Sparsity in Sum of Squares and SemiDefinite Programmming Relaxations of Polynomial Optimization Problems

Workshop on Polyhedral Computation Montreal, October 17-20, 2006

Masakazu Kojima Tokyo Institute of Technology

Contents

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. Sparse SOS relaxation of unconstrained POPs
4. Sparse SOS relaxation of constrained POPs --- briefly
5. Numerical results
6. Concluding remarks

Contents

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. Sparse SOS relaxation of unconstrained POPs
4. Sparse SOS relaxation of constrained POPs --- briefly
5. Numerical results
6. Concluding remarks

$$
\text { POP: } \min f_{0}(x) \text { sub.to } f_{j}(x) \geq 0(j=1, \ldots, m)
$$

\mathbb{R}^{n} : the n-dim Euclidean space.
$x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$: a vector variable.
$f_{j}(x)$: a multivariate polynomial in $x \in \mathbb{R}^{n}(j=0,1, \ldots, m)$.
Example: $n=3$

$$
\begin{aligned}
\min & f_{0}(x) \equiv x_{1}^{3}-2 x_{1} x_{2}^{2}+x_{1}^{2} x_{2} x_{3}-4 x_{3}^{2} \\
\text { sub.to } & f_{1}(x) \equiv-x_{1}^{2}+5 x_{2} x_{3}+1 \geq 0 \\
& f_{2}(x) \equiv x_{1}^{2}-3 x_{1} x_{2} x_{3}+2 x_{3}+2 \geq 0 \\
& f_{3}(x) \equiv-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}+1 \geq 0 \\
& x_{1}\left(x_{1}-1\right)=0(0-1 \text { integer }) \\
& x_{2} \geq 0, x_{3} \geq 0, x_{2} x_{3}=0 \text { (complementarity) }
\end{aligned}
$$

$$
\text { POP: } \min f_{0}(x) \text { sub.to } f_{j}(x) \geq 0(j=1, \ldots, m)
$$

[1] J.B.Lasserre, "Global optimization with polynomials and the problems of moments", SIAM J. on Optim. (2001).
[2] P.A.Parrilo, "Semidefinite programming relaxations for semialgebraic problems", Math. Prog. (2003).
[3] D.Henrion and J.B.Lasserre, GloptiPoly.
[4] S.Prajna, A.Parachristodoulou and P.A.Parrilo, SOSTOOLS.

- $[1] \Longrightarrow$ SDP relaxation - primal approach.
$\bullet[2] \Longrightarrow$ SOS relaxation \Longrightarrow SDP - dual approach.
(a) Lower bounds for the optimal value.
(b) Convergence to global optimal solutions in theory.
(c) Expensive to solve large scale POPs in practice.
\Downarrow
Exploiting sparsity and parallel computing

$$
\text { POP: } \min f_{0}(x) \text { sub.to } f_{j}(x) \geq 0(j=1, \ldots, m)
$$

[1] J.B.Lasserre, "Global optimization with polynomials and the problems of moments", SIAM J. on Optim. (2001).
[2] P.A.Parrilo, "Semidefinite programming relaxations for semialgebraic problems", Math. Prog. (2003).
[3] D.Henrion and J.B.Lasserre, GloptiPoly.
[4] S.Prajna, A.Parachristodoulou and P.A.Parrilo, SOSTOOLS.
Exploiting sparsity to solve larger scale problem in practice
$\odot[5]$ M. Kojima, S. Kim and H. Waki, "Sparsity in SOS Polynomials", Math. Prog. (2005) \Rightarrow Section 2.
$\odot[6]$ H. Waki, S. Kim, M. Kojima and M. Muramatsu, "SOS and SDP Relaxations for POPs with Structured Sparsity", SIAM J. on Optim $\mathbf{(2 0 0 6)} \Rightarrow$ Sections 3 and 4.
[7] H. Waki, S. Kim, M. Kojima and M. Muramatsu, SparsePOP (2005).

POP: $\min f_{0}(x)$ sub.to $f_{j}(x) \geq 0(j=1, \ldots, m)$.
[1] J.B.Lasserre, "Global optimization with polynomials and the problems of moments", SIAM J. on Optim. (2001).
[2] P.A.Parrilo, "Semidefinite programming relaxations for semialgebraic problems", Math. Prog. (2003).
[3] D.Henrion and J.B.Lasserre, GloptiPoly.
[4] S.Prajna, A.Parachristodoulou and P.A.Parrilo, SOSTOOLS.
Extension to polynomial SDP and SOCP
[8] M. Kojima, "SOS relaxations of polynomial SDPs" (2003).
[9] C.W. Hol and C.W. Hol, "SOS relaxations of polynomial SDPs" (2004).
[10] D. Henrion and J. B. Lasserre, "Convergent relaxations of polynomial matrix inequalities and static output feedback", IEEE Transactions on Automatic Conrol (2006).
[11] M. Kojima and M. Muramatsu, "An Extension of SOS Relaxations to POPs over Symmetric Cones ", to applear in Math. Prog.

Contents

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. Sparse SOS relaxation of unconstrained POPs
4. Sparse SOS relaxation of constrained POPs --- briefly
5. Numerical results
6. Concluding remarks

Notation and symbols
\mathbb{R}^{n} : the n-dim Euclidean space.
\mathbb{Z}_{+}^{n} : the set of nonnegative n-dim integer vectors.
$x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$: a variable vector.

$$
f(x) \text { : a polynomial in } x
$$

$$
\Uparrow
$$

\exists a finite $\mathcal{F} \subset \mathbb{Z}_{+}^{n}, 0 \neq c(\alpha) \in \mathbb{R}(\alpha \in \mathcal{F}) ;$

$$
f(x)=\sum_{\alpha \in \mathcal{F}} c(\alpha) x^{\alpha}
$$

where

$$
x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}
$$

for $\forall x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $\forall \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{+}^{n}$.
Example: $f\left(x_{1}, x_{2}\right)=-4 x_{1}^{3} x_{2}^{4}+2 x_{1}^{4} x_{2}^{3}+5 \quad x^{(0,0)}=1$ for $\forall x$

$$
=-4 x^{(3,4)}+2 x^{(4,3)}+5 x^{(0,0)}
$$

where

$$
\begin{aligned}
\mathcal{F} & =\{(3,4),(4,3),(0,0)\} \\
c(3,4) & =-4, c(4,3)=2, c(0,0)=5
\end{aligned}
$$

$f(x)$: a nonnegative polynomial $\Leftrightarrow f(x) \geq 0\left(\forall x \in \mathbb{R}^{n}\right)$. \mathcal{N} : the set of nonnegative polynomials in $x \in \mathbb{R}^{n}$.

$$
\begin{aligned}
f(x)= & \sum_{\alpha \in \mathcal{F}^{c}(\alpha) x^{\alpha}: \text { an SOS (Sum of Squares) polynomial }} \\
& \exists \text { polynomials } g_{1}(x), \ldots, g_{k}(x) ; f(x)=\sum_{i=1}^{k} g_{i}(x)^{2} .
\end{aligned}
$$

SOS $_{*}$: the set of SOS. Obviously, SOS $_{*} \subset \mathcal{N}$.

$$
n=2 . f\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}-2 x_{2}+1\right)^{2}+\left(3 x_{1} x_{2}+x_{2}-4\right)^{2} \in \text { SOS }_{*} .
$$

- In theory, SOS $_{*} \subset \mathcal{N}$. SOS $_{*} \neq \mathcal{N}$ in general.
- In practice, $f(x) \in \mathcal{N} \backslash$ SOS $_{*}$ is rare.
\bullet We replace \mathcal{N} by SOS ${ }_{*} \Longrightarrow$ SOS Relaxations in Optimization.
$f(x)=\sum_{\alpha \in \mathcal{F}} c(\alpha) x^{\alpha}$: an SOS (Sum of Squares) polynomial I
\exists polynomials $g_{1}(x), \ldots, g_{k}(x) ; f(x)=\sum_{i=1}^{k} g_{i}(x)^{2}$.
i

$$
\begin{equation*}
\exists \mathcal{G} \subset \mathbb{Z}_{+}^{n}, \exists V \succeq O ; f(x) \equiv \sum_{\alpha \in \mathcal{G}} \sum_{\beta \in \mathcal{G}} x^{\alpha} V_{\alpha \beta} x^{\beta} \tag{1}
\end{equation*}
$$

If we fix \mathcal{G}, we can compute $V \succeq O$ by solving an LMI (SDP).
Find $V \succeq O$ satisfying \equiv for $\forall x \Rightarrow$
Compare the coefficients of \forall monomial on both side of \equiv

$$
x^{(0,0)}=1 \text { for } \forall x
$$

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)=2-4 x_{1}^{3} x_{2}^{4}+2 x_{1}^{4} x_{2}^{3}+5 x_{1}^{6} x_{2}^{8}-2 x_{1}^{7} x_{2}^{7}+2 x_{1}^{8} x_{2}^{6} \\
\equiv & \left(x^{(0,0)} x^{(3,4)} x^{(4,3)}\right)\left(\begin{array}{lll}
V_{(0,0)(0,0)} & V_{(0,0)(3,4)} & V_{(0,0)(4,3)} \\
V_{(3,4)(0,0)} & V_{(3,4)(3,4)} & V_{(3,4)(4,3)} \\
V_{(4,3)(0,0)} & V_{(4,3)(3,4)} & V_{(4,3)(4,3)}
\end{array}\right)\left(\begin{array}{l}
x^{(0,0)} \\
x^{(3,4)} \\
x^{(4,3)}
\end{array}\right)
\end{aligned}
$$

Here $\mathcal{G}=\{(0,0),(3,4),(4,3)\}$ and $V: 3 \times 3$.

$$
\begin{aligned}
& 2=V_{(0,0)(0,0)},-4=V_{(0,0)(3,4)}+V_{(3,4)(0,0)}, 2=V_{(0,0)(4,3)}+V_{(4,3)(0,0)}, \\
& 5=V_{22},-2=V_{(3,4)(4,3)}+V_{(4,3)(3,4)}, 2=V_{(4,3)(4,3)}
\end{aligned}
$$

$$
f(x)=\sum_{\alpha \in \mathcal{F}} c(\alpha) x^{\alpha}: \text { an SOS (Sum of Squares) polynomial }
$$

$$
\exists \mathcal{G} \subset \mathbb{Z}_{+}^{n}, \exists V \succeq O ; \quad f(x)=\sum_{\alpha \in \mathcal{G}} \sum_{\beta \in \mathcal{G}} x^{\alpha} V_{\alpha \beta} x^{\beta}-(1)
$$

If we fix \mathcal{G}, we can check and solve (1) in V by an LMI (SDP).

- How do we choose \mathcal{G} satisfying (1)?
- How do we choose a small size \mathcal{G} satisfying (1) to derive a small size LMI?

$$
f(x)=\sum_{\alpha \in \mathcal{F}} c(\alpha) x^{\alpha}: \text { an SOS (Sum of Squares) polynomial }
$$亿

$$
\exists \mathcal{G} \subset \mathbb{Z}_{+}^{n}, \exists V \succeq O ; \quad f(x)=\sum_{\alpha \in \mathcal{G}} \sum_{\beta \in \mathcal{G}} x^{\alpha} V_{\alpha \beta} x^{\beta}-(1)
$$

$\mathcal{F}^{\mathrm{e}} \equiv\left\{\alpha \in \mathcal{F}: \alpha_{i}\right.$ is even, $\left.\forall i\right\}$ and $\frac{\mathcal{F}^{\mathrm{e}}}{2} \equiv\left\{\frac{\alpha}{2}: \alpha \in \mathcal{F}^{\mathrm{e}}\right\}$. Then
(1) $\Rightarrow \mathcal{G} \subseteq \mathcal{G}^{0} \equiv\left(\right.$ the convex hull of $\left.\mathcal{F}^{\mathrm{e}} / 2\right) \cap \mathbb{Z}_{+}^{n}\left(\right.$ Reznick ${ }^{\text {' } 78)}$

- How do we compute \mathcal{G}^{0} ?
- How do we eliminate redundant elements from \mathcal{G}^{0} ? - later

Example: $f\left(x_{1}, x_{2}\right)=2-4 x_{1}^{3} x_{2}^{4}+2 x_{1}^{4} x_{2}^{3}+5 x_{1}^{6} x_{2}^{8}-2 x_{1}^{7} x_{2}^{7}+2 x_{1}^{8} x_{2}^{6}$.

$$
\begin{aligned}
\mathcal{F}^{\mathrm{e}} & =\{(0,0),(6,8),(8,6)\}, \mathcal{F}^{\mathrm{e}} / 2=\{(0,0),(3,4),(4,3)\}, \\
\mathcal{G}^{0} & =\{(0,0),(1,1),(2,2),(3,3),(3,4),(4,3)\}
\end{aligned}
$$

$(1,1),(2,2),(3,3):$ redundant, and can be eliminated. - later

$$
f(x)=\sum_{\alpha \in \mathcal{F}} c(\alpha) x^{\alpha}: \text { an SOS (Sum of Squares) polynomial }
$$ §

$$
\exists \mathcal{G} \subset \mathbb{Z}_{+}^{n}, \exists V \succeq O ; \quad f(x)=\sum_{\alpha \in \mathcal{G}} \sum_{\beta \in \mathcal{G}} x^{\alpha} V_{\alpha \beta} x^{\beta}-(1)
$$

$\mathcal{F}^{\mathrm{e}} \equiv\left\{\alpha \in \mathcal{F}: \alpha_{i}\right.$ is even, $\left.\forall i\right\}$ and $\frac{\mathcal{F}^{\mathrm{e}}}{2} \equiv\left\{\frac{\alpha}{2}: \alpha \in \mathcal{F}^{\mathrm{e}}\right\}$. Then
(1) $\Rightarrow \boldsymbol{\mathcal { G }} \subseteq \mathcal{G}^{0} \equiv\left(\right.$ the convex hull of $\left.\mathcal{F}^{\mathrm{e}} / 2\right) \cap \mathbb{Z}_{+}^{n}\left(\right.$ Reznick ${ }^{\text {' } 78)}$

- How do we compute \mathcal{G}^{0} ?

We tried to use the software LattE by De Loera et al. based on Barvinok et al. '99, but not successful because

- LattE requires an ineq. description of an input polytope. We combinedly used cdd by K. Fukuda to obtain facets of (the convex hull of $\mathcal{F}^{\mathrm{e}} / 2$).
- But the number of facets of (the convex hull of $\mathcal{F}^{\mathrm{e}} / 2$) can increase rapidly (exponentially) as $\# \mathcal{F}^{\mathrm{e}}$ increases.

$$
f(x)=\sum_{\alpha \in \mathcal{F}} \mathcal{F}^{c(\alpha) x^{\alpha}}: \underset{\Downarrow}{\text { an SOS (Sum of Squares) polynomial }}
$$

$$
\exists \mathcal{G} \subset \mathbb{Z}_{+}^{n}, \exists V \succeq O ; \quad f(x)=\sum_{\alpha \in \mathcal{G}} \sum_{\beta \in \mathcal{G}} x^{\alpha} V_{\alpha \beta} x^{\beta}-(1)
$$

$\mathcal{F}^{\mathrm{e}} \equiv\left\{\alpha \in \mathcal{F}: \alpha_{i}\right.$ is even, $\left.\forall i\right\}$ and $\frac{\mathcal{F}^{\mathrm{e}}}{2} \equiv\left\{\frac{\alpha}{2}: \alpha \in \mathcal{F}^{\mathrm{e}}\right\}$. Then
(1) $\Rightarrow \boldsymbol{\mathcal { G }} \subseteq \mathcal{G}^{0} \equiv\left(\right.$ the convex hull of $\left.\mathcal{F}^{\mathrm{e}} / 2\right) \cap \mathbb{Z}_{+}^{n}\left(\right.$ Reznick ${ }^{\text {' } 78)}$

- How do we eliminate redundant elements from \mathcal{G}^{0} ?

Theorem (Choi at el. '95) Suppose (1) holds for some $\mathcal{G} \subseteq \mathcal{G}^{0}$. If

$$
\begin{equation*}
\beta \in \mathcal{G}, \mathcal{G} \backslash\{\beta\} \neq \emptyset, 2 \beta \notin \mathcal{F}^{\mathrm{e}}, 2 \beta \notin(\mathcal{G}+\mathcal{G} \backslash\{\beta\}) \tag{2}
\end{equation*}
$$

Then $V_{\alpha \beta}=V_{\beta \alpha}=0$ for $\forall \alpha \in \mathcal{G} \Rightarrow \mathcal{G}=\mathcal{G} \backslash\{\beta\}$ satisfies (1).

- Let $\mathcal{G}=\mathcal{G}^{0}$. Checking (2) repeatedly, we eliminate β till we obtain a $\mathcal{G}=\mathcal{G}^{*}$ such that (2) holds for no $\boldsymbol{\beta}$.
- \mathcal{G}^{*} does not depend on the choice of β in (2); \mathcal{G}^{*} is unique.

$$
f(x)=\sum_{\alpha \in \mathcal{F}^{c} c(\alpha) x^{\alpha}: \text { an SOS (Sum of Squares) polynomial }}^{\hat{\Downarrow}}
$$

$$
\exists \mathcal{G} \subset \mathbb{Z}_{+}^{n}, \exists V \succeq O ; \quad f(x)=\sum_{\alpha \in \mathcal{G}} \sum_{\beta \in \mathcal{G}} x^{\alpha} V_{\alpha \beta} x^{\beta}-(1)
$$

$\mathcal{F}^{\mathrm{e}} \equiv\left\{\alpha \in \mathcal{F}: \alpha_{i}\right.$ is even, $\left.\forall i\right\}$ and $\frac{\mathcal{F}^{\mathrm{e}}}{2} \equiv\left\{\frac{\alpha}{2}: \alpha \in \mathcal{F}^{\mathrm{e}}\right\}$. Then
(1) $\Rightarrow \mathcal{G} \subseteq \mathcal{G}^{0} \equiv\left(\right.$ the convex hull of $\left.\mathcal{F}^{\mathrm{e}} / 2\right) \cap \mathbb{Z}_{+}^{n}\left(\right.$ Reznick ${ }^{\text {'78 }}$)

Numerical results
$n=10, \mathcal{F}^{\mathrm{e}} \subset\left\{\alpha \in \mathbb{Z}_{+}^{10}: \alpha \leq(4,4, \ldots, 4)\right\}$, randomly chosen.

$\# \mathcal{F}^{\mathrm{e}}$	$\# \mathcal{G}^{0}$	$\# \mathcal{G}^{*}$	$\#$ of facets of $\operatorname{co}\left(\mathcal{F}^{\mathrm{e}} / 2\right)$
21	38	23	2,831
31	135	35	19,741
41	354	45	59,543

- $\operatorname{co}\left(\mathcal{F}^{\mathrm{e}} / 2\right)$ increases rapidly.
- $\# \mathcal{G}^{*}$ gets much smaller than $\# \mathcal{G}^{0}$.

Contents

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. Sparse SOS relaxation of unconstrained POPs
4. Sparse SOS relaxation of constrained POPs --- briefly
5. Numerical results
6. Concluding remarks

$$
\mathcal{P}: \min _{x \in \mathbb{R}^{n}} f(x)=\sum_{\alpha \in \mathcal{F}} c(\alpha) x^{\alpha}
$$

衣

$$
\begin{aligned}
\mathcal{P}^{\prime}: \max \zeta \text { s.t } & f(x)-\zeta \geq 0\left(\forall x \in \mathbb{R}^{n}\right) \\
& \hat{\Downarrow} \\
& f(x)-\zeta \in \mathcal{N} \text { (the nonnegative polynomials) }
\end{aligned}
$$

Here x is a parameter (index) describing inequality constraints.

$$
\overline{\mathcal{P}}: \min _{x \in \mathbb{R}^{n}} f(x)=\sum_{\alpha \in \mathcal{F}} \mathcal{F}^{c}(\alpha) x^{\alpha}
$$

药

$$
\begin{array}{ll}
\mathcal{P}^{\prime}: \max \zeta \text { s.t } & f(x)-\zeta \geq 0\left(\forall x \in \mathbb{R}^{n}\right) \\
& f(x)-\zeta \in \mathcal{N}(\text { the nonnegative polynomials })
\end{array}
$$

Here x is a parameter (index) describing inequality constraints.
SOS $_{*} \subset \mathcal{N} \Downarrow$ a subproblem of $\mathcal{P}^{\prime}=$ a relaxation of \mathcal{P}

$$
\mathcal{P}^{\prime \prime}: \max \zeta \text { sub.to } f(x)-\zeta \in \operatorname{SOB}_{*} \text { (SOS polynomials) }
$$

- the min.val of $\mathcal{P}=$ the max.val of $\mathcal{P}^{\prime} \geq$ the max.val of $\mathcal{P} "$.
- Use \mathcal{G}^{*} for $\mathcal{F} \cup\{0\}$ to represent $f(x)-\zeta \in \operatorname{SOS}_{*}$ as

$$
\exists V \succeq O ; f(x)-\zeta=\sum_{\alpha \in \mathcal{G}^{*}} \sum_{\beta \in \mathcal{G}^{*}} x^{\alpha} V_{\alpha \beta} x^{\beta}
$$

as we have discussed in the previous section.

- Then $\mathcal{P}^{\prime \prime}$ can be solved as an SDP.
- Exploit the structured sparsity further - next.

$$
\mathcal{P}: \min _{x \in \mathbb{R}^{n}} f(x)=\sum_{\alpha \in \mathcal{F}} c(\alpha) x^{\alpha}
$$

$H:$ the sparsity pattern of the Hessian matrix of $f(x)$

$$
H_{i j}=\left\{\begin{array}{l}
\star \text { if } i=j \text { or } \partial^{2} f(x) / \partial x_{i} \partial x_{j} \not \equiv 0 \\
0 \text { otherwise }
\end{array}\right.
$$

$f(x)$: correlatively sparse $\Leftrightarrow \exists$ a sparse Cholesky fact. of H.
(a) A sparse Chol. fact. is characterized as a sparse chordal $\operatorname{graph} G(N, E) ; N=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): H_{i j}=\star\right\}+\text { "fill-in". }
$$

(b) Let $C_{1}, C_{2}, \ldots, C_{q} \subset N$ be the maximal cliques of $G(N, E)$.

```
Sparse SOS relaxation
max \zeta
s.t. f(x)-\zeta\in\mp@subsup{\sum}{k=1}{q}(\mathrm{ SOS of polynomials in }\mp@subsup{x}{i}{}(i\in\mp@subsup{C}{k}{}))
```

Dense SOS relaxation
$\max \zeta$
s.t. $\quad f(x)-\zeta \in\left(\right.$ SOS of polynomials in $\left.x_{i}(i \in N)\right)$

- Sparse relaxation is weaker but less expensive in practice.

Example: Generalized Rosenbrock function.

$$
f(x)=\sum_{i=2}^{n}\left(100\left(x_{i}-x_{i-1}^{2}\right)^{2}+\left(1-x_{i}\right)^{2}\right)
$$

Dense SOS relaxation
$\max \zeta$
s.t. $\quad f(x)-\zeta \in\left(\right.$ SOS of deg-2. poly. in $\left.x_{1}, x_{2}, \ldots, x_{n}\right)$

- The size of Dense grows very rapidly, so we can't apply Dense to the case $n \geq 20$ in practice.
- The Hessian matrix is sparse (tridiagonal).
- No fill-in in the Cholesky factorization.
- $C_{i}=\{i-1, i\}(i=2, \ldots, n)$: the max. cliques.

Sparse SOS relaxation
$\max \zeta$
s.t. $\quad f(x)-\zeta \in \sum_{i=2}^{n}\left(\right.$ SOS of deg-2. poly. in $\left.x_{i-1}, x_{i}\right)$

- The size of Sparse grows linearly in n, and Sparse can process the case $n=800$ in less than 10 sec .

Contents

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. Sparse SOS relaxation of unconstrained POPs
4. Sparse SOS relaxation of constrained POPs --- briefly
5. Numerical results
6. Concluding remarks

POP: $\min f_{0}(x)$ sub.to $f_{j}(x) \geq 0(j=1, \ldots, m)$.

- Rough sketch of SOS relaxation of POP
> "Generalized Lagrangian Dual", where we take SOS polynomials for Lagrange multipiers. $+$ "SOS relaxation of unconstrained POPs"
> \Downarrow SOS relaxation of POP
- Exploiting sparsity in SOS relaxation of POP

Contents

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. Sparse SOS relaxation of unconstrained POPs
4. Sparse SOS relaxation of constrained POPs --- briefly
5. Numerical results
6. Concluding remarks

Numerical results
Software

- SparsePOP (Waki-Kim-Kojima-Muramatsu, 2005)
- MATLAB program for constructing sparse and dense SDP relaxation problems.
- SeDuMi to solve SDPs.

Hardware

- 2.4 GHz Xeon cpu with 6.0 GB memory.
G.Rosenbrock function:

$$
f(x)=\sum_{i=2}^{n}\left(100\left(x_{i}-x_{i-1}^{2}\right)^{2}+\left(1-x_{i}\right)^{2}\right)
$$

- Two minimizers on $\mathbb{R}^{n}: x_{1}= \pm 1, x_{i}=1(i \geq 2)$.
- Add $x_{1} \geq 0 \Rightarrow$ a single minimizer.

		cpu in sec.	
n	$\epsilon_{\text {Obj }}$	Sparse	Dense
10	$2.5 \mathrm{e}-08$	0.2	10.6
15	$6.5 \mathrm{e}-08$	0.2	756.6
200	$5.2 \mathrm{e}-07$	2.2	-
400	$2.5 \mathrm{e}-06$	3.7	-
800	$5.5 \mathrm{e}-06$	6.8	-

$\epsilon_{\mathrm{obj}}=\frac{\mid \text { the lower bound for opt. value }- \text { the approx. opt. value } \mid}{\max \{1, \mid \text { the lower bound for opt. value } \mid\}}$.

An optimal control problem from Coleman et al. 1995

$$
\left.\begin{array}{ll}
\min & \frac{1}{M} \sum_{i=1}^{M-1}\left(y_{i}^{2}+x_{i}^{2}\right) \\
\text { s.t. } & y_{i+1}=y_{i}+\frac{1}{M}\left(y_{i}^{2}-x_{i}\right), \quad(i=1, \ldots, M-1), \quad y_{1}=1 .
\end{array}\right\}
$$

Numerical results on sparse relaxation

M	\# of variables	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	cpu
600	1198	$3.4 \mathrm{e}-08$	$2.2 \mathrm{e}-10$	3.4
700	1398	$2.5 \mathrm{e}-08$	$8.1 \mathrm{e}-10$	3.3
800	1598	$5.9 \mathrm{e}-08$	$1.6 \mathrm{e}-10$	3.8
900	1798	$1.4 \mathrm{e}-07$	$6.8 \mathrm{e}-10$	4.5
1000	1998	$6.3 \mathrm{e}-08$	$2.7 \mathrm{e}-10$	5.0

$\epsilon_{\mathrm{obj}}=\frac{\mid \text { the lower bound for opt. value - the approx. opt. value } \mid}{\max \{1, \mid \text { the lower bound for opt. value } \mid\}}$,
$\epsilon_{\text {feas }}=$ the maximum error in the equality constraints, cpu : cpu time in sec. to solve an SDP relaxation problem.
alkyl.gms : a benchmark problem from globallib

$$
\begin{array}{ll}
\min & -6.3 x_{5} x_{8}+5.04 x_{2}+0.35 x_{3}+x_{4}+3.36 x_{6} \\
\text { sub.to } & -0.820 x_{2}+x_{5}-0.820 x_{6}=0 \\
& 0.98 x_{4}-x_{7}\left(0.01 x_{5} x_{10}+x_{4}\right)=0, \\
& -x_{2} x_{9}+10 x_{3}+x_{6}=0 \\
& x_{5} x_{12}-x_{2}\left(1.12+0.132 x_{9}-0.0067 x_{9}^{2}\right)=0, \\
& x_{8} x_{13}-0.01 x_{9}\left(1.098-0.038 x_{9}\right)-0.325 x_{7}=0.574, \\
& x_{10} x_{14}+22.2 x_{11}=35.82, \\
& x_{1} x_{11}-3 x_{8}=-1.33, \\
& \operatorname{lbd}_{i} \leq x_{i} \leq \operatorname{ubd}_{i}(i=1,2, \ldots, 14) .
\end{array}
$$

		Sparse		Dense (Lasserre)	
problem	n	$\epsilon_{\text {Obj }}$	$\epsilon_{\text {feas }} \quad$ cpu	$\epsilon_{\text {Obj }} \quad \epsilon_{\text {feas }}$ cpu	
alkyl	14	$5.6 \mathrm{e}-10$	$2.0 \mathrm{e}-08$	23.0	out of memory

$\epsilon_{\mathrm{obj}}=\frac{\mid \text { the lower bound for opt. value }- \text { the approx. opt. value } \mid}{\max \{1, \mid \text { the lower bound for opt. value } \mid\}}$,
$\epsilon_{\text {feas }}=$ the maximum error in the equality constraints, cpu : cpu time in sec. to solve an SDP relaxation problem.

Some other benchmark problems from globallib

		Sparse			Dense (Lasserre)		
problem	n	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	cpu	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	cpu
ex3_1_1	8	$6.3 \mathrm{e}-09$	$4.7 \mathrm{e}-04$	5.5	$0.7 \mathrm{e}-08$	$2.5 \mathrm{e}-03$	597.8
st_bpaf1b	10	$3.8 \mathrm{e}-08$	$2.8 \mathrm{e}-08$	1.0	$4.6 \mathrm{e}-09$	$7.2 \mathrm{e}-10$	1.7
st_e07	10	$0.0 \mathrm{e}+00$	$8.1 \mathrm{e}-05$	0.4	$0.0 \mathrm{e}+00$	$8.8 \mathrm{e}-06$	3.0
st_jcbpaf2	10	$1.1 \mathrm{e}-07$	$0.0 \mathrm{e}+00$	2.1	$1.1 \mathrm{e}-07$	$0.0 \mathrm{e}+00$	2.0
ex2_1_3	13	$5.1 \mathrm{e}-09$	$3.5 \mathrm{e}-09$	0.5	$1.6 \mathrm{e}-09$	$1.5 \mathrm{e}-09$	7.7
ex9_1_1	13	0.0	$4.5 \mathrm{e}-06$	1.5	0.0	$9.2 \mathrm{e}-07$	7.7
ex9_2_3	16	$0.0 \mathrm{e}+00$	$5.7 \mathrm{e}-06$	2.3	$0.0 \mathrm{e}+00$	$7.5 \mathrm{e}-06$	49.7
ex2_1_8	24	$1.0 \mathrm{e}-05$	$0.0 \mathrm{e}+00$	304.6	$3.4 \mathrm{e}-06$	$0.0 \mathrm{e}+00$	1946.6
ex5_2_2_c1	9	$1.0 \mathrm{e}-2$	$3.2 \mathrm{e}+01$	1.8	$1.6 \mathrm{e}-05$	$2.1 \mathrm{e}-01$	2.6
ex5_2_2_c2	9	$1.0 \mathrm{e}-02$	$7.2 \mathrm{e}+01$	2.1	$1.3 \mathrm{e}-04$	$2.7 \mathrm{e}-01$	3.5

- ex5_2_2_c1 and ex5_2_2_c2 - Dense is better.
- Sparse attains approx. opt. solutions with the same quality as Dense except ex5_2_2_c1 and ex5_2_2_c2.
- Sparse is much faster than Dense in large dim. cases.

Contents

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. Sparse SOS relaxation of unconstrained POPs
4. Sparse SOS relaxation of constrained POPs --- briefly
5. Numerical results
6. Concluding remarks

- Lasserre's (dense) relaxation
- Theoretical convergence but expensive in practice.
- Sparse relaxation (Waki-Kim-Kojima-Muramatsu)
$=$ Lasserre's (dense) relaxation + sparsity
- Very powerful in practice and theoretical convergence (Lasserre)
- There remain many issues to be studied further.
- Exploiting sparsity.
- Large-scale SDPs.
- Numerical difficulty in solving SDP relaxations of POPs.
- Polynomial SDPs.

Thank you!

This presentation material is available at
http://www.is.titech.ac.jp/~kojima/talk.html

