An Extension of Sums of Squares Relaxations to Polynomial Optimization Problems over Symmetric Cones
M. Kojima, Tokyo Institute of Technology
M. Muramatsu, The University of Electro-Communications

Semidefinite Programming and Its Application
Institute for Mathematical Sciences
National University of Singapore
January 9-13, 2006

- This talk is based on
[A] Kojima \& Muramatsu, " An extension of SOS relaxations to POPs over symmetric cones ", Tokyo Inst. Tech., B-406, April 2004.
[B] Kojima \& Muramatsu, "A note on sparse SOS relaxations for POPs over symmetric cones ", Tokyo Inst. Tech., B-421, January 2006.
- Extensions to poly. SDPs \subset POPs over symmetric cones
[F] Henrion \& Lasserre (2004), [G] Hol \& Scherer (2004), [H] Kojima (2003)
- SDP and SOS relaxations of POPs
[C] Lasserre, "Global optimization with polynomials and the problems of moments", SIAM J. Optim., 11 (2001) 796-817.
[D] Parrilo, "Semidefinite programming relaxations for semialgebraic problems", Math. Program., 96 (2003) 293-320.
- Convergence proof of sparse SDP and SOS relaxations of POPs
[E] Lasserre, "Convergent Semidefinite Relaxation in Polynomial Optimization with Sparsity", LAAS-CVRS (2005).

Contents

1. Polynomial optimization problems over symmetric cones
2. Preliminaries

2-1. Symmetric cones and Euclidean Jordan algebra
2-2. \mathbb{E}-valued polynomials
2-3. SOS (sum of squares) of \mathbb{E}-valued polynomials
3. SOS (sum of squares) relaxations
4. Convergence
5. Sparse SOS relaxation
6. Concluding remarks

Contents

1. Polynomial optimization problems over symmetric cones
2. Preliminaries

2-1. Symmetric cones and Euclidean Jordan algebra
2-2. \mathbb{E}-valued polynomials
2-3. SOS (sum of squares) of \mathbb{E}-valued polynomials
3. SOS (sum of squares) relaxations
4. Convergence
5. Sparse SOS relaxation
6. Concluding remarks

$$
\text { POP: } \min a(x) \text { sub.to } x \in F \equiv\left\{b(x) \in \mathbb{E}_{+}\right\}
$$

$a \in \mathbb{R}[x]$ (the set of real-valued polynomials in $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$), $b \in \mathbb{E}[x]$ (the set of \mathbb{E}-valued polynomials in $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$),
\mathbb{E} : a finite dimensional real vector space,
\mathbb{E}_{+}: a symmetric cone embedded in \mathbb{E}.
Example 1: A polynomial second-order programming problem

$$
\begin{aligned}
\mathbb{E} & =\mathbb{R}^{1+m}, \\
\mathbb{E}_{+} & \left.=\mathbb{Q}(\boldsymbol{m}) \text { (the second-order cone in } \mathbb{R}^{1+m}\right) \\
& =\left\{\left(\boldsymbol{y}_{0}, \boldsymbol{y}_{1}\right) \in \mathbb{R}^{1+m}: \boldsymbol{y}_{0} \geq\left\|\boldsymbol{y}_{1}\right\|\right\}
\end{aligned}
$$

Let $n=2, x=\left(x_{1}, x_{2}\right), \mathbb{E}=\mathbb{R}^{1+2}, \mathbb{E}_{+}=\mathbb{Q}(2)$.
POP: $\min -x_{1}^{3}+2 x_{1} x_{2}^{2}$
sub.to

$$
\begin{aligned}
& \left(x_{1}^{2}-x_{2}, 2 x_{1}^{2} x_{2}-x_{2}, x_{1}+x_{2}\right) \in \mathbb{Q}(2) \\
& \left(\text { or } x_{1}^{2}-x_{2} \geq\left\|\left(2 x_{1}^{2} x_{2}-x_{2}, x_{1}+x_{2}\right)\right\|\right)
\end{aligned}
$$

$$
\text { POP: } \min a(x) \text { sub.to } x \in F \equiv\left\{b(x) \in \mathbb{E}_{+}\right\}
$$

$a \in \mathbb{R}[x]$ (the set of real-valued polynomials in $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$), $b \in \mathbb{E}[x]$ (the set of \mathbb{E}-valued polynomials in $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$),
\mathbb{E} : a finite dimensional real vector space,
\mathbb{E}_{+}: a symmetric cone embedded in \mathbb{E}.
Example 2: A general POP over a symmetric cone

$$
\begin{aligned}
\mathbb{E} & =\mathbb{R}^{k} \times \mathbb{S}^{\ell} \times \mathbb{R}^{1+m} \\
\mathbb{E}_{+} & =\mathbb{R}_{+}^{k} \times \mathbb{S}_{+}^{\ell} \times \mathbb{Q}(m)
\end{aligned}
$$

Let $n=2, x=\left(x_{1}, x_{2}\right), \mathbb{E}=\mathbb{R}^{3} \times \mathbb{S}^{2} \times \mathbb{R}^{1+2}, \mathbb{E}_{+}=\mathbb{R}_{+}^{3} \times \mathbb{S}^{2}+\times \mathbb{Q}(2)$.
POP: min $-x_{1}^{3}+2 x_{1} x_{2}^{2}$

$$
\begin{array}{ll}
\text { sub.to } & \left(x_{2}+0.5,1-x_{1}^{2}-x_{2}^{2},-x_{1}^{3}+x_{2}\right) \in \mathbb{R}_{+}^{3} \\
& \left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right) x_{1} x_{2}^{2}+\left(\begin{array}{cc}
-1 & 2 \\
2 & 3
\end{array}\right) x_{1}^{2} x_{2}+\left(\begin{array}{cc}
3 & 1 \\
1 & 1
\end{array}\right) \in \mathbb{S}_{+}^{2} \\
& \left(x_{1}^{2}-x_{2}, 2 x_{1}^{2} x_{2}-x_{2}, x_{1}+x_{2}\right) \in \mathbb{Q}(2) \\
& \left(\text { or } x_{1}^{2}-x_{2} \geq\left\|\left(2 x_{1}^{2} x_{2}-x_{2}, x_{1}+x_{2}\right)\right\|\right)
\end{array}
$$

$$
\text { POP: } \min a(x) \text { sub.to } x \in F \equiv\left\{b(x) \in \mathbb{E}_{+}\right\}
$$

$a \in \mathbb{R}[x]$ (the set of real-valued polynomials in $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$),
$b \in \mathbb{E}[x]$ (the set of \mathbb{E}-valued polynomials in $\left.x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}\right)$,
\mathbb{E} : a finite dimensional real vector space,
\mathbb{E}_{+}: a symmetric cone embedded in \mathbb{E}.
Importance of polynomial SOCP inequalities: Let
$f(x)$: a real valud polynomial with $\operatorname{deg} d_{f}$ in $x=\left(x_{1}, \ldots, x_{n}\right)$
$h(x):$ a \mathbb{R}^{m}-valud polynomial with $\operatorname{deg} d_{h}$ in $x=\left(x_{1}, \ldots, x_{n}\right)$
normal poly. inequalities poly. SOCP inequalities
$\left.\begin{array}{r}f(x)^{2}-h(x)^{T} h(x) \geq 0 \\ f(x) \geq 0\end{array}\right\} \Leftrightarrow f(x) \geq\|h(x)\| \Leftrightarrow\binom{f(x)}{h(x)} \in \mathbb{Q}(m)$
degree $2 \max \left\{d_{f}, d_{h}\right\}$

$$
\text { degree } \max \left\{d_{f}, d_{h}\right\}
$$

$$
\begin{array}{lc}
f(x)-h(x)^{T} h(x) \geq 0 & \Leftrightarrow \\
\text { degree } \max \left\{d_{f}, 2 d_{h}\right\} & \left(\begin{array}{c}
1+f(x) \\
1-f(x) \\
h(x)
\end{array}\right) \in \mathbb{Q}(1+m) \\
\hline
\end{array}
$$

\Rightarrow Applications to nonlinear least square problems

Contents

1. Polynomial optimization problems over symmetric cones
2. Preliminaries

2-1. Symmetric cones and Euclidean Jordan algebra
2-2. \mathbb{E}-valued polynomials
2-3. SOS (sum of squares) of \mathbb{E}-valued polynomials
3. SOS (sum of squares) relaxations
4. Convergence
5. Sparse SOS relaxation
6. Concluding remarks

Contents

1. Polynomial optimization problems over symmetric cones
2. Preliminaries

2-1. Symmetric cones and Euclidean Jordan algebra
2-2. \mathbb{E}-valued polynomials
2-3. SOS (sum of squares) of \mathbb{E}-valued polynomials
3. SOS (sum of squares) relaxations
4. Convergence
5. Sparse SOS relaxation
6. Concluding remarks

Definition. $K \subset \mathbb{E}$ is a symmetric cone if

- $K^{*} \equiv\{u \in \mathbb{E}:\langle u, v\rangle \geq 0(\forall v \in K)\}=K$ (self-dual).
- For every pair of u, v of $\operatorname{int}(K)$, there is a linear transformation $T: \mathbb{E} \rightarrow \mathbb{E}$ such that $T(K)=K$ and $T(u)=v$ (homogeneous).

Symmetric cones are classified into the following cones
(a) the second order cone.

$$
\begin{array}{r}
\mathbb{Q}(m) \equiv\left\{u=\left(u_{0}, u_{1}\right): u_{0} \in \mathbb{R}, u_{1} \in \mathbb{R}^{m}, u_{0} \geq\left\|u_{1}\right\|\right\} \\
\text { where }\left\|u_{1}\right\|=\sqrt{\boldsymbol{u}_{1}^{T} u_{1}}
\end{array}
$$

(b) the set \mathbb{S}_{+}^{n} of $n \times n$ real, symmetric positive semidefinite matrices (including the set of nonnegative numbers when $n=1$).
(c) the set of $n \times n$ Hermitian psd matrices with complex entries.
(d) the set of $\boldsymbol{n} \times \boldsymbol{n}$ Hermitian psd matrices with quarternion entries.
(e) the set of 3×3 Hermitian psd matrices with octonion entries.
(f) any cone $K_{1} \times K_{2}$ where K_{1} and K_{2} are themselves symmetric cones.

Definition. $K \subset \mathbb{E}$ is a symmetric cone if

- $K^{*} \equiv\{u \in \mathbb{E}:\langle u, v\rangle \geq 0(\forall v \in K)\}=K$ (self-dual).
- For every pair of u, v of $\operatorname{int}(\boldsymbol{K})$, there is a linear transformation $T: \mathbb{E} \rightarrow \mathbb{E}$ such that $T(K)=K$ and $T(u)=v$ (homogeneous).

Theorem. A cone K is symmetric iff it is the cone of squares of some Euclidean Jordan algebra \circ in \mathbb{E} (Jordan algebra characterization of symmetric cones); $K=\{u \circ u: u \in \mathbb{E}\}$.
Definition. (\mathbb{E}, \circ) is a Euclidean Jordan algebra if $(\boldsymbol{u}, \boldsymbol{v}) \in \mathbb{E} \times \mathbb{E} \rightarrow \boldsymbol{u} \circ \boldsymbol{v} \in$ \mathbb{E} is a bilinear map satisfying

$$
\text { (i) } u \circ v=v \circ u \text {, (ii) } u \circ\left(u^{2} \circ v\right)=u^{2} \circ(u \circ v) \text { where } u^{2}=u \circ u
$$

$$
\text { (iii) }\langle u \circ v, w\rangle=\langle u, v \circ w\rangle \text { for } \forall u, v, w \in \mathbb{E} \text {. }
$$

(a) the second order cone $\mathbb{Q}(m) \equiv\left\{u=\left(u_{0}, u_{1}\right) \in \mathbb{R}^{1+m}: u_{0} \geq\left\|u_{1}\right\|\right\}$: $u \circ v \equiv\left(u_{0} v_{0}+u_{1}^{T} v_{1}, u_{0} v_{1}+v_{0} u_{1}\right) \Rightarrow \mathbb{Q}(m)=\left\{u \circ u: u \in \mathbb{R}^{1+m}\right\}$.
(b) the set \mathbb{S}_{+}^{ℓ} of $\ell \times \ell$ real, symmetric positive semidefinite matrices (including the set of positive numbers as a special case when $n=1$).

$$
X \circ Y \equiv(X Y+Y X) / 2 \Rightarrow \mathbb{S}_{+}^{\ell}=\left\{X \circ X=X^{2}: X \in \mathbb{S}^{n}\right\}
$$

(b)' the nonnegative orthant $\mathbb{R}_{+}^{k}=\prod_{i=1}^{k} \mathbb{S}_{+}^{1}: u \circ v=\left(u_{1} v_{1}, \ldots, u_{k} v_{k}\right)$

$$
\Rightarrow \mathbb{R}_{+}^{k}=\left\{u \circ u=\left(u_{1}^{2}, \ldots, u_{k}^{2}\right): u \in \mathbb{R}^{k}\right\}
$$

Contents

1. Polynomial optimization problems over symmetric cones
2. Preliminaries

2-1. Symmetric cones and Euclidean Jordan algebra
2 -2. \mathbb{E}-valued polynomials
2-3. SOS (sum of squares) of \mathbb{E}-valued polynomials
3. SOS (sum of squares) relaxations
4. Convergence
5. Sparse SOS relaxation
6. Concluding remarks
$\mathbb{E}[x]:$ the set of \mathbb{E}-valued polynomials; $\varphi \in \mathbb{E}[x] \Leftrightarrow \varphi(x)=\sum_{\alpha \in \mathcal{F}} f_{\alpha} x^{\alpha}$.
(\mathbb{E}, \circ) : a Euclidean Jordan algebra
\mathcal{F} : a nonempty finite set of nonnegative integer vectors in \mathbb{R}^{n}
$f_{\alpha} \in \mathbb{E}(\alpha \in \mathcal{F})$
$x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$, for example,

$$
\text { if } n=3 \text { and } \alpha=(2,0,4) \text { then } x^{(2,0,4)}=x_{1}^{2} x_{2}^{0} x_{3}^{4} .
$$

$$
\begin{aligned}
& \operatorname{deg}(\varphi)=\max \left\{\sum_{i=1}^{n} \alpha_{i}: \alpha \in \mathcal{F}\right\}, \\
& \mathbb{E}[x]_{r}=\{\varphi \in \mathbb{E}[x]: \operatorname{deg}(\varphi) \leq r\}
\end{aligned}
$$

Specifically,
$\mathbb{R}[x]\left(\mathbb{R}[x]_{r}\right)$: the set of \mathbb{R}-valued poly. (with deg. $\leq r$)
Extension of \circ to the \mathbb{E}-valued polynomials. Let
$\varphi \in \mathbb{E}[x] ; \varphi(x)=\sum_{\alpha \in \mathcal{F}} f_{\alpha} x^{\alpha}$ and $\psi \in \mathbb{E}[x] ; \psi(x)=\sum_{\beta \in \mathcal{G}} g_{\beta} x^{\beta}$,
then

$$
\begin{aligned}
\varphi \circ \psi \in \mathbb{E}[x] ;(\varphi \circ \psi)(x) & =\left(\sum_{\alpha \in \mathcal{F}} f_{\alpha} x^{\alpha}\right) \circ\left(\sum_{\beta \in \mathcal{G}} g_{\beta} x^{\beta}\right) \\
& =\sum_{\alpha \in \mathcal{F}} \sum_{\beta \in \mathcal{G}}\left(f_{\alpha} \circ g_{\beta}\right) x^{\alpha+\beta}
\end{aligned}
$$

Contents

1. Polynomial optimization problems over symmetric cones
2. Preliminaries

2-1. Symmetric cones and Euclidean Jordan algebra
2-2. \mathbb{E}-valued polynomials
2 -3. SOS (sum of squares) of \mathbb{E}-valued polynomials
3. SOS (sum of squares) relaxations
4. Convergence
5. Sparse SOS relaxation
6. Concluding remarks

For \forall linear subspace $\mathbb{D}[x]$ of $\mathbb{E}[x]$, let

$$
\mathbb{D}[x]^{2}=\left\{\sum_{i=1}^{q} \varphi_{i} \circ \varphi_{i}: \exists q, \varphi_{i} \in \mathcal{D}\right\}(\text { SOS poly. of } \mathbb{D}[x]) .
$$

Thus we will use $\mathbb{E}[x]^{2}, \mathbb{E}[x]_{r}^{2}, \mathbb{R}[x]_{r}^{2}$. Here
$\mathbb{E}[x]\left(\mathbb{E}[x]_{r}\right):$ the set of $\mathbb{E}[x]$-valued poly. (with deg. $\leq r$)
$\mathbb{R}[x]\left(\mathbb{R}[x]_{r}\right):$ the set of \mathbb{R}-valued poly. (with deg. $\left.\leq r\right)$

Contents

1. Polynomial optimization problems over symmetric cones
2. Preliminaries

2-1. Symmetric cones and Euclidean Jordan algebra
2-2. \mathbb{E}-valued polynomials
2-3. SOS (sum of squares) of \mathbb{E}-valued polynomials
3. SOS (sum of suqares) relaxations
4. Convergence
5. Sparse SOS relaxation
6. Concluding remarks

POP: $\min a(x)$ sub.to $b(x) \in \mathbb{E}_{+}$

$a \in \mathbb{R}[x]$ (the set of real-valued polynomials in $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$),
$b \in \mathbb{E}[x]$ (the set of \mathbb{E}-valued polynomials in $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$),
(\mathbb{E}, \circ) : a Euclidean Jordan algebra,
\mathbb{E}_{+}: a symmetric cone embedded in \mathbb{E},
$\omega_{a}=\lceil\operatorname{deg}(a) / 2\rceil, \omega_{b}=\lceil\operatorname{deg}(b) / 2\rceil, \omega_{\max }=\max \left\{\omega_{a}, \omega_{b}\right\}$.
G. Lagrangian funct.: $L(x, \varphi)=a(x)-\langle\varphi(x), b(x)\rangle\left(\forall x \in \mathbb{R}^{n}, \varphi \in \mathbb{E}[x]^{2}\right)$.

$$
\text { G.Lagrangian Dual: } \max _{\varphi \in \mathbb{E}[x]^{2}} \min _{x \in \mathbb{R}^{n}} L(x, \varphi)
$$

॥

G.L. Dual: $\max \zeta$ sub.to $L(x, \varphi)-\zeta \geq 0\left(\forall x \in \mathbb{R}^{n}\right)$ and $\varphi \in \mathbb{E}[x]^{2}$. relaxation $\Downarrow \omega \geq \omega_{\max }$
SOS relaxation: $\max \zeta$ sub.to $L(x, \varphi)-\zeta \in \mathbb{R}[x]_{\omega}^{2}$ and $\varphi \in \mathbb{E}[x]_{\omega-\omega_{b}}^{2}$.

- An Extension of Lasserre's relaxation 2001.
- We can transform SOS relaxation to an SDP.
- We can apply an SDP' relaxation directly to POP; SDP and SDP' are dual to each other.

Contents

1. Polynomial optimization problems over symmetric cones
2. Preliminaries

2-1. Symmetric cones and Euclidean Jordan algebra
2-2. \mathbb{E}-valued polynomials
2-3. SOS (sum of squares) of \mathbb{E}-valued polynomials
3. SOS (sum of squares) relaxations
4. Convergence
5. Sparse SOS relaxation
6. Concluding remarks

Let $d=\operatorname{deg}(b)$. Let $\epsilon>0$. We can prove that
\exists SOS relaxation of POP; opt.val POP \geq opt.val SOS \geq opt.val POP $-\epsilon$
The basic idea is:
(a) Reduce POP to

$$
\mathrm{P}_{\omega}: \min \quad a_{\omega}(x) \equiv a(x)+\psi_{\omega}(x) \text { sub.to } x \in U(\omega=1,2, \ldots)
$$

Here $\psi_{\omega} \in \mathbb{R}[x]_{d+2 \omega d}$ serves as a penalty function in U such that

$$
\begin{aligned}
& x \in U \text { and } b(x) \in \mathbb{E}_{+} \Rightarrow 0 \geq \psi_{\omega}(x) \rightarrow 0 \text { as } \omega \rightarrow \infty, \\
& x \in U \text { and } b(x) \notin \mathbb{E}_{+} \Rightarrow \psi_{\omega}(x) \rightarrow \infty \text { as } \omega \rightarrow \infty
\end{aligned}
$$

More specifically,

$$
\begin{aligned}
& \psi_{\omega}(x)=-\left\langle\boldsymbol{b}(\boldsymbol{x}), \varphi_{\omega}(x)\right\rangle, \varphi_{\omega}(x)=\left(e-b(x) / \lambda_{\max }\right)^{2 \omega} \in \mathbb{E}[x]_{\omega}^{2}, \\
& e \text { denotes the identity element of } \mathbb{E}, \\
& \lambda_{\max } \text { denotes the max. eigenvalue of } \boldsymbol{b}(\boldsymbol{x}) \text { over } \boldsymbol{x} \in \boldsymbol{U} .
\end{aligned}
$$

Let $d=\operatorname{deg}(b)$. Let $\epsilon>0$. We can prove that
\exists SOS relaxation of POP; opt.val POP \geq opt.val SOS \geq opt.val POP- $-\epsilon$

The basic idea is:
(a) Reduce POP to

$$
\mathrm{P}_{\omega}: \min \quad a_{\omega}(x) \equiv a(x)+\psi_{\omega}(x) \text { sub.to } x \in U(\omega=1,2, \ldots)
$$

$\exists \omega$; opt.val POP \geq opt.val $\mathrm{P}_{\omega} \geq$ opt.val POP $-\epsilon / 2$
(b) Apply the convergence theorem by Lasserre ' 01 to P_{ω}.
\exists SOS relaxation of P_{ω}; opt.val $\mathrm{P}_{\omega} \geq$ opt.val SOS \geq opt.val $\mathrm{P}_{\omega}-\epsilon / 2$
\Downarrow
opt.val.of $\mathrm{POP} \geq$ opt.val.of $\mathrm{SOS} \geq$ opt.val.of POP $-\epsilon$

Contents

1. Polynomial optimization problems over symmetric cones
2. Preliminaries

2-1. Symmetric cones and Euclidean Jordan algebra
2-2. \mathbb{E}-valued polynomials
2-3. SOS (sum of squares) of \mathbb{E}-valued polynomials
3. SOS (sum of squares) relaxations
4. Convergence
5. Sparse SOS relaxation
6. Concluding remarks

$$
\begin{aligned}
\text { POP: } \min & \sum_{p=1}^{q} a_{p}\left(\boldsymbol{x}_{N_{p}}\right) \\
\text { sub.to } & b_{p}\left(x_{N_{p}}\right) \in \mathbb{E}_{p+}, \\
& x_{N_{p}} \in U_{p} \equiv\left\{\boldsymbol{x}_{N_{p}}:\left\|x_{N_{p}}\right\| \leq M_{p}\right\}(p=1, \ldots, \boldsymbol{q})
\end{aligned}
$$

Here $N_{p} \subset N \equiv\{1, \ldots, n\}$ and $x_{N_{p}}=\left(x_{i}: i \in N_{p}\right)$;

$$
\text { if } N_{p} \equiv\{1,4\} \subset N \equiv\{1,2,3,4\} \text { then } x_{N_{p}}=\left(x_{1}, x_{4}\right)
$$

- Each a_{p} \& each b_{p} involve only variables $x_{i}\left(i \in N_{p}\right)$ among $x_{i}(i \in N)$.
- Ball constraint $x_{N_{p}} \in U_{p}(p=1, \ldots, q)$.
- We can extend the sparse relaxation (Waki et al. 04) to POP.
- We can prove the convergence of the extension under Assumption using the same argument as in the dense case and Lasserre 05.

Assumption (Lasserre 05, Waki et.al 04 as a chordal graph structure). $N_{p}(p=1, \ldots, q)$ are the "maximal" cliques of a chordal graph;

$$
\forall p \in\{1, \ldots, q-1\} \exists r \geq p+1 ; N_{p} \cap\left(\cup_{k=p+1}^{q} N_{k}\right) \subset N_{r}
$$

(the running intersection property of the max.cliques of a chordal graph)

[Lasserre 05] "Convergent semidefinite relaxation in polinomial optimization with sparseity", November 2004.
Proof is given in: M.Kojima and Muramatsu, "A note on sparse SOS relaxations for POPs over symmetric cones", B-421, January 2006.

A sparse numerical example
$\min \sum_{i=1}^{n} a_{i} x_{i}$

$$
\begin{array}{ll}
\text { s.t. } & \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
b_{j} & c_{j} \\
c_{j} & d_{j}
\end{array}\right) x_{j}+\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) x_{j} x_{j+1}+\left(\begin{array}{cc}
-2 & 1 \\
1 & -1
\end{array}\right) x_{j+1} \succeq O \\
& \left(0.3\left(x_{k}^{3}+x_{n}\right)+1\right)-\left\|\left(x_{k}+\beta_{i}, x_{n}\right)\right\| \geq 0(j, k=1, \ldots, n-1)
\end{array}
$$

$$
1-x_{p}^{2}-x_{p+1}^{2}-x_{n}^{2} \geq 0(p=1, \ldots, n-2)
$$

Here $a_{i}, b_{j}, d_{j} \in(-1,0), c_{j}, \beta_{j} \in(0,1)$ are random numbers.

$$
N_{p} \equiv\{p, p+1, n\} \subset N \equiv\{1,2, \ldots, n\}(p=1,2, \ldots, n-2)
$$

n	cpu			SDP size	\# of sec.							
ω	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	size of A, SeDuMi	nonzeros		$	$	600	25.7	2	$4.0 \mathrm{e}-12$	0.0
---:	:---:	:---:	:---:	:---:								
800	34.8	2	$3.2 \mathrm{e}-12$	0.0								
1000	44.5	2	$1.6 \mathrm{e}-12$	0.0								
$19,974 \times 150,022$	235,612											

$$
\epsilon_{\mathrm{obj}}=\frac{\mid \text { the lower bound for opt. value }- \text { the approx. opt. value } \mid}{\max \{1, \mid \text { the lower bound for opt. value } \mid\}}
$$

$\epsilon_{\text {feas }}=-\min \{$ the left side (min.eigen) values over all constraints, 0$\}$.

- \# of nonzero elements in A increases linearly as \boldsymbol{n} increases.

A sparse numerical example
$\min \sum_{i=1}^{n} a_{i} x_{i}$
s.t. $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+\left(\begin{array}{cc}b_{j} & c_{j} \\ c_{j} & d_{j}\end{array}\right) x_{j}+\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right) x_{j} x_{j+1}+\left(\begin{array}{cc}-2 & 1 \\ 1 & -1\end{array}\right) x_{j+1} \succeq O$,

$$
\begin{aligned}
& \left(0.3\left(x_{k}^{3}+x_{n}\right)+1\right)-\left\|\left(x_{k}+\beta_{i}, x_{n}\right)\right\| \geq 0(j, k=1, \ldots, n-1) \\
& \left(\left(0.3\left(x_{k}^{3}+x_{n}\right)+1\right)^{2}-\left(x_{k}+\beta_{i}\right)^{2}-x_{n}^{2} \geq 0\right)(\text { degree } 6) \\
& 1-x_{p}^{2}-x_{p+1}^{2}-x_{n}^{2} \geq 0(p=1, \ldots, n-2)
\end{aligned}
$$

Here $a_{i}, b_{j}, d_{j} \in(-1,0), c_{j}, \beta_{j} \in(0,1)$ are random numbers.

$$
N_{p} \equiv\{p, p+1, n\} \subset N \equiv\{1,2, \ldots, n\}(p=1,2, \ldots, n-2)
$$

n	$\begin{aligned} & \text { cpu } \\ & \text { sec. } \end{aligned}$	ω	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	$\begin{gathered} \text { SDP size } \\ \text { size of A, SeDuMi } \end{gathered}$	\# of nonzeros
600	25.7	2	4.0e-12	0.0	$11,974 \times 113,022$	2
800	34.8	2	$3.2 \mathrm{e}-12$	0.0	$15,974 \times 150,822$	314,412
1000	44.5	2	1.6e-12	0.0	$19,974 \times 188,622$	393,212
600	137.7	3	5.6e-12	0.0	$33,515 \times 539,199$	1,318,200
800	218.2	3	2.0e-12	0.0	$44,715 \times 719,399$	1,758,600
1000	229.2	3	$4.8 \mathrm{e}-12$	0.0	$55,915 \times 899,198$	2,197,596

Contents

1. Polynomial optimization problems over symmetric cones
2. Preliminaries

2-1. Symmetric cones and Euclidean Jordan algebra
2-2. \mathbb{E}-valued polynomials
2-3. SOS (sum of squares) of \mathbb{E}-valued polynomials
3. SOS (sum of squares) relaxations
4. Convergence
5. Sparse SOS relaxation
6. Concluding remarks

Concluding remarks
(i) Applications to polynomial least square problems: Let $\boldsymbol{f}_{i} \in \mathbb{R}[\boldsymbol{x}]$ $(i=1, \ldots, m), d=\max _{i} \operatorname{deg}\left(f_{i}\right)$ and $f=\left(f_{1}, \ldots, f_{m}\right)^{T}$.

$$
\min \sum_{i=1}^{m} f_{i}(x)^{2} \text { or } \min \|f(x)\| .
$$

Three different formulations for SOS relaxations.
(a) A normal POP \Rightarrow degree $=2 d$: $\min \sum_{i=1}^{m} f_{i}(x)^{2}$.
(b) A polynomial $\mathrm{SOCP} \Rightarrow$ degree $=d: \min \|f(x)\| \Leftrightarrow$

$$
\min t \text { sub.to }\left(t, f_{1}(x), \ldots, f_{m}(x)\right) \in \mathbb{Q}(m)
$$

(c) A polynomial SDP \Rightarrow degree $=d: \min \|f(x)\|^{2} \Leftrightarrow$

$$
\min t \text { sub.to }\left(\begin{array}{cc}
I & f(x) \\
f(x)^{T} & t
\end{array}\right) \succeq O
$$

- (b) and (c) are better than (a) because of the difference in degrees.
- (b) is better than (c)?
- Given the max degree of SOS multiplier polynomials, the size of SOS relaxations of (b) is smaller than that of (c).
- effectiveness of SOS relaxation.
- SOS and SDP relaxations of (b) and (c) have structured sparsity.

Concluding remarks - continued
(ii) POPs over symmetric cone covers wide range of nonconvex optimization problems
(iii) SOS relaxations proposed for POPs over symmetric cones covers are very powerful in theory - global converence
(iv) Computationally very expensive - large scale SDPs
(v) Exploiting sparsity is necessary!

