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Notation and Symbols
R

n : the n-dim Euclidean space.
x = (x1, . . . , xn) ∈ R

n : a vector variable.
fj(x) : a multivariate polynomial in x ∈ R

n (j = 0, 1, . . . ,m).

POP: min f0(x) sub.to fj(x) ≥ 0 or = 0 (j = 1, . . . ,m).

Example: n = 3

min f0(x) ≡ x3
1 − 2x1x

2
2 + x2

1x2x3 − 4x2
3

sub.to f1(x) ≡ −x2
1 + 5x2x3 + 1 ≥ 0,

f2(x) ≡ x2
1 − 3x1x2x3 + 2x3 + 2 ≥ 0,

f3(x) ≡ −x2
1 − x2

2 − x2
3 + 1 ≥ 0,

x1(x1 − 1) = 0 (0-1 integer),
x2 ≥ 0, x3 ≥ 0, x2x3 = 0 (complementarity).
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POP: min f0(x) sub.to fj(x) ≥ 0 (j = 1, . . . ,m).

[1] Lasserre, “Global optimization with polynomials and the
problems of moments”, SIAM J. on Optim. (2001).

[2] Parrilo, “Semidefinite programming relaxations for
semialgebraic problems”, Math. Prog. (2003).

primal approach ⇒ a sequence of SDP relaxations.
dual approach ⇒ a sequence of SOS relaxations.
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POP: min f0(x) sub.to fj(x) ≥ 0 (j = 1, . . . ,m).

[1] Lasserre, “Global optimization with polynomials and the
problems of moments”, SIAM J. on Optim. (2001).

[2] Parrilo, “Semidefinite programming relaxations for
semialgebraic problems”, Math. Prog. (2003).

primal approach ⇒ a sequence of SDP relaxations.
dual approach ⇒ a sequence of SOS relaxations.

Main features:
(a) Lower bounds for the optimal value.
(b) Convergence to global optimal solutions under assump.
(c) Each relaxed problem can be solved as an SDP; its size ↑

rapidly along “the sequence” as the size of POP ↑, the deg.
of poly. ↑, and/or we require higher accuracy.

(d) Expensive to solve large scale POPs in practice.
⇒ Exploiting Sparsity.
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POP: min f0(x) sub.to fj(x) ≥ 0 (j = 1, . . . ,m).
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POP: min f0(x) sub.to fj(x) ≥ 0 (j = 1, . . . ,m).

Exploiting sparsity to solve larger scale problem in practice

[3] Kobayashi-Kim-Kojima, “Correlative sparsity in primal-dual
interior-point methods for LP, SDP and SOCP”, Sep. 2006
⇒ Section 3

[4] Waki-Kim-Kojima-Muramatsu, “SOS and SDP relaxations
for POPs with Structured Sparsity", SIAM J. on Optim (2006)
⇒ Section 4

Exploiting equalities in dual (free variables in primal) SDPs

[5] Kobayashi-Nakata-Kojima, "A Conversion of an SDP
Having free variables into the Standard Form SDP", Comp.
Optim. Appl. (2007)
⇒ Section 5

⇒ Appl. to sensor network localization problems in Section 6
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POP: min f0(x) sub.to fj(x) ≥ 0 (j = 1, . . . ,m).

How do we exploit sparsity in POP?
⇓

The answer depends on which methods we use to solve POP.

POP
⇓ SDP relaxation (Lasserre 2001)
SDP ⇐ Primal-Dual IPM (Interior-Point Method)
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POP: min f0(x) sub.to fj(x) ≥ 0 (j = 1, . . . ,m).

How do we exploit sparsity in POP?
⇓

The answer depends on which methods we use to solve POP.

POP
⇓ SDP relaxation (Lasserre 2001)
SDP ⇐ Primal-Dual IPM (Interior-Point Method)

We will assume a structured sparsity (correlative sparsity):
(a) A sparse SDP relaxation ⇒ SDP of smaller size.
(b) SDP satisfies “a similar structured sparsity” under which

Primal-Dual IPM works efficiently.

Characterized in terms of a sparse Cholesky factorization
Characterized in terms of a sparse chordal graph structure
Useful to solve large-scale sparse POPs in practice
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POP min. f0(x) s.t. fj(x) ≥ 0 or = 0 (j = 1, . . . ,m).

Hf0(x) : the n × n Hessian mat. of f0(x),

Jf ∗(x) : the m × n Jacob. mat. of f ∗(x) = (f1(x), . . . , fm(x))T ,

R : the csp matrix, the n × n density pattern matrix of
I + Hf0(x) + Jf ∗(x)T Jf ∗(x) (no cancellation in ’+’).

[Jf ∗(x)T Jf ∗(x)]ij 6= 0 iff xi and xj are in a common constraint.
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I + Hf0(x) + Jf ∗(x)T Jf ∗(x) (no cancellation in ’+’).

[Jf ∗(x)T Jf ∗(x)]ij 6= 0 iff xi and xj are in a common constraint.

Example: f0(x) =
∑6

k=1 (−x2
k)

fj(x) = 1 − x2
j − 2x2

j+1 − x2
6 (j = 1, 2, . . . , 5).

the csp matrix R =





⋆ ⋆ 0 0 0 ⋆

⋆ ⋆ ⋆ 0 0 ⋆

0 ⋆ ⋆ ⋆ 0 ⋆

0 0 ⋆ ⋆ ⋆ ⋆

0 0 0 ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆
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POP min. f0(x) s.t. fj(x) ≥ 0 or = 0 (j = 1, . . . ,m).

Hf0(x) : the n × n Hessian mat. of f0(x),

Jf ∗(x) : the m × n Jacob. mat. of f ∗(x) = (f1(x), . . . , fm(x))T ,

R : the csp matrix, the n × n density pattern matrix of
I + Hf0(x) + Jf ∗(x)T Jf ∗(x) (no cancellation in ’+’).

[Jf ∗(x)T Jf ∗(x)]ij 6= 0 iff xi and xj are in a common constraint.

POP : c-sparse (correlatively sparse) ⇔ The n × n csp matrix
R = (Rij) allows a symbolic sparse Cholesky factorization (un-
der a row & col. ordering like a symmetric min. deg. ordering).
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Example: f0(x) =
∑6

k=1 (−x2
k)

fj(x) = 1 − x2
j − 2x2

j+1 − x2
6 (j = 1, 2, . . . , 5).

the csp matrix R =





⋆ ⋆ 0 0 0 ⋆

⋆ ⋆ ⋆ 0 0 ⋆

0 ⋆ ⋆ ⋆ 0 ⋆

0 0 ⋆ ⋆ ⋆ ⋆

0 0 0 ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆





tri-daig. +
bordered

⇓

No fill-in
in Cholesky
factorization

NONCONVEX PROGRAMMING: LOCAL and GLOBAL APPROACHES Theory, Algorithms and Applications, Rouen, 17-21 December, 2007 – p.12/39



Contents

1. Polynomial Optimization Problems (POPs)

2. Semidefinite Programming (SDP) relaxations of POPs

3. How do we formulate structured sparsity?

4. Sparse SDP relaxations of POPs — briefly

5. Exploiting free variables in primal-dual interior-point
methods for LP, SDP and SOCP

6. Application to sensor network localization problems

7. Concluding remarks

Sparse (SDP) relaxation = Lasserre (2001) + c-sparsity
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POP min. f0(x) s.t. fj(x) ≥ 0 or = 0 (j = 1, . . . ,m), c-sparse.

⇓

A sequence of c-sparse SDP relaxation problems depending
on the relaxation order r= 1, 2, . . .;

(a) Under a moderate assumption,
opt. sol. of SDP → opt sol. of POP as r → ∞
(Lasserre 2006).

(b) r = ⌈“the max. deg. of poly. in POP”/2⌉+0 ∼ 3 is usually
large enough to attain opt sol. of POP in practice.

(c) Such an r is unknown in theory except ∃ special cases.

(d) The size of SDP increases as r → ∞.
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Example of Sparse SDP relaxation for POP with Inequalities

POP: min
∑4

i=1(−x3
i ) s.t. −ai × x2

i − x2
4 + 1 ≥ 0 (i = 1, 2, 3).
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Example of Sparse SDP relaxation for POP with Inequalities

POP: min
∑4

i=1(−x3
i ) s.t. −ai × x2

i − x2
4 + 1 ≥ 0 (i = 1, 2, 3).

m with the relaxation order r = 2 ≥ r0 = ⌈3/2⌉ = 2

poly.SDP:
min

∑4
i=1(−x3

i )

s.t. (−ai × x2
i − x2

4 + 1)(1, xi, x4)
T (1, xi, x4) � O i = 1, 2, 3,

(1, xj, x4, x
2
j , xjx4, x

2
4)

T (1, xj, x4, x
2
j , xjx4, x

2
4) � O j = 1, 2, 3.
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min
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i )

s.t. (−ai × x2
i − x2

4 + 1)(1, xi, x4)
T (1, xi, x4) � O i = 1, 2, 3,

(1, xj, x4, x
2
j , xjx4, x

2
4)

T (1, xj, x4, x
2
j , xjx4, x

2
4) � O j = 1, 2, 3.

Represent poly.SDP as

min
∑

α∈A0
g0(α)xα s.t.

∑
α∈Aj

Gj(α)xα � O j = 1, . . . , 6,

where Aj ⊂ Z
4
+ and xα = xα1

1 xα2

2 xα3

3 xα4

4 ; x(1,2,1,0) = x1x
2
2x3.
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∑
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Gj(α)xα � O j = 1, . . . , 6,

where Aj ⊂ Z
4
+ and xα = xα1

1 xα2

2 xα3

3 xα4

4 ; x(1,2,1,0) = x1x
2
2x3.

⇓ Linearize by replacing each xα by an indep. var. yα; x0 by 1

SDP min
∑

α∈A0

g0(α)yα s.t.
∑

α∈Aj

Gj(α)yα � O j = 1, . . . , 6,

which forms an SDP relaxation of POP.
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Example of Sparse SDP relaxation for POPs with Equalities

POP: min
∑4

i=1(−x3
i ) s.t. −ai × x2

i − x2
4 + 1 = 0 i = 1, 2, 3.
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Equalities in dual SDP ⇔ Free variables in primal SDP ⇒ next
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How to handle free variables is an important issue in
primal-dual interior-point methods for SDPs.

Some methods have been developed;
free z = z+ − z−, z+, z− ≥ 0, using a second order cone.

A new method ⇒
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Primal SDP having free vector variable z

P :
min dT z + cT x D : m × k, rank D = k,

s.t. Dz + Ax = b, x � 0, A : m × n, where m ≥ k

Dual SDP having equality constraints
D : max bT y s.t. DT y = d, AT y + s = c, s � 0.
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Primal SDP having free vector variable z

P :
min dT z + cT x D : m × k, rank D = k,

s.t. Dz + Ax = b, x � 0, A : m × n, where m ≥ k

Dual SDP having equality constraints
D : max bT y s.t. DT y = d, AT y + s = c, s � 0.

Primal approach: Eliminate free variable z by pivoting ⇒

P̂ :
min ĉT x + γ̂

s.t. Â2x = b̂2, x � 0, Â2 : (m − k) × n.

Dual : Solve DT y = d in y1, y = (y1,y2) ∈ R
k+(m−k).

D̂ : max b̂
T

2 y2 + γ̂ s.t. Â
T

2 y2 + s = ĉ, s � 0.

The size gets smaller, but Â2 could get denser than A.

Numerical stability in pivoting or solving DT y = d in y1.
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Primal SDP having free vector variable z

P :
min dT z + cT x D : m × k, rank D = k,

s.t. Dz + Ax = b, x � 0, A : m × n, where m ≥ k

A stable sparse LU factorization to D for simplisity,
PDQ = LU or D = P T LUQT = LU

k, U : k × k upper triangular,

L =

(
L1

L2

)
k

m − k
, L1 : lower triangular,

P : an m × m permutation matrix, = I

Q : a k × k permutation matrix, = I
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Primal SDP having free vector variable z

P :
min dT z + cT x D : m × k, rank D = k,

s.t. Dz + Ax = b, x � 0, A : m × n, where m ≥ k

A stable sparse LU factorization to D for simplisity,
PDQ = LU or D = P T LUQT = LU

k, U : k × k upper triangular,

L =

(
L1

L2

)
k

m − k
, L1 : lower triangular,

P̂ :
min ĉT x + γ̂ Â2 : (m − k) × n, Â1 : k × n

s.t. Â2x = b̂2, x � 0, z = U−1(b̂1 − Â1x).

ĉ = c − Â
T

1 U−T d, γ̂ = b̂
T

1 U−T d,
(

Â1

Â2

)
=

(
L1 O

L2 I

)−1

A,

(
b̂1

b̂2

)
=

(
L1 O

L2 I

)−1

b,
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Primal SDP having free vector variable z

P :
min dT z + cT x D : m × k, rank D = k,

s.t. Dz + Ax = b, x � 0, A : m × n, where m ≥ k

A stable sparse LU factorization to D for simplisity,
PDQ = LU or D = P T LUQT = LU

k, U : k × k upper triangular,

L =

(
L1

L2

)
k

m − k
, L1 : lower triangular,

P̂ :
min ĉT x + γ̂ Â2 : (m − k) × n, Â1 : k × n

s.t. Â2x = b̂2, x � 0, z = U−1(b̂1 − Â1x).
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Primal SDP having free vector variable z

P :
min dT z + cT x D : m × k, rank D = k,

s.t. Dz + Ax = b, x � 0, A : m × n, where m ≥ k

A stable sparse LU factorization to D for simplisity,
PDQ = LU or D = P T LUQT = LU

k, U : k × k upper triangular,

L =

(
L1

L2

)
k

m − k
, L1 : lower triangular,

P̂ :
min ĉT x + γ̂ Â2 : (m − k) × n, Â1 : k × n

s.t. Â2x = b̂2, x � 0, z = U−1(b̂1 − Â1x).

k is larger ⇒ smaller size
LU factorization is well-conditioned ⇒ higher accuracy
LU factorization (or Â2) is sparser ⇒ more efficient
can be applied to LP and SOCP
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1. Polynomial Optimization Problems (POPs)

2. Semidefinite Programming (SDP) relaxations of POPs

3. How do we formulate structured sparsity?

4. Sparse SDP relaxations of POPs

5. Exploiting free variables in primal-dual interior-point
methods for LP, SDP and SOCP

6. Application to sensor network localization problems

7. Concluding remarks

All the methods described in Sections 3, 4 and 5 are
applied in this section.

Ongoing joint work with Kim and Waki
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Sensor network localization problem: Let s = 2 or 3.
xp ∈ R

s : unknown location of sensors (p = 1, 2, . . . ,m),

xr = ar ∈ R
s : known location of anchors (r = m + 1, . . . , n),

dpq = ‖xp − xq‖+ǫpq — given for (p, q) ∈ N ,

N = {(p, q) : ‖xp − xq‖ ≤ ρ = a given radio range}
Here ǫpq denotes a noise.

m = 5, n = 9.
1, . . . , 5: sensors
6, 7, 8, 9: anchors

1
2

3
4

5

6

7

8

9

d18

Anchors’ positions are fixed.
A distance is given for ∀ edge.
Compute locations of sensors.
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xp ∈ R
s : unknown location of sensors (p = 1, 2, . . . ,m),

xr = ar ∈ R
s : known location of anchors (r = m + 1, . . . , n),

dpq = ‖xp − xq‖+ǫpq — given for (p, q) ∈ A,

N = {(p, q) : ‖xp − xq‖ ≤ ρ = a given radio range}

Here ǫpq denotes a noise.

SDP relaxations Biswas et al. ’06, Nie ’06, ... for s = 2.
An SOCP relaxation Tseng ’07 for s = 2.
.....

⇒ Exploiting correlative sparsity in our new SDP relaxation
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Basic idea of Sparse SDP relaxation

QOP: min
∑

pq(vpq − dpq)
2 ≡ 0

s.t v2
pq = ‖xp − xq‖2 (p, q) ∈ N , xr = ar (r > m),

0 ≤ (1 − γ)dpq ≤ vpq ≤ (1 + δ)dpq (p, q) ∈ N .

Here 0 ≤ γ ≤ 1, 0 ≤ δ; γ = δ = 0 or dpq = vpq if ǫpq ≡ 0

m = 5, n = 9.
1, . . . , 5: sensors
6, 7, 8, 9: anchors

1
2

3
4

5

6

7

8

9

d18

Anchors’ positions are fixed.
A distance is given for ∀ edge.
Compute locations of sensors.
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Basic idea of Sparse SDP relaxation

QOP: min
∑

pq(vpq − dpq)
2 ≡ 0

s.t v2
pq = ‖xp − xq‖2 (p, q) ∈ N , xr = ar (r > m),

0 ≤ (1 − γ)dpq ≤ vpq ≤ (1 + δ)dpq (p, q) ∈ N .

Here 0 ≤ γ ≤ 1, 0 ≤ δ; γ = δ = 0 or dpq = vpq if ǫpq ≡ 0

m = 5, n = 9.
1, . . . , 5: sensors
6, 7, 8, 9: anchors

1
2

3
4

5

6

7

8

9

d18

Anchors’ positions are fixed.
A distance is given for ∀ edge.
Compute locations of sensors.

Remove some edges to reduce
the size.
Keep red edges in this example.
Remove black edges as long as
deg. of ∀ node ≥ δ; δ = 4 or 5.
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Basic idea of Sparse SDP relaxation

QOP: min
∑

pq(vpq − dpq)
2 ≡ 0

s.t v2
pq = ‖xp − xq‖2 (p, q) ∈ N , xr = ar (r > m),

0 ≤ (1 − γ)dpq ≤ vpq ≤ (1 + δ)dpq (p, q) ∈ N .

Here 0 ≤ γ ≤ 1, 0 ≤ δ; γ = δ = 0 or dpq = vpq if ǫpq ≡ 0

m = 5, n = 9.
1, . . . , 5: sensors
6, 7, 8, 9: anchors

1
2

3
4

5

6

7

8

9

d18

Anchors’ positions are fixed.
A distance is given for ∀ edge.
Compute locations of sensors.

Remove some edges to reduce
the size.
Keep red edges in this example.
Remove black edges as long as
deg. of ∀ node ≥ δ; δ = 4 or 5.
Use the red & green edges for N
⇒ c-sparsity in QOP
How we select the red & green
edges for N is essential.
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Preliminary numerical results

Software — SparsePOP† + SeDuMi + Nonlinear LS meth.
CPU 2.66 GHz Dual-Core Intel Xeon, memory 4 GB

† : Waki, S. Kim, M. Kojima and M. Muramatsu
"SparsePOP : a Sparse Semidefinite Programming Relaxation
of Polynomial Optimization Problems"
March 2005. Revised August 2007.

Nonlinear LS method
to refine solutions computed by SparsePOP

⇑

MATLAB function lsqnonlin
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900 sensors and 100 anchors
randomly distributed on [0, 1] × [0, 1]

radio No Noise: ǫpq = 0 Noisy: ǫpq ∼ 0.1 × N(0, 1)

range rmsd cpu rmsd cpu

0.1 3.1e-09 25.4 3.3e-04 204.9

0.2 1.1e-09 8.5 4.5e-04 173.8

rmsd =
1

m

(∑m
p=1 ‖x

p − ap‖2
)1/2

(root mean square distance)

cpu = SeDuMi cpu time in second (6⊃ conversion time)
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900 sensors and 100 anchors on [0, 1] × [0, 1]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 ǫpq = 0.1 × N(0,1)
r.range = 0.10

anchor : ♦

true : ©
computed : ∗
deviation : —

204.9 sec., rmsd =
1

m

(∑m
p=1 ‖x

p − ap‖2
)1/2

= 3.3e-04
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900 sensors and 100 anchors on [0, 1] × [0, 1]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 ǫpq = 0

r.range = 0.10

anchor : ♦

true : ©
computed : ∗
deviation : —

25.4 sec., rmsd =
1

m

(∑m
p=1 ‖x

p − ap‖2
)1/2

= 3.1e-09
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500 sensors and 3 anchors at (0.5,0.5), (0.6,0.5), (0.5,0.6)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 ǫpq = 0

r.range = 0.15

anchor : ♦

true : ©
computed : ∗
deviation : —

320.0 sec., rmsd =
1

m

(∑m
p=1 ‖x

p − ap‖2
)1/2

= 5.7e-09
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500 sensors and 3 anchors at (0.5, 0.5), (0.6, 0.5), (0.5, 0.6)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 ǫpq = 0.1 × N(0,1)
r.range = 0.15

anchor : ♦

true : ©
computed : ∗
deviation : —

1324.5 sec., rmsd =
1

m

(∑m
p=1 ‖x

p − ap‖2
)1/2

= 1.2e-02
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100 sensors and 27 anchors on 3 × 3 × 3 grid in [0, 1]3

ǫpq = 0 ǫpq ∼ 0.1 × N(0, 1)

radio range rmsd cpu rmsd cpu

0.25 2.8e-02 5.6 2.0e-02 10.3

0.30 3.4e-03 16.8 8.2e-03 19.8
0.30, all edges 3.4e-03 267.9

0.35 3.7e-09 9.9 4.5e-03 14.4

0.40 2.2e-09 4.6 4.4e-03 11.8

cpu = SeDuMi cpu time in second (6⊃ conversion time)

rmsd =
1

m

(∑m
p=1 ‖x

p − ap‖2
)1/2

(root mean square distance)

radio range = 0.25, 0.30
⇒ Not enough edges to determine all sensors’ locations
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100 sensors, 27 anchors, 3 × 3 × 3 grid

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

ǫpq = 0

r.range = 0.30
all edges

anchor : ♦

true : ©
computed : ∗
deviation : —

267.9 sec., rmsd =
1

m

(∑m
p=1 ‖x

p − ap‖2
)1/2

= 3.4e-03
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100 sensors, 27 anchors, 3 × 3 × 3 grid

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

ǫpq = 0

r.range = 0.35
all edges

anchor : ♦

true : ©
computed : ∗
deviation : —

9.9 sec., rmsd =
1

m

(∑m
p=1 ‖x

p − ap‖2
)1/2

= 3.7e-09
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100 sensors, 27 anchors, 3 × 3 × 3 grid, ǫpq = 0.1 × N(0, 1)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

ǫpq = 0.1 × N(0,1)

r.range = 0.35
all edges

anchor : ♦

true : ©
computed : ∗
deviation : —

14.4 sec., rmsd =
1

m

(∑m
p=1 ‖x

p − ap‖2
)1/2

= 4.5e-03
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1. Polynomial Optimization Problems (POPs)

2. Semidefinite Programming (SDP) relaxations of POPs

3. How do we formulate structured sparsity?

4. Sparse SDP relaxations of POPs — briefly

5. Exploiting free variables in primal-dual interior-point
methods for LP, SDP and SOCP

6. Application to sensor network localization problems

7. Concluding remarks
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Concluding remarks
Sparse SDP relaxation (Waki-Kim-Kojima-Muramatsu)
= Lasserre’s (dense) SDP relaxation + c-sparsity
— poweful in practice and

theoretical convergence (Lasserre)

Thee remain many issues to be studied.
Exploiting sparsity further to solve larger scale POPs.
Large-scale SDPs.
Numerical difficulty in solving SDP relaxations of POPs.
Practically effective SDP relaxation for Polynomial
SDPs.
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Concluding remarks
Sparse SDP relaxation (Waki-Kim-Kojima-Muramatsu)
= Lasserre’s (dense) SDP relaxation + c-sparsity
— poweful in practice and

theoretical convergence (Lasserre)

Thee remain many issues to be studied.
Exploiting sparsity further to solve larger scale POPs.
Large-scale SDPs.
Numerical difficulty in solving SDP relaxations of POPs.
Practically effective SDP relaxation for Polynomial
SDPs.

Thank you!
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