{(i, i+1) : i = 1, 2, \dots, n-1\}$$

対称行列変数 X ≻ O を含む非線形最適化問題 (P) min $f_0(\boldsymbol{y}, \boldsymbol{X})$ sub.to $\boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) \in \Omega, \ \boldsymbol{X} \in \mathbb{S}^n_+$ ただし, $f_0: \mathbb{R}^s \times \mathbb{S}^n \to \mathbb{R}, \, \boldsymbol{f}: \mathbb{R}^s \times \mathbb{S}^n \to \mathbb{R}^m, \, \boldsymbol{\Omega} \subset \mathbb{R}^m.$ d-space sparsity pattern graph G(N, F) $N = \{1, 2, \dots, n\}$ $F = \{(i,j): i \neq j, X_{ij} \mathcal{O} \\$ 値は $f_0(\boldsymbol{y}, \boldsymbol{X})$ or $\boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X})$ に必要 } min $A_0(y) \bullet X$ ただし $A_0(y) : n \times n$ 3 重対角 sub. to (行列不等式, 対角+縁付き) $\boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) = \begin{pmatrix} 1 - X_{11} & 0 & \dots & X_{12} \\ 0 & 1 - X_{22} & \dots & X_{23} \\ \dots & \dots & \ddots & \dots \\ X_{21} & X_{32} & \dots & 1 - X_{nn} \end{pmatrix} \succeq \boldsymbol{O}, \ \boldsymbol{X} \in \mathbb{S}^n_+$

対称行列変数 X ≻ O を含む非線形最適化問題 (P) min $f_0(\boldsymbol{y}, \boldsymbol{X})$ sub.to $\boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) \in \Omega, \ \boldsymbol{X} \in \mathbb{S}^n_+$ ただし, $f_0: \mathbb{R}^s \times \mathbb{S}^n \to \mathbb{R}, f: \mathbb{R}^s \times \mathbb{S}^n \to \mathbb{R}^m, \Omega \subset \mathbb{R}^m$. d-space sparsity pattern graph G(N, F) $N = \{1, 2, \dots, n\}$ $F = \{(i,j): i \neq j, X_{ij} \mathcal{O} \ (i \neq j, X) \ or \ f(y,X) \ (i \neq j, X) \ (i \neq j$ ただし $oldsymbol{A}_0(oldsymbol{y}):n imes n$ 3重対角 min $A_0(y) \bullet X$ sub. to (行列不等式, 対角+縁付き) $\boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) = \begin{pmatrix} 1 - X_{11} & 0 & \dots & X_{12} \\ 0 & 1 - X_{22} & \dots & X_{23} \\ \dots & \dots & \ddots & \dots \\ X_{21} & X_{32} & \dots & 1 - X_{nn} \end{pmatrix} \succeq \boldsymbol{O}, \ \boldsymbol{X} \in \mathbb{S}^n_+$ $- \cdots - (n-1) - (n)$ chordal graph $X \in \mathbb{S}^n_+ \Rightarrow X(\{i, i+1\}) \succeq O \ (i = 1, 2, \dots, n-1) - 2 \times 2.$

p.20/59

対称行列変数 $X \succeq O$ を含む非線形最適化問題 (P) min $f_0(y, X)$ sub.to $f(y, X) \in \Omega, X \in \mathbb{S}^n_+$ ただし, $f_0 : \mathbb{R}^s \times \mathbb{S}^n \to \mathbb{R}, f : \mathbb{R}^s \times \mathbb{S}^n \to \mathbb{R}^m, \Omega \subset \mathbb{R}^m$.

d-space sparsity pattern graph G(N, F)

- $N = \{1, 2, \dots, n\}$
- $F = \{(i,j): i \neq j, X_{ij} \mathcal{O} \ it f_0(\boldsymbol{y}, \boldsymbol{X}) \ or \ \boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) \ k \& \mathcal{B} \}$

対称行列変数 $X \succeq O$ を含む非線形最適化問題 (P) min $f_0(y, X)$ sub.to $f(y, X) \in \Omega, X \in \mathbb{S}^n_+$ ただし, $f_0 : \mathbb{R}^s \times \mathbb{S}^n \to \mathbb{R}, f : \mathbb{R}^s \times \mathbb{S}^n \to \mathbb{R}^m, \Omega \subset \mathbb{R}^m$.

d-space sparsity pattern graph G(N, F)

(P"') min $f_0(\boldsymbol{y}, \boldsymbol{X})$ sub.to $\boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) \in \Omega, \ \boldsymbol{X}(C_j) \succeq \boldsymbol{O} \ (j = 1, \dots, \ell)$

- $C_i \cap C_i \neq \emptyset \Rightarrow$ "標準形"の半正定値制約ではない
- "標準形"への2つの方法: clique tree を用いる方法 と 基底表現を用いた方法

(小さな SDP cones と共通変数) ⇒

● SDP cone 間に共通変数を持たない問題への変換 — 2 通り

(P) min $f_0(\boldsymbol{y}, \boldsymbol{X})$ sub.to $\boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) \in \Omega, \ \boldsymbol{X} \in \mathbb{S}^n_+$ (P"') min $f_0(\boldsymbol{y}, \boldsymbol{X})$ sub.to $\boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) \in \boldsymbol{\Omega}$, $\begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}, \begin{pmatrix} X_{22} & X_{23} & X_{24} \\ X_{32} & X_{33} & X_{34} \\ X_{42} & X_{43} & X_{44} \end{pmatrix}, \begin{pmatrix} X_{33} & X_{34} & X_{35} \\ X_{43} & X_{44} & X_{45} \\ X_{53} & X_{54} & X_{55} \end{pmatrix} \succeq \mathbf{O}$ (小さな SDP cones と共通変数) \implies SDP cone 間に共通変数を持たない問題への変換 — 2 通り 1. clique tree を用いる方法 — 等式により共通変数 を同一視 $\begin{pmatrix} Y_{11}^{1} & Y_{12}^{1} \\ Y_{21}^{1} & Y_{22}^{1} \end{pmatrix}, \begin{pmatrix} Y_{11}^{2} & Y_{12}^{2} & Y_{13}^{2} \\ Y_{21}^{2} & Y_{22}^{2} & Y_{23}^{2} \\ Y_{31}^{2} & Y_{32}^{2} & Y_{33}^{2} \end{pmatrix}, \begin{pmatrix} Y_{11}^{3} & Y_{12}^{3} & Y_{13}^{3} \\ Y_{21}^{3} & Y_{22}^{3} & Y_{23}^{3} \\ Y_{31}^{3} & Y_{32}^{3} & Y_{33}^{3} \end{pmatrix} \succeq \boldsymbol{O},$ $Y_{22}^1 = Y_{11}^2, \ Y_{22}^2 = Y_{11}^3, \ Y_{23}^2 = Y_{12}^3, \ Y_{33}^2 = Y_{22}^3.$ ● 効率的に、かつ、無駄なく等式を設定するには clique tree を 用いる

$$\begin{array}{c} \text{(P) min } f_0(\boldsymbol{y}, \boldsymbol{X}) \text{ sub.to } \boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) \in \Omega, \ \boldsymbol{X} \in \mathbb{S}^n_+ \\ \\ (\text{P''') min } f_0(\boldsymbol{y}, \boldsymbol{X}) \text{ sub.to } \boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) \in \Omega, \\ \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}, \begin{pmatrix} X_{22} & X_{23} & X_{24} \\ X_{32} & X_{33} & X_{34} \\ X_{42} & X_{43} & X_{44} \end{pmatrix}, \begin{pmatrix} X_{33} & X_{34} & X_{35} \\ X_{43} & X_{44} & X_{45} \\ X_{53} & X_{54} & X_{55} \end{pmatrix} \succeq \boldsymbol{O}$$

$$\begin{array}{c} \text{(P) min } f_0(\boldsymbol{y}, \boldsymbol{X}) \text{ sub.to } \boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) \in \Omega, \ \boldsymbol{X} \in \mathbb{S}^n_+ \\ & \textcircled{} \\ \text{(P''') min } f_0(\boldsymbol{y}, \boldsymbol{X}) \text{ sub.to } \boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) \in \Omega, \\ & \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}, \begin{pmatrix} X_{22} & X_{23} & X_{24} \\ X_{32} & X_{33} & X_{34} \\ X_{42} & X_{43} & X_{44} \end{pmatrix}, \begin{pmatrix} X_{33} & X_{34} & X_{35} \\ X_{43} & X_{44} & X_{45} \\ X_{53} & X_{54} & X_{55} \end{pmatrix} \succeq \boldsymbol{O}$$

2. 基底表現を用いる方法 — $X(C_k)$ を S^{C_k} の基底 $E_{ij} ((i, j \in C_k, i \leq j) ~ \mathcal{C} X(C_k) = \sum_{i,j \in C_k, i \leq j} E_{ij} X_{ij}$ と表現; $\begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} X_{11} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} X_{12} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} X_{22}$

min
$$f_0(\boldsymbol{y}, \boldsymbol{X})$$
 sub. to $\boldsymbol{f}(\boldsymbol{y}, \boldsymbol{X}) \in \Omega$,
 $\sum_{i,j \in C_k, i \leq j} \boldsymbol{E}_{ij} X_{ij} \succeq \boldsymbol{O} \ (k = 1, 2, 3),$
ただし, $C_1 = \{1, 2\}, \ C_2 = \{2, 3, 4\}, \ C_3 = \{3, 4, 5\}.$

domain-space conversion のまとめ

G(N, E)	•	graph, $N = \{1, \ldots, n\}$, $E \subseteq N \times N$; $(i, i) \notin E$,
		$(i,j) = (j,i) \in E, \ E^{\bullet} = E \cup \{(i,i) : i \in N\}.$
\mathbb{S}^n (\mathbb{S}^n_+)	=	n × n (半正定値) 対称行列の集合.
$\mathbb{S}^n(E,?)$	=	<i>n</i> × <i>n</i> 不完全対称行列の集合 (E● のみ値を持つ))
$\mathbb{S}^n_+(E,?)$	=	{半正定値行列に補完可能な $X \in \mathbb{S}^n(E,?)$ の集合}.
(P) min	$f_0(\mathbf{g})$	$oldsymbol{y},oldsymbol{X})$ sub. to $oldsymbol{f}(oldsymbol{y},oldsymbol{X})\in\Omega,oldsymbol{X}\in\mathbb{S}^n_+$
介	٩	X_{ij} $((i,j) \not\in E^{ullet})$ の値は $oldsymbol{X} \in \mathbb{S}^n_+$ でのみ使用
\downarrow	٩	G : chordal. C_k $(k = 1,, \ell)$: G の極大 cliques
min f_0	sub	. to $\boldsymbol{f} \in \boldsymbol{\Omega}$, $\boldsymbol{X}(C_k) \succeq \boldsymbol{O} \; (k=1,\ldots,\ell)$.

- X(C_k) ≥ O (k = 1,..., ℓ) は共通変数を持つ. clique tree を 用いる方法 ← Fukuda et.al '01, Nakata et.al '03 基底表現を用いる方法
 - Kim et.al for sensor network localization problems to appear in SIOPT

目次

- 1. 半正定值計画問題
- 2. 半正定值補完
- 3. domain-space sparsity
- 4. 半正定値補完における双対性と range-space sparsity
 - Kim,Koj,Mevissen,Yamashita Jan.09 理論
 - Fujisawa,Kim,Koj,Okamoto,Yamashita Feb.09
 Software for linear SDP
- 5. correlative sparsity
- 6. 計算実験結果
- 7. おわりに

 $G(N, E) : \text{chordal graph}, E^{\bullet} = E \cup \{(i, i) : i \in N\}.$ $C_1, \dots, C_{\ell} : \mathbf{G} \, \mathcal{O}$ 極大 cliques. $N = \{1, \dots, n\}.$ $\mathbb{S}^n(E, 0) = \{\mathbf{Y} \in \mathbb{S}^n : Y_{ij} = 0 \ (i, j) \notin E^{\bullet}\}.$ $\mathbb{S}^n_+(E, 0) = \{\mathbf{Y} \in \mathbb{S}^n(E, 0) : \mathbf{Y} \in \mathbb{S}^n_+\}.$ $\mathbb{S}^C_+ = \{\mathbf{Y} \in \mathbb{S}^n_+ : Y_{ij} = 0 \text{ if } (i, j) \notin C \times C\} \text{ for } \forall C \subseteq N.$
$G(N, E) : \text{chordal graph}, E^{\bullet} = E \cup \{(i, i) : i \in N\}.$ $C_{1}, \dots, C_{\ell} : \mathbf{G} \ \mathcal{O}$ 極大 cliques. $N = \{1, \dots, n\}.$ $\mathbb{S}^{n}(E, 0) = \{\mathbf{Y} \in \mathbb{S}^{n} : Y_{ij} = 0 \ (i, j) \notin E^{\bullet}\}.$ $\mathbb{S}^{n}_{+}(E, 0) = \{\mathbf{Y} \in \mathbb{S}^{n}_{+} : Y_{ij} = 0 \ \text{if} \ (i, j) \notin C \times C\} \text{ for } \forall C \subseteq N.$ $\mathbb{S}^{n}_{+}(E, ?) = E^{\bullet} \ \mathcal{O}$ 要素のみ値が与えられた不完全対称行列 $\mathbb{S}^{n}_{+}(E, ?) = \{\mathbf{X} \in \mathbb{S}^{n}(E, ?) : \text{psd } E^{\bullet} \mathbb{R} \in \mathbb{S}^{n} \in \mathbb{R}\}.$

. – p.26/59

 $G(N, E) : \text{chordal graph}, E^{\bullet} = E \cup \{(i, i) : i \in N\}.$ $C_1, \dots, C_{\ell} : \mathbf{G} \, \mathcal{O}$ 極大 cliques. $N = \{1, \dots, n\}.$ $\mathbb{S}^n(E, 0) = \{\mathbf{Y} \in \mathbb{S}^n : Y_{ij} = 0 \ (i, j) \notin E^{\bullet}\}.$ $\mathbb{S}^n_+(E, 0) = \{\mathbf{Y} \in \mathbb{S}^n(E, 0) : \mathbf{Y} \in \mathbb{S}^n_+\}.$ $\mathbb{S}^C_+ = \{\mathbf{Y} \in \mathbb{S}^n_+ : Y_{ij} = 0 \text{ if } (i, j) \notin C \times C\} \text{ for } \forall C \subseteq N.$

$$G(N, E) : \text{chordal graph}, E^{\bullet} = E \cup \{(i, i) : i \in N\}.$$

$$C_{1}, \dots, C_{\ell} : \mathbf{G} \ \mathcal{O}$$
極大 cliques. $N = \{1, \dots, n\}.$

$$\mathbb{S}^{n}(E, 0) = \{\mathbf{Y} \in \mathbb{S}^{n} : Y_{ij} = 0 \ (i, j) \notin E^{\bullet}\}.$$

$$\mathbb{S}^{n}_{+}(E, 0) = \{\mathbf{Y} \in \mathbb{S}^{n}(E, 0) : \mathbf{Y} \in \mathbb{S}^{n}_{+}\}.$$

$$\mathbb{S}^{C}_{+} = \{\mathbf{Y} \in \mathbb{S}^{n}_{+} : Y_{ij} = 0 \text{ if } (i, j) \notin C \times C\} \text{ for } \forall C \subseteq N.$$

$$\stackrel{\text{{\rm Z}}{=} \mathbf{Y} \in \mathbb{S}^{n}(E, 0) \succeq \mathfrak{F} \ \mathcal{S}. \ \mathbf{Y} \in \mathbb{S}^{n}_{+}(E, 0) \text{ iff}$$

$$\mathbf{Y} = \mathbf{Y}^{1} + \mathbf{Y}^{2} + \dots + \mathbf{Y}^{\ell} \text{ for } \exists \mathbf{Y}^{k} \in \mathbb{S}^{C_{k}}_{+} \ (k = 1, \dots, \ell).$$

$$G(N, E) : \text{chordal graph}, E^{\bullet} = E \cup \{(i, i) : i \in N\}.$$

$$C_{1}, \dots, C_{\ell} : \mathbf{G} \ \mathcal{O}$$
極大 cliques. $N = \{1, \dots, n\}.$

$$\mathbb{S}^{n}(E, 0) = \{\mathbf{Y} \in \mathbb{S}^{n} : Y_{ij} = 0 \ (i, j) \notin E^{\bullet}\}.$$

$$\mathbb{S}^{n}_{+}(E, 0) = \{\mathbf{Y} \in \mathbb{S}^{n}(E, 0) : \mathbf{Y} \in \mathbb{S}^{n}_{+}\}.$$

$$\mathbb{S}^{C}_{+} = \{\mathbf{Y} \in \mathbb{S}^{n}_{+} : Y_{ij} = 0 \text{ if } (i, j) \notin C \times C\} \text{ for } \forall C \subseteq N.$$

$$\stackrel{\text{{\bf Z}}{=} \mathbf{Y} \in \mathbb{S}^{n}(E, 0) \succeq \mathfrak{F} \ \mathcal{S}. \ \mathbf{Y} \in \mathbb{S}^{n}_{+}(E, 0) \text{ iff}$$

$$\mathbf{Y} = \mathbf{Y}^{1} + \mathbf{Y}^{2} + \dots + \mathbf{Y}^{\ell} \text{ for } \exists \mathbf{Y}^{k} \in \mathbb{S}^{C_{k}}_{+} \ (k = 1, \dots, \ell).$$

$$G(N, E) : \text{chordal graph}, E^{\bullet} = E \cup \{(i, i) : i \in N\}.$$

$$C_{1}, \dots, C_{\ell} : \mathbf{G} \ \mathcal{O}$$
極大 cliques. $N = \{1, \dots, n\}.$

$$\mathbb{S}^{n}(E, 0) = \{\mathbf{Y} \in \mathbb{S}^{n} : Y_{ij} = 0 \ (i, j) \notin E^{\bullet}\}.$$

$$\mathbb{S}^{n}_{+}(E, 0) = \{\mathbf{Y} \in \mathbb{S}^{n}(E, 0) : \mathbf{Y} \in \mathbb{S}^{n}_{+}\}.$$

$$\mathbb{S}^{C}_{+} = \{\mathbf{Y} \in \mathbb{S}^{n}_{+} : Y_{ij} = 0 \text{ if } (i, j) \notin C \times C\} \text{ for } \forall C \subseteq N.$$

$$\stackrel{\textbf{Z} \stackrel{\text{T}}{=} \mathbf{Y} \in \mathbb{S}^{n}(E, 0) \succeq \mathfrak{F} \ \mathcal{S}. \ \mathbf{Y} \in \mathbb{S}^{n}_{+}(E, 0) \text{ iff}$$

$$\mathbf{Y} = \mathbf{Y}^{1} + \mathbf{Y}^{2} + \dots + \mathbf{Y}^{\ell} \text{ for } \exists \mathbf{Y}^{k} \in \mathbb{S}^{C_{k}}_{+} \ (k = 1, \dots, \ell).$$

 $(1) - (2) - (3) \quad C_1 = \{1, 2\}, \ C_2 = \{2, 3\}. \ \mathbf{M} : \mathbb{R}^m \to \mathbb{S}^3(E, 0).$

 $\boldsymbol{M}(\boldsymbol{u}) \in \mathbb{S}^3_+(E,0)$

$$G(N, E) : \text{chordal graph}, E^{\bullet} = E \cup \{(i, i) : i \in N\}.$$

$$C_{1}, \dots, C_{\ell} : \mathbf{G} @ 極大 \text{ cliques}. N = \{1, \dots, n\}.$$

$$\mathbb{S}^{n}(E, 0) = \{\mathbf{Y} \in \mathbb{S}^{n} : Y_{ij} = 0 \ (i, j) \notin E^{\bullet}\}.$$

$$\mathbb{S}^{n}_{+}(E, 0) = \{\mathbf{Y} \in \mathbb{S}^{n}(E, 0) : \mathbf{Y} \in \mathbb{S}^{n}_{+}\}.$$

$$\mathbb{S}^{C}_{+} = \{\mathbf{Y} \in \mathbb{S}^{n}_{+} : Y_{ij} = 0 \text{ if } (i, j) \notin C \times C\} \text{ for } \forall C \subseteq N.$$

$$\boxed{\mathbf{z}^{\underline{u}} \mathbf{Y} \in \mathbb{S}^{n}(E, 0) } \notin \mathbf{z} \in \mathbb{S}^{n}_{+}(E, 0) \text{ iff}$$

$$\mathbf{Y} = \mathbf{Y}^{1} + \mathbf{Y}^{2} + \dots + \mathbf{Y}^{\ell} \text{ for } \exists \mathbf{Y}^{k} \in \mathbb{S}^{C_{k}}_{+} \ (k = 1, \dots, \ell).$$

● 行列分解を用いた r-space conv. method — 前ページ左側

● clique tree を用いた r-space conv. method — 前ページ右側

d-space conversion and r-space conversion $O \pm b$

chordal graph で特徴付けられた疎性

G(N, E): chordal graph $C_k \ (k = 1, 2, ..., \ell)$: 極大 cliques.

d-space conversion: $X \in \mathbb{S}^n_+ \Rightarrow X(C_k) \in \mathbb{S}^{C_k}_+ \ (k = 1, 2, ..., \ell)$. $X(C_k) \in \mathbb{S}^{C_k}_+ \ (k = 1, 2, ..., \ell)$ を独立な条件にする 2 方法 (d-ct) clique tree を用いた d-dpace conv. method (d-br) 基底表現を用いた d-space conv. method

r-space conversion: $M(u) \in \mathbb{S}^n_+(E,0) \Leftrightarrow$ $M(u) = Y^1 + Y^2 + \dots + Y^\ell$ for $\exists Y^k \in \mathbb{S}^{C_k}_+$ $(k = 1, \dots, \ell)$. (r-md) 行列分解を用いた r-space conv. method (r-ct) clique tree を用いた r-space conv. method

● (d-ct) & (r-ct) ((d-br) & (r-md)) は互いに双対な関係. P: min $M(u) \bullet X$ sub. to $X \succeq O$ D: max 0 sub. to $M(u) \succeq O$ d-space conversion and r-space conversion $O \pm b$

chordal graph で特徴付けられた疎性

G(N, E): chordal graph $C_k \ (k = 1, 2, ..., \ell)$: 極大 cliques.

d-space conversion: $X \in \mathbb{S}^n_+ \Rightarrow X(C_k) \in \mathbb{S}^{C_k}_+$ $(k = 1, 2, ..., \ell)$. $X(C_k) \in \mathbb{S}^{C_k}_+$ $(k = 1, 2, ..., \ell)$ を独立な条件にする 2 方法 (d-ct) clique tree を用いた d-dpace conv. method (d-br) 基底表現を用いた d-space conv. method

r-space conversion: $M(u) \in \mathbb{S}^n_+(E,0)$ ⇔ $M(u) = Y^1 + Y^2 + \dots + Y^\ell$ for $\exists Y^k \in \mathbb{S}^{C_k}_+$ $(k = 1, \dots, \ell)$. (r-md) 行列分解を用いた r-space conv. method (r-ct) clique tree を用いた r-space conv. method d-space conversion and r-space conversion $O \pm b$

chordal graph で特徴付けられた疎性

G(N, E): chordal graph $C_k \ (k = 1, 2, ..., \ell)$: 極大 cliques.

d-space conversion: $X \in \mathbb{S}^n_+ \Rightarrow X(C_k) \in \mathbb{S}^{C_k}_+ \ (k = 1, 2, ..., \ell)$. $X(C_k) \in \mathbb{S}^{C_k}_+ \ (k = 1, 2, ..., \ell)$ を独立な条件にする 2 方法 (d-ct) clique tree を用いた d-dpace conv. method (d-br) 基底表現を用いた d-space conv. method

r-space conversion: $M(u) \in \mathbb{S}^n_+(E, 0) \Leftrightarrow$ $M(u) = Y^1 + Y^2 + \dots + Y^\ell$ for $\exists Y^k \in \mathbb{S}^{C_k}_+$ $(k = 1, \dots, \ell)$. (r-md) 行列分解を用いた r-space conv. method (r-ct) clique tree を用いた r-space conv. method

● 4つの方法の効率的な実装,使用 ⇒ 今後の研究課題
 ● 計算実験 — 次節

目次

- 1. 半正定值計画問題
- 2. 半正定值補完
- 3. domain-space sparsity
- 4. 半正定値補完における双対性と range-space sparsity
- 5. correlative sparsity
 - Waki,Kim,Kojima,Muramatsu '06 for POP
 - Kobayashi,Kim,Kojima '08 for (Polynomial) SDP
- 6. 計算実験結果
- 7. おわりに

(線形,多項式)SDP min $f_0(\boldsymbol{y})$ sub.to $\boldsymbol{y} \in \mathbb{R}^n$, $\boldsymbol{F}_k(\boldsymbol{y}) \in \mathbb{S}^{m_k}_+$ $(k = 1, \dots, p)$ G(N, E): correlative sparsity pattern graph; $N = \{1, \ldots, n\}$, $E = \begin{cases} (i,j): & i \neq j, \\ \exists k; y_i \geq y_j & \text{の値は } \boldsymbol{F}_k(\boldsymbol{y}) & \text{の評価に必要} \end{cases}$ 例. k=1 $oldsymbol{F}(oldsymbol{y})$

● $\forall y_i \in$ 多項式行列不等式 $F(y) \succeq O \Rightarrow$ c-sparsity は無い ● range-space sparsity を用いて分解 ⇒ c-sparsity, 次ページ

(続き) range-space sparsity を用いて $F(y) \succeq O$ を分解 \Rightarrow

$$\begin{pmatrix} 1 - y_1^4 & y_1 y_2 \\ y_1 y_2 & z_1 \end{pmatrix} \succeq \boldsymbol{O}, \ (z_1, \dots, z_{n-2} : \operatorname{idlight metric}) \\ \begin{pmatrix} 1 - y_1^4 & y_1 y_{i+1} \\ y_i y_{i+1} & -z_{i-1} + z_i \end{pmatrix} \succeq \boldsymbol{O} \ (2 \le i \le n-2), \\ \begin{pmatrix} 1 - y_{n-1}^4 & y_{n-1} y_n \\ y_{n-1} y_n & 1 - y_n^4 - z_{n-2} \end{pmatrix} \succeq \boldsymbol{O}$$

p = *n* 個の 2 × 2 行列不等式 (∋ 高々 4 つの変数) に分解
 G(*N*, *E*) が疎な chordal 拡張を持つとき, sparse SDP 緩和 が適用可能. 線形な場合は Schur comp. 行列が疎

例(続き) c-sparsity pattern n = 20

行列不等式 $F_k(y) \succeq O(k = 1, ..., p)$ が線形な場合は Schur comp行列の疎性と一致

目次

- 1. 半正定值計画問題
- 2. 半正定值補完
- 3. domain-space sparsity
- 4. 半正定値補完における双対性と range-space sparsity
- 5. correlative sparsity
- 6. 計算実験結果
- 7. おわりに

SparsePOP (Waki-Kim-Kojima-Muramtasu '07) — 基底表現を用いた d-sparse conversion method と correlative sparsity の考え方

- 問題1 制約条件付多項式(3次)最適化問題
- 問題2 無制約多項式(4次)最適化問題
- 問題3 無制約多項式(6次)最適化問題
- SFSDP (Kim-Kojima-Waki '08)
- Sensor network localization 問題 (特殊構造の2次最適化問題)
- 基底表現を用いた d-sparse conversion method と correlative sparsity の考え方

SparseCoLO (Fujisawa-Kim-Kojima-Okamoto-Yamashita '09) — 線形 SDP に対する4種類の conversion

2.66GHz Intel Core Dual, 12GB memory, Matlab, SeDuMi

問題 1 : alkyl.gms — globallib からのベンチマーク問題
min
$$-6.3x_5x_8 + 5.04x_2 + 0.35x_3 + x_4 + 3.36x_6$$

sub.to $-0.820x_2 + x_5 - 0.820x_6 = 0,$
 $0.98x_4 - x_7(0.01x_5x_{10} + x_4) = 0,$
 $-x_2x_9 + 10x_3 + x_6 = 0,$
 $x_5x_{12} - x_2(1.12 + 0.132x_9 - 0.0067x_9^2) = 0,$
 $x_8x_{13} - 0.01x_9(1.098 - 0.038x_9) - 0.325x_7 = 0.574,$
 $x_{10}x_{14} + 22.2x_{11} = 35.82,$
 $x_1x_{11} - 3x_8 = -1.33, \ \text{Ibd}_i \le x_i \le \text{ubd}_i \ (i = 1, 2, \dots, 14)$

Sparse			Dense (Lasserre)		
€obj	ϵ feas	cpu	€obj	ϵ feas	cpu
1.8e-9	9.6e-9	4.1	out of	memory	

$$\epsilon_{obj} = \frac{| \mathbf{b} \sqrt{aonphi} - \mathcal{U} \sqrt{box} - \mathcal{U} \sqrt{box} |}{\max\{1, | \mathbf{b} \sqrt{aonphi}|\}}.$$

 $\epsilon_{feas} = 等式制約の誤差, cpu: 計算時間(秒)$

٠

無制約最小化のベンチマーク問題

The gneralized Rosenbrock function — 次数4の多項式

$$f_R(\boldsymbol{x}) = 1 + \sum_{i=2}^n \left(100(x_i - x_{i-1}^2) + (1 - x_i^2) \right)$$

The chained singular function — 次数4の多項式

$$f_C(\boldsymbol{x}) = \sum_{i \in J} \left((x_i + 10x_{i+1})^2 + 5(x_{i+2} - x_{i+3})^2 + (x_{i+1} - 2x_{i+2})^4 + 10(x_i - 10x_{i+3})^4 \right)$$

ただし,
$$J = \{1, 3, 5, \dots, n-3\}$$
, n は 4 の倍数.

The Broyden banded function — 次数6の多項式

$$f_B(\boldsymbol{x}) = \sum_{i=1}^n \left(x_i (2 + 5x_i^2) + 1 - \sum_{j \in J_i} (1 + x_j) x_j \right)^2$$
ただし, $J_i = \{j : j \neq i, \max\{1, i - 5\} \le j \le \min\{n, i\}\}.$ 問題 2 : min $f_R(\boldsymbol{x}) + f_C(\boldsymbol{x})$ 問題 3 : min $f_R(\boldsymbol{x}) + f_B(\boldsymbol{x})$

問題2:min $f_R(\mathbf{x}) + f_C(\mathbf{x}) - 4$ 次,非常に疎,未知最適値

	Sparse			Den	se (Lass	serre)
n	ϵ obj	# =	cpu	$\epsilon_{\sf obj}$	# =	cpu
12	6e-9	214	0.2	1e-9	1,819	64.1
16	5e-9	294	0.2	1e-9	4,844	1311.1
100	2e-9	1,974	1.2	out of	mem	
1000	7e-11	19,974	16.9			
2000	6e-12	39,974	45.1			
3000	out of	mem				

$$\epsilon_{obj} = \frac{|最小値の下界 - 近似最小解|}{\max\{1, |最小値の下界|\}}$$

=: SDP の等式条件数, cpu:計算時間(秒)

問題3:min $f_R(\mathbf{x}) + f_B(\mathbf{x}) - 6$ 次,疎as $n \uparrow$,未知最適値

	Sparse			Dens	Dense (Lasserre)		
n	$\epsilon_{\sf obj}$	# =	cpu	ϵ obj	# =	cpu	
6	5e-11	923	8.8	5e-11	923	9.5	
8	2e-10	2,507	78.3	2e-10	3,002	234.4	
10	8e-12	4,091	132.4	out of	mem		
20	5e-11	12,011	414.2				
30	5e-11	19,931	717.8				
40	out of	mem					

$$\epsilon_{obj} = \frac{|最小値の下界 - 近似最小解|}{\max\{1, |最小値の下界|\}}$$

= : SDP の等式条件数, cpu : 計算時間(秒)

Sensor network localization 問題: s = 2 or 3.

 $\boldsymbol{x}^{p} \in \mathbb{R}^{s}$: sensor の位置, 座標 (未知) (p = 1, 2, ..., m), $\boldsymbol{x}^{r} = \boldsymbol{a}^{r} \in \mathbb{R}^{s}$: ancho の位置, 座標 (既知) (r = m + 1, ..., n), $d_{pq}^{2} = \|\boldsymbol{x}^{p} - \boldsymbol{x}^{q}\|^{2} + \epsilon_{pq}$ — 距離 (既知) for $(p,q) \in \mathcal{N}$, $\mathcal{N} = \{(p,q) : \|\boldsymbol{x}^{p} - \boldsymbol{x}^{q}\| \leq \rho = a \text{ radio range (既知)}\}$ ここで ϵ_{pq} : noise

m = 5, n = 9.1,...,5: sensor 6,7,8,9: anchor 6 d_{18} d_{18} d_{18} d_{18} d_{18}

anchor の 位置は 既知 ∀ edge に対して距離が既知 sensor の位置を計算せよ \Rightarrow 非凸 2 次最適化問題 QOP ● SDP 緩和 +? — FSDP by Biswas-Ye '06, ESDP by Wang et al '07, ... for s = 2. ● 2次錐計画緩和 — Tseng '07 for s = 2.

3 つの方法の比較実験: sensor network localization 問題 m = sensor の個数, [0,1]² 上に random に分布 4 つの anchor [0,1]² の 4 隅に配置 ρ=radio range = 0.1, noise 無し FSDP — Biswas-Ye '06, 計算コストは高いが強力 SFSDP = FSDP + 疎性の活用, FSDP と等価 ESDP — FSDP のさらなる緩和, FSDP より弱い

	SeDuMi cpu time in second					
m	FSDP	SFSDP	ESDP			
500	389.1	35.0	62.5			
1000	3345.2	60.4	200.3			
2000		111.1	1403.9			
4000		182.1	11559.8			

m = 1000 sensors, noise 無し SFSDP = FSDP + 疎性の活用

m = 1000 sensors, noise 無し ESDP

3 dim, 500 sensors, radio range = 0.3, noise $\leftarrow N(0,0.1)$; (誤差を含んだ距離) $\hat{d}_{pq} = (1 + \epsilon_{pq})d_{pq}$ (真の距離) $\epsilon_{pq} \leftarrow N(0,0.1)$

SFSDP = FSDP + 疎性の活用

3 dim, 500 sensors, radio range = 0.3, noise $\leftarrow N(0,0.1)$; (誤差を含んだ距離) $\hat{d}_{pq} = (1 + \epsilon_{pq})d_{pq}$ (真の距離) $\epsilon_{pq} \leftarrow N(0,0.1)$

SFSDP = FSDP + 疎性の活用 + Gradient 法

Quadratic SDP の Linear SDP 緩和
QSDP: min
$$\sum_{i=1}^{s} c_i x_i$$
 sub. to $M(x) \succeq O$
 $M : \mathbb{R}^s \to \mathbb{S}^n, M_{ij}$ は x_1, \dots, x_s の高々 2 次の多項式
 $M_{ij}(x) = Q_{ij} \bullet \begin{pmatrix} 1 & x^T \\ x & xx^T \end{pmatrix}$ for every $x \in \mathbb{R}^s$.

⇒ Linear SDP 緩和

$$\begin{array}{lll} \text{SDP: min } \sum_{i=1}^{s} c_{i} x_{i} \text{ sub. to } \widehat{\boldsymbol{M}}(\boldsymbol{x},\boldsymbol{X}) \succeq \boldsymbol{O}, \ \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \succeq \boldsymbol{O} \\ \widehat{\boldsymbol{M}}_{ij}(\boldsymbol{x},\boldsymbol{X}) &= & \boldsymbol{Q}_{ij} \bullet \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \text{ for every } \boldsymbol{x} \in \mathbb{R}^{s}, \boldsymbol{X} \in \mathbb{S}^{s}, \end{array}$$

- $M: \mathbb{R}^s \to \mathbb{S}^n$ が凹であるとき、SDP の最適解は、QSDP の 最適解
- 一般には、QSDPの最適値 ≥ SDPの最適値
 ⇒ 以下の実験結果2、3では QSDP は解けていない.

$$\begin{array}{lll} \text{SDP: min } \sum_{i=1}^{s} c_{i}x_{i} \text{ sub. to } \widehat{\boldsymbol{M}}(\boldsymbol{x},\boldsymbol{X}) \succeq \boldsymbol{O}, \ \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \succeq \boldsymbol{O} \\ \widehat{\boldsymbol{M}}_{ij}(\boldsymbol{x},\boldsymbol{X}) &= & \boldsymbol{Q}_{ij} \bullet \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \text{ for every } \boldsymbol{x} \in \mathbb{R}^{s}, \boldsymbol{X} \in \mathbb{S}^{s}, \end{array}$$

$$\begin{array}{lll} \text{SDP: min } \sum_{i=1}^{s} c_{i}x_{i} \text{ sub. to } \widehat{\boldsymbol{M}}(\boldsymbol{x},\boldsymbol{X}) \succeq \boldsymbol{O}, \ \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \succeq \boldsymbol{O} \\ \widehat{\boldsymbol{M}}_{ij}(\boldsymbol{x},\boldsymbol{X}) &= & \boldsymbol{Q}_{ij} \bullet \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \text{ for every } \boldsymbol{x} \in \mathbb{R}^{s}, \boldsymbol{X} \in \mathbb{S}^{s}, \end{array}$$

1. 3 重対角 QSDP — $M(\mathbf{X})$ の非ゼロパターンが 3 重対角

d-space sparsity pattern & r–space sparsity pattern (s = 40, n = 40)

$$\begin{array}{lll} \text{SDP: min } \sum_{i=1}^{s} c_{i}x_{i} \text{ sub. to } \widehat{\boldsymbol{M}}(\boldsymbol{x},\boldsymbol{X}) \succeq \boldsymbol{O}, \ \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \succeq \boldsymbol{O} \\ \widehat{M}_{ij}(\boldsymbol{x},\boldsymbol{X}) &= & \boldsymbol{Q}_{ij} \bullet \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \text{ for every } \boldsymbol{x} \in \mathbb{R}^{s}, \boldsymbol{X} \in \mathbb{S}^{s}, \end{array}$$

1. 3 重対角 QSDP — $\widehat{M}(\mathbf{X})$ の非ゼロパターンが 3 重対角

$$\begin{array}{lll} \text{SDP: min } \sum_{i=1}^{s} c_{i}x_{i} \text{ sub. to } \widehat{\boldsymbol{M}}(\boldsymbol{x},\boldsymbol{X}) \succeq \boldsymbol{O}, \ \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \succeq \boldsymbol{O} \\ \widehat{\boldsymbol{M}}_{ij}(\boldsymbol{x},\boldsymbol{X}) &= & \boldsymbol{Q}_{ij} \bullet \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \text{ for every } \boldsymbol{x} \in \mathbb{R}^{s}, \boldsymbol{X} \in \mathbb{S}^{s}, \end{array}$$

1. 3 重対角 QSDP — $\widehat{M}(\mathbf{X})$ の非ゼロパターンが 3 重対角

		SeDuMi CPU time in seconds				
		(size of Schur c. mat., max. SDP block size)				
S	n	no sp.	d-br	r-ct	d-br, r-ct	
40	40	8.38	0.97	8.83	0.68	
		(860, 41)	(80, 40)	(898, 41)	(118, 2)	
80	80	384.43	11.72	402.86	1.58	
		(3320, 81)	(160, 80)	(3398, 81)	(238, 2)	
320	320	-	100.36	-	24.57	
			(640, 320)		(958, 2)	
$$\begin{array}{lll} \text{SDP: min } \sum_{i=1}^{s} c_{i}x_{i} \text{ sub. to } \widehat{\boldsymbol{M}}(\boldsymbol{x},\boldsymbol{X}) \succeq \boldsymbol{O}, \ \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \succeq \boldsymbol{O} \\ \widehat{M}_{ij}(\boldsymbol{x},\boldsymbol{X}) &= & \boldsymbol{Q}_{ij} \bullet \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \text{ for every } \boldsymbol{x} \in \mathbb{R}^{s}, \boldsymbol{X} \in \mathbb{S}^{s}, \end{array}$$

1. 3 重対角 QSDP — $\widehat{M}(\mathbf{X})$ の非ゼロパターンが 3 重対角

$$\begin{array}{lll} \mathsf{SDP:} \min \ \sum_{i=1}^{s} c_{i} x_{i} \ \mathsf{sub.} \ \mathsf{to} \ \widehat{\boldsymbol{M}}(\boldsymbol{x},\boldsymbol{X}) \succeq \boldsymbol{O}, \ \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \succeq \boldsymbol{O} \\ \widehat{M}_{ij}(\boldsymbol{x},\boldsymbol{X}) &= & \boldsymbol{Q}_{ij} \bullet \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \ \mathsf{for \ every} \ \boldsymbol{x} \in \mathbb{R}^{s}, \boldsymbol{X} \in \mathbb{S}^{s}, \end{array}$$

1. 3 重対角 QSDP — $\widehat{M}(X)$ の非ゼロパターンが 3 重対角

		SeDuMi CPU time in seconds			
		(size of Schur c. mat., max. SDP block size)			
S	n	no sp	d-br	r-ct	d-br, r-ct
40	80	30.76	6.27	28.70	1.52
		(860, 80)	(80, 80)	(938, 41)	(158, 2)
40	160	41.9	21.86	32.44	2.82
		(860, 160)	(80, 160)	(1081, 41)	(238, 2)
40	640	474.51	393.23	46.26	11.60
		(860, 640)	(80, 640)	(1498, 41)	(718, 2)

$$\begin{array}{lll} \text{SDP: min } \sum_{i=1}^{s} c_{i}x_{i} \text{ sub. to } \widehat{\boldsymbol{M}}(\boldsymbol{x},\boldsymbol{X}) \succeq \boldsymbol{O}, \ \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \succeq \boldsymbol{O} \\ \widehat{\boldsymbol{M}}_{ij}(\boldsymbol{x},\boldsymbol{X}) &= & \boldsymbol{Q}_{ij} \bullet \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \text{ for every } \boldsymbol{x} \in \mathbb{R}^{s}, \boldsymbol{X} \in \mathbb{S}^{s}, \end{array}$$

$$\begin{array}{l} \mathsf{SDP:}\min \, \sum_{i=1}^{s} c_{i} x_{i} \, \mathsf{sub.} \, \mathsf{to} \, \widehat{\boldsymbol{M}}(\boldsymbol{x}, \boldsymbol{X}) \succeq \boldsymbol{O}, \, \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \succeq \boldsymbol{O} \\ \widehat{\boldsymbol{M}}_{ij}(\boldsymbol{x}, \boldsymbol{X}) \ = \ \boldsymbol{Q}_{ij} \bullet \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \, \mathsf{for every} \, \boldsymbol{x} \in \mathbb{R}^{s}, \boldsymbol{X} \in \mathbb{S}^{s}, \end{array}$$

2. M(X)の非ゼロパターンがブロック (2 × 2) 対角+縁付き

d-space sparsity pattern & r–space sparsity pattern (s = 40, n = 41)

$$\begin{array}{lll} \text{SDP: min } \sum_{i=1}^{s} c_{i}x_{i} \text{ sub. to } \widehat{\boldsymbol{M}}(\boldsymbol{x},\boldsymbol{X}) \succeq \boldsymbol{O}, \ \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \succeq \boldsymbol{O} \\ \widehat{\boldsymbol{M}}_{ij}(\boldsymbol{x},\boldsymbol{X}) &= & \boldsymbol{Q}_{ij} \bullet \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \text{ for every } \boldsymbol{x} \in \mathbb{R}^{s}, \boldsymbol{X} \in \mathbb{S}^{s}, \end{array}$$

2. $\widehat{M}(\mathbf{X})$ の非ゼロパターンがブロック (2 × 2) 対角+縁付き

$$\begin{array}{lll} \text{SDP: min } \sum\limits_{i=1}^{s} c_{i}x_{i} \text{ sub. to } \widehat{\boldsymbol{M}}(\boldsymbol{x},\boldsymbol{X}) \succeq \boldsymbol{O}, \ \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \succeq \boldsymbol{O} \\ \widehat{\boldsymbol{M}}_{ij}(\boldsymbol{x},\boldsymbol{X}) &= & \boldsymbol{Q}_{ij} \bullet \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \text{ for every } \boldsymbol{x} \in \mathbb{R}^{s}, \boldsymbol{X} \in \mathbb{S}^{s}, \end{array}$$

2. $\widehat{M}(\mathbf{X})$ の非ゼロパターンがブロック (2 × 2) 対角+縁付き

		SeDuMi CPU time in seconds			
		(size of Schur c. mat., max. SDP block size)			
S	n	no sp	d-br	r-ct	d-br, r-ct
40	41	13.89	1.85	13.59	1.14
		(860, 41)	(119, 41)	(879, 41)	(138, 3)
80	81	532.73	19.26	529.99	2.98
		(3320, 81)	(239, 81)	(3359, 81)	(278, 3)
320	321	-	253.49	-	76.15
			(959, 321)		(1118, 3)

$$\begin{array}{lll} \text{SDP: min } \sum_{i=1}^{s} c_{i}x_{i} \text{ sub. to } \widehat{\boldsymbol{M}}(\boldsymbol{x},\boldsymbol{X}) \succeq \boldsymbol{O}, \ \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \succeq \boldsymbol{O} \\ \widehat{\boldsymbol{M}}_{ij}(\boldsymbol{x},\boldsymbol{X}) &= & \boldsymbol{Q}_{ij} \bullet \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \text{ for every } \boldsymbol{x} \in \mathbb{R}^{s}, \boldsymbol{X} \in \mathbb{S}^{s}, \end{array}$$

2. $\widehat{M}(\mathbf{X})$ の非ゼロパターンがブロック (2 × 2) 対角+縁付き

$$\begin{array}{lll} \text{SDP: min } \sum_{i=1}^{s} c_{i} x_{i} \text{ sub. to } \widehat{\boldsymbol{M}}(\boldsymbol{x},\boldsymbol{X}) \succeq \boldsymbol{O}, \ \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \succeq \boldsymbol{O} \\ \widehat{\boldsymbol{M}}_{ij}(\boldsymbol{x},\boldsymbol{X}) &= & \boldsymbol{Q}_{ij} \bullet \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \text{ for every } \boldsymbol{x} \in \mathbb{R}^{s}, \boldsymbol{X} \in \mathbb{S}^{s}, \end{array}$$

2. $\widehat{M}(\mathbf{X})$ の非ゼロパターンがブロック (2 × 2) 対角+縁付き

		SeDuMi CPU time in seconds			
		(size of Schur c. mat., max. SDP block size)			
S	n	no sp	d-br	r-ct	d-br, r-ct
40	81	30.41	12.26	12.28	0.94
		(860, 81)	(119, 81)	(899, 41)	(158,3)
40	161	38.71	27.63	9.22	1.45
		(860, 161)	(119, 161)	(939, 41)	(198, 3)
40	641	591.10	551.37	24.10	8.13
		(860, 641)	(119, 641)	(1179, 41)	(438, 3)

$$\begin{array}{lll} \text{SDP: min } \sum_{i=1}^{s} c_{i}x_{i} \text{ sub. to } \widehat{\boldsymbol{M}}(\boldsymbol{x},\boldsymbol{X}) \succeq \boldsymbol{O}, \ \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \succeq \boldsymbol{O} \\ \widehat{\boldsymbol{M}}_{ij}(\boldsymbol{x},\boldsymbol{X}) &= & \boldsymbol{Q}_{ij} \bullet \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \text{ for every } \boldsymbol{x} \in \mathbb{R}^{s}, \boldsymbol{X} \in \mathbb{S}^{s}, \end{array}$$

$$\begin{array}{lll} \text{SDP: min} \sum_{i=1}^{s} c_{i} x_{i} \text{ sub. to } \widehat{\boldsymbol{M}}(\boldsymbol{x},\boldsymbol{X}) \succeq \boldsymbol{O}, \ \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \succeq \boldsymbol{O} \\ \widehat{\boldsymbol{M}}_{ij}(\boldsymbol{x},\boldsymbol{X}) &= & \boldsymbol{Q}_{ij} \bullet \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \text{ for every } \boldsymbol{x} \in \mathbb{R}^{s}, \boldsymbol{X} \in \mathbb{S}^{s}, \end{array}$$

d-space sparsity pattern \succeq r-space sparsity pattern (s = 210, n = 186)

$$\begin{array}{lll} \text{SDP: min } \sum_{i=1}^{s} c_{i}x_{i} \text{ sub. to } \widehat{\boldsymbol{M}}(\boldsymbol{x},\boldsymbol{X}) \succeq \boldsymbol{O}, \ \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \succeq \boldsymbol{O} \\ \widehat{\boldsymbol{M}}_{ij}(\boldsymbol{x},\boldsymbol{X}) &= & \boldsymbol{Q}_{ij} \bullet \begin{pmatrix} 1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X} \end{pmatrix} \text{ for every } \boldsymbol{x} \in \mathbb{R}^{s}, \boldsymbol{X} \in \mathbb{S}^{s}, \end{array}$$

$$\begin{array}{lll} \mathsf{SDP:} \min \, \sum_{i=1}^s c_i x_i \, \mathsf{sub.} \, \mathsf{to} \, \widehat{\boldsymbol{M}}(\boldsymbol{x}, \boldsymbol{X}) \succeq \boldsymbol{O}, \, \left(\begin{array}{cc} 1 & \boldsymbol{x}^T \\ \boldsymbol{x} & \boldsymbol{X} \end{array} \right) \succeq \boldsymbol{O} \\ \widehat{M}_{ij}(\boldsymbol{x}, \boldsymbol{X}) &= & \boldsymbol{Q}_{ij} \bullet \left(\begin{array}{cc} 1 & \boldsymbol{x}^T \\ \boldsymbol{x} & \boldsymbol{X} \end{array} \right) \, \mathsf{for} \, \mathsf{every} \, \boldsymbol{x} \in \mathbb{R}^s, \boldsymbol{X} \in \mathbb{S}^s, \end{array}$$

		SeDuMi CPU time in seconds			
		(size of Schur c. mat., max. SDP block size)			
S	n	no sp(p)	d-ct(p)	r-md(p)	d-ct, r-md
42	42	12.2	10.5	3.2	2.0
		(946, 43)	(948, 42)	(540, 43)	(542,21)
72	69	296.7	303.8	19.6	8.7
		(2488, 73)	(2493, 69)	(1152, 73)	(1157, 30)
210	186	-	-	600.7	525.9
			-	(4691, 211)	(4704, 45)

(p) — 主問題 (等式標準形) へ変換. (d) — 双対問題へ変換

$$\begin{array}{lll} \mathsf{SDP:} \min \, \sum_{i=1}^s c_i x_i \, \mathsf{sub.} \, \mathsf{to} \, \widehat{\boldsymbol{M}}(\boldsymbol{x}, \boldsymbol{X}) \succeq \boldsymbol{O}, \, \left(\begin{array}{cc} 1 & \boldsymbol{x}^T \\ \boldsymbol{x} & \boldsymbol{X} \end{array} \right) \succeq \boldsymbol{O} \\ \widehat{M}_{ij}(\boldsymbol{x}, \boldsymbol{X}) &= & \boldsymbol{Q}_{ij} \bullet \left(\begin{array}{cc} 1 & \boldsymbol{x}^T \\ \boldsymbol{x} & \boldsymbol{X} \end{array} \right) \, \mathsf{for} \, \mathsf{every} \, \boldsymbol{x} \in \mathbb{R}^s, \boldsymbol{X} \in \mathbb{S}^s, \end{array}$$

		SeDuMi CPU time in seconds			
		(size of Schur c. mat., max. SDP block size)			
S	n	d-bs(d)	d-ct (d)	r-md(p)	d-ct, r-md
42	42	0.7	0.9	3.2	2.0
		(85, 42)	(364, 42)	(540, 43)	(542,21)
72	69	3.1	4.2	19.6	8.7
		(145, 69)	(670, 69)	(1152, 73)	(1157, 30)
210	186	41.3	38.3	600.7	525.9
		(421,186)	(1955,186)	(4691, 211)	(4704, 45)
(p) — 主問題 (等式標準形) へ変換. (d) — 双対問題へ変換					

目次

- 1. 半正定值計画問題
- 2. 半正定值補完
- 3. domain-space sparsity
- 4. 半正定値補完における双対性と range-space sparsity
- 5. correlative sparsity
- 6. 計算実験結果
- 7. おわりに

Exploiting sparsity characterized by a chordal graph structure in polynomial SDPs via psd matrix completion

sparse SDP relaxation

Linear SDP with multiple smaller matrix variables and multiple smaller matrix inequalities satisfying **correlative sparsity**

sparsity of the Schur complement matrix

- Overheads in domain- and range-space conv. methods; adding equalities, real variables and/or matrix variables
- More efficient implementation? How do we combine them?