Lagrangian dual interior-point method for semidefinite programs

Mituhiro Fukuda ${ }^{\dagger}$ (mituhiro@is.titech.ac.jp)
Masakazu Kojima † (kojima@is.titech.ac.jp)
Masayuki Shida ${ }^{\ddagger} \quad$ (shida@cc.nda.ac.jp)

\dagger Tokyo Institute of Technology
\ddagger National Defense Academy of Japan

Contents of this talk

1. Brief overview of existing methods for SDPs
2. Major difficulties in primal-dual interior-point methods for SDPs
3. A Class of Semidefinite Programs (SDPs) solved by LDIPM
4. Lagrangian Dual Interior-Point Method (LDIPM)

- Primal-dual predictor-corrector path-following method
- Corrector procedure
- BFGS quasi-Newton method instead of Newton method
- Predictor procedure
- CG method instead of Cholesky factorization

5. Preliminary numerical experiments

Brief overview of existing methods to solve SDPs

(I) Primal-dual path-following interior-point methods

- for general SDPs
- search directions: AHO, NT, H..K..M, etc.
- use of CG method, Nakata et al.'98, Toh et al.'00, etc.
- p.definite matrix completion, Fukuda et al. '00, Nakata et al. '01
- SDPT3, SeDuMi, CSDP, SDPA
(II) Dual interior-point method, S.Benson-Ye-Zhang'00
(III) Spectral Bundle method, Helmberg-Rendl'00
(IV) Nonlinear programming formulation
- Burer-Monteiro-Zhang'99, Vanderbei-H.Benson'00
- (II), (III), (IV) : effective for SDPs from comb. optim.
- Solving general large scale SDPs in high accuracy is challenging!

Major difficulties in primal-dual IPMs for SDPs - 1

Large scale fully dense positive definite system of equations

$$
\boldsymbol{M}^{k} \boldsymbol{d} \boldsymbol{y}=\boldsymbol{r}^{k}
$$

to compute a search direction $(\boldsymbol{d X}, \boldsymbol{d S}, \boldsymbol{d y})$ at each iteration k. Here the size m of $M^{k}=$ the number of constraints of an SDP to be solved;
m can be more than 200,000 .

\Downarrow

- Use iterative methods such as CG and CR methods
- However, the condition number of M^{k} gets worse rapidly as the iterated approx. sol. $\left(\boldsymbol{X}^{k}, \boldsymbol{S}^{k}, \boldsymbol{y}^{k}\right)$ approaches to an opt. sol.
- Effective preconditioner for the fully positive definite dense matrix M^{k} without storing M^{k}.

LDIPM tries to resolve this difficulty by using "the BFGS quasiNewton matrix" as a preconditioner in the CG method.

Major difficulties in primal-dual IPMs for SDPs

Primal matrix variable X becomes fully dense even when data matrices $\boldsymbol{A}_{0}, \boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{m}$ are sparse. The size of \boldsymbol{X} can be $10,000 \times 10,000$. But the dual matrix variable S can be sparse because

$$
\boldsymbol{S}=\boldsymbol{A}_{0}-\sum_{i=1}^{m} \boldsymbol{A}_{i} y_{i} .
$$

\Downarrow

- Dual interior-point methods, S.Benson-Ye-Zhang'00
- effective for SDPs from max cut and graph partition problems.
- p.definite matrix completion, Fukuda et al.'00, Nakata et al.'01 - effective for special sparse cases.

LDIPM tries to resolve this difficulty by evaluating X only when $X S=\mu I$. Instead of X itself, we store and utilize

$$
\mu \boldsymbol{X}^{-1}=\boldsymbol{S}=\boldsymbol{L} \boldsymbol{L}^{T}=\text { a sparse Cholesky factorization of } \boldsymbol{S}
$$

A class of SDPs solved by LDIPM (Lagrangian Dual Interior-Point Method)

Primal $\left\{\begin{array}{l}\text { max. } \boldsymbol{C} \bullet \boldsymbol{X} \\ \text { subito } \boldsymbol{A}_{p} \bullet \boldsymbol{X}=a_{p}(p=1,2, \ldots, m), \boldsymbol{I} \bullet \boldsymbol{X}=b, \boldsymbol{X} \succeq \boldsymbol{O}\end{array}\right.$
Dual $\begin{cases}\text { min. } & \sum_{p=1}^{m} a_{p} y_{p}+b w \\ \text { subito } & \sum_{p=1}^{m} \boldsymbol{A}_{p} y_{p}+\boldsymbol{I} w-\boldsymbol{S}=\boldsymbol{C}, \boldsymbol{S} \succeq \boldsymbol{O}\end{cases}$

Here
\mathcal{S}^{n} : the space of $n \times n$ symmetric matrices
\mathbb{R}^{m} : the n-dimensional Euclidean space
$\boldsymbol{C}, \boldsymbol{A}_{1}, \cdots, \boldsymbol{A}_{m} \in \mathcal{S}^{n}, \boldsymbol{a}=\left(1_{1}, \ldots, a_{m}\right) \in \mathbb{R}^{m}, \mathbb{R} \in b>0$ are given data.
\boldsymbol{I} : the $n \times n$ identity matrix
$\boldsymbol{A} \bullet \boldsymbol{X} \quad$: the inner product $\sum_{p=1}^{n} \sum_{q=1}^{n} A_{p q} X_{p q}$
$X \succeq O: X$ is a symm. positive semidefinite matrix
$X \in \mathcal{S}^{n}:$ primal matrix variable
$S \in \mathcal{S}^{n}$: dual matrix variable

Important feature of the SDP above - "the simplex constraint"

$$
\boldsymbol{I} \bullet \boldsymbol{X}=b, \quad X \succeq \boldsymbol{O} .
$$

This is restrictive. But

- (1) covers various SDPs,
- when the feasible region of an SDP to be solved is bounded and its bound is known in advance, we can transform it into (1).

Assumption

1. $\exists X^{0} \succ O$ feasible for Primal SDP (Slater c.q.)
2. $\boldsymbol{A}_{p}(p=1,2, \ldots, m)$ and \boldsymbol{I} are linearly independent.

For any $\boldsymbol{y} \in \mathbb{R}^{n}, \boldsymbol{S}=\boldsymbol{I} w+\sum_{p=1}^{m} \boldsymbol{A}_{p} y_{p}-\boldsymbol{C} \succ \boldsymbol{O}$
whenever w is sufficiently large;
hence (\boldsymbol{y}, w, S) is an interior feasible solution of Dual.
\Longrightarrow In LDIPM, \boldsymbol{y} can vary over the entire space \mathbb{R}^{m}.

Lagrangian Dual IPM

Given $\boldsymbol{y} \in \mathbb{R}^{m}$ and $\mu>0$, consider
$g(\boldsymbol{y}, \mu) \equiv \widetilde{\mathbf{D}}(\boldsymbol{y}, \mu)\left\{\begin{array}{l}\text { min. } \quad \sum_{p=1}^{m} a_{p} y_{p}+b w-\mu \log \operatorname{det} \boldsymbol{S} \\ \text { sub.to } \boldsymbol{I} w-\boldsymbol{S}=\boldsymbol{C}-\sum_{p=1}^{m} \boldsymbol{A}_{p} y_{p}, \boldsymbol{S} \succ \boldsymbol{O}\end{array}\right.$
Unconstrained convex minimization (Lagrangian dual):
Given $\mu>0, \widehat{\mathbf{D}}(\mu): \min . g(\boldsymbol{y}, \mu)$ sub.to $\boldsymbol{y} \in \mathbb{R}^{m}$
$\boldsymbol{y}(\mu)=\underset{\boldsymbol{y} \in \mathbb{R}^{m}}{\operatorname{argmin}} g(\boldsymbol{y}, \mu)$

Basic idea of LDIPM

- Trace $\boldsymbol{y}(\mu)$, which converges to an optimal Lagrange multiplier vector of Primal as $\mu \rightarrow 0$, by the predictor-corrector method.
- When we compute $\boldsymbol{y}(\mu)$, we can retrieve p. and d. int. feasible solutions $\boldsymbol{X}(\mu), \boldsymbol{y}(\mu), \boldsymbol{w}(\mu), \boldsymbol{S}(\mu)$, which lie on the central trajectory. Therefore they converge to \mathbf{p}. and d. opt. solutions as $\mu \rightarrow 0$, and $\{y(\mu): \mu>0\}$ forms the central trajectory in the \boldsymbol{y} space.

Corrector \begin{tabular}{l}
procedure

Newton

BFGS quasi-Newton
\end{tabular}

Predictor procedure - CG to compute a predictor direction $-\dot{\boldsymbol{y}}(\mu)$

Algorithm framework of the LDIPM

Step 0: Let $0<\epsilon_{c}<\epsilon_{p}, \gamma \in(0,1)$. Initial $\mu^{0} \in \mathbb{R}_{++}, \overline{\boldsymbol{y}}^{0} \in \mathbb{R}^{m}, k=0$
Step 1: (CORRECTOR procedure) Let $\boldsymbol{z}=\boldsymbol{y}^{k}$.
Solve approximately $\left\{\min g\left(\boldsymbol{y} ; \mu^{k}\right): \boldsymbol{y} \in \mathbb{R}^{m}\right\}$. Repeat

- find a search direction d
- choose a step length $\alpha \in(0,1]$, update $\boldsymbol{z}:=\boldsymbol{z}+\alpha \boldsymbol{d} \in \mathbb{R}^{m}$ until $\left(\boldsymbol{z}, \mu^{k}\right) \in N\left(\epsilon_{c}\right)$. Let $\boldsymbol{y}^{k}:=\boldsymbol{z}$.

Direction d in Step 1 (Newton Method)

$$
\boldsymbol{d}=-\left[\boldsymbol{\nabla}^{2} g\left(\boldsymbol{z} ; \mu^{k}\right)\right]^{-1} \boldsymbol{\nabla} g\left(\boldsymbol{z} ; \mu^{k}\right)
$$

- Need to compute the Hessian $\nabla^{2} g\left(\boldsymbol{y} ; \mu^{k}\right)$
- Neighborhood

$$
N(\epsilon)=\left\{\left(\boldsymbol{y}, \mu^{k}\right) \in \mathbb{R}^{m} \times \mathbb{R}_{++}: \boldsymbol{\nabla} g\left(\boldsymbol{y} ; \mu^{k}\right)^{T} \boldsymbol{\nabla}^{2} g\left(\boldsymbol{y} ; \mu^{k}\right)^{-1} \boldsymbol{\nabla} g\left(\boldsymbol{y} ; \mu^{k}\right) \leq \mu \epsilon\right\}
$$

A neighborhood based on the self-concordant theory by Nesterov and Nemirovskii

Direction d in Step 1 (BFGS Quasi-Newton Method)

- Initialize $\boldsymbol{H}=\boldsymbol{I}$ at the beginning

$$
\begin{aligned}
\boldsymbol{d} & =-\boldsymbol{H} \boldsymbol{\nabla} g\left(\boldsymbol{z} ; \mu^{k}\right), \\
\boldsymbol{H}^{+} & =\boldsymbol{H}-\frac{\boldsymbol{H} \boldsymbol{\eta} \boldsymbol{\sigma}^{T}+\boldsymbol{\sigma}(\boldsymbol{H} \boldsymbol{\eta})^{T}}{\boldsymbol{\sigma}^{T} \boldsymbol{\eta}}+\left(1+\frac{\boldsymbol{\eta}^{T} \boldsymbol{H} \boldsymbol{\eta}}{\boldsymbol{\sigma}^{T} \boldsymbol{\eta}}\right) \frac{\boldsymbol{\sigma} \boldsymbol{\sigma}^{T}}{\boldsymbol{\sigma}^{T} \boldsymbol{\eta}},
\end{aligned}
$$

where $\boldsymbol{\sigma}=\boldsymbol{z}^{+}-\boldsymbol{z}$ and $\boldsymbol{\eta}=\boldsymbol{\nabla} g\left(\boldsymbol{z}^{+} ; \mu^{k}\right)-\boldsymbol{\nabla} g\left(\boldsymbol{z} ; \mu^{k}\right)$

- Neighborhood

$$
\tilde{N}(\epsilon)=\left\{\left(\boldsymbol{y}, \mu^{k}\right) \in \mathbb{R}^{m} \times \mathbb{R}_{++}: \boldsymbol{\nabla} g\left(\boldsymbol{y} ; \mu^{k}\right)^{T} \boldsymbol{H} \boldsymbol{\nabla} g\left(\boldsymbol{y} ; \mu^{k}\right) \leq \mu \epsilon\right\}
$$

Step 2: (PREDICTOR procedure) Compute $\boldsymbol{y}\left(\mu^{k}\right)$. Let $\gamma \in(0,1)$, $\delta=1 / \gamma$. Repeat

- $\delta=\gamma \delta, \bar{\mu}=(1-\delta) \mu^{k}$
- $\overline{\boldsymbol{y}}=\boldsymbol{y}^{k}+\left(\bar{\mu}-\mu^{k}\right) \dot{\boldsymbol{y}}^{k}=\boldsymbol{y}^{k}-\delta \dot{y}^{k}$ (the 1st order) until $(\overline{\boldsymbol{y}}, \bar{\mu}) \in N\left(\epsilon_{p}\right)$. Let $\mu^{k+1}:=\bar{\mu}, \overline{\boldsymbol{y}}^{k+1}:=\overline{\boldsymbol{y}}$
Step 3: $k:=k+1$, go to Step 1
- We may be able to use

$$
\left.\overline{\boldsymbol{y}}=\boldsymbol{y}^{k}+\left(\bar{\mu}-\mu^{k}\right) \boldsymbol{y}^{k}+\left(\left(\bar{\mu}-\mu^{k}\right)^{2} / 2\right) \ddot{\boldsymbol{y}}^{k} \text { (the } 2 \text { nd order }\right)
$$

Computation of the 1st order derivative $\dot{\boldsymbol{y}}^{k}=\dot{\boldsymbol{y}}\left(\mu^{k}\right)$

$$
\boldsymbol{\nabla}^{2} g\left(\boldsymbol{y}^{k}, \mu^{k}\right) \boldsymbol{y}^{k}=\exists \boldsymbol{a}^{k}
$$

- The cholesky factorization, the CG or CR methods

Computation of the 2nd order derivative $\ddot{\boldsymbol{y}}^{k}=\ddot{\boldsymbol{y}}\left(\mu^{k}\right)$

$$
\boldsymbol{\nabla}^{2} g\left(\boldsymbol{y}^{k}, \mu^{k}\right) \ddot{\boldsymbol{y}}^{k}=\exists \boldsymbol{r}^{k}
$$

- Computation of \boldsymbol{r}^{k} is much more expensive than that of \boldsymbol{a}^{k} !
- How do we combine the predictor and the corrector procedures effectively?
- How do we utilize the information obtained at the corrector procedure for the succeeding predictor procedure?

Corrector procedure with the use of BFGS quasi-Newton method \Downarrow

An effective preconditioning matrix for the CG method in the succeeding predictor procedure

Smooth nonlinear equation system for $\boldsymbol{y}(\mu)(\mu>0)$:

$$
\begin{equation*}
\boldsymbol{y}(\mu)=\underset{\boldsymbol{y} \in \mathbb{R}^{m}}{\operatorname{argmin}} g(\boldsymbol{y}, \mu) \Longleftrightarrow \boldsymbol{\nabla} g(\boldsymbol{y}, \mu)=\mathbf{0} \tag{2}
\end{equation*}
$$

L. eq. system for a pred. direction $\dot{\boldsymbol{y}}\left(\mu^{k}\right)$ at $\mu=\mu^{k}$ and $\boldsymbol{y}^{k}=\boldsymbol{y}\left(\mu^{k}\right)$:

$$
\begin{equation*}
\left.\frac{\boldsymbol{\nabla} g(\boldsymbol{y}, \mu)}{d \mu}\right|_{\boldsymbol{y}=\boldsymbol{y}^{k}, \mu=\mu^{k}}=\boldsymbol{\nabla}^{2} g\left(\boldsymbol{y}^{k}, \mu^{k}\right) \dot{\boldsymbol{y}}\left(\mu^{k}\right)+\left.\frac{\partial \boldsymbol{\nabla} g(\boldsymbol{y}, \mu)}{\partial \mu}\right|_{\boldsymbol{y}=\boldsymbol{y}^{k}, \mu=\mu^{k}}=\mathbf{0} \tag{3}
\end{equation*}
$$

Solve (3) by CG method. Let $\boldsymbol{z}^{0}=\boldsymbol{y}^{k}+\alpha \dot{y}\left(\mu^{k}\right)$ and $\mu^{k+1}=\mu^{k}+\alpha$, where $\alpha \in(0,1]$: a step length.

Corrector iterations to minimize $g\left(\boldsymbol{z}, \mu^{k+1}\right)$ using the Newton method with the initial point $\boldsymbol{z}=\boldsymbol{z}^{0}$. Let $p=0$.

$$
\begin{equation*}
\boldsymbol{z}^{p+1}=\boldsymbol{z}^{p}-\left(\boldsymbol{\nabla}^{2} g\left(\boldsymbol{z}^{p}, \mu^{k+1}\right)\right)^{-1} \boldsymbol{\nabla} g\left(\boldsymbol{z}^{p}, \mu^{k+1}\right) \tag{4}
\end{equation*}
$$

- Hessian mat. $\nabla^{2} g(z, \mu)$ in both pred. and corr. procedures.
- If we use BFGS method: $\boldsymbol{z}^{p+1}=\boldsymbol{z}^{p}-\boldsymbol{H}_{p} \boldsymbol{D}_{\boldsymbol{z}} g\left(\boldsymbol{z}^{p}, \mu^{k+1}\right)$, then $\boldsymbol{H}_{p} \approx$ $\left(\boldsymbol{\nabla}^{2} g\left(\boldsymbol{z}^{p}, \mu^{k+1}\right)\right)^{-1}$ works as a preconditioner for CG meth.

More details about LDIPM_

How do we compute
$g(\boldsymbol{y}, \mu)=\min \left\{\begin{array}{c}\left.\sum_{p=1}^{m} a_{p} y_{p}+b w-\mu \log \operatorname{det} \boldsymbol{S}: \begin{array}{l}\boldsymbol{I} w-\boldsymbol{S}=\boldsymbol{C}-\sum_{p=1}^{m} \boldsymbol{A}_{p} y_{p}, \\ \boldsymbol{S} \succ \boldsymbol{O}\end{array}\right\}, ~\end{array}\right.$
$\nabla g(\boldsymbol{y}, \mu)$ (the gradient vector), and
$\boldsymbol{\nabla}^{2} g(\boldsymbol{y}, \mu)$ (the Hessian matrix) $?$
$\boldsymbol{y} \in \mathbb{R}^{m}$ and $\mu>0$: given.
$g(\boldsymbol{y}, \mu)=\min \left\{\begin{array}{l}\left.\sum_{p=1}^{m} a_{p} y_{p}+b w-\mu \log \operatorname{det} \boldsymbol{S}: \begin{array}{l}\boldsymbol{I} w-\boldsymbol{S}=\boldsymbol{C}-\sum_{p=1}^{m} \boldsymbol{A}_{p} y_{p}, \\ \boldsymbol{S} \succ \boldsymbol{O}\end{array}\right\} . ~ . ~ . ~ . ~\end{array}\right.$
KKT cond.:

$$
\begin{gathered}
\text { KKT cond.: } \begin{array}{c}
\boldsymbol{I} \bullet \boldsymbol{X}(\boldsymbol{y}, \mu)=b, \quad \boldsymbol{S}(\boldsymbol{y}, \mu)=\sum_{p=1}^{m} \boldsymbol{A}_{p} y_{p}+\boldsymbol{I} w(\boldsymbol{y}, \mu)-\boldsymbol{C}, \\
\boldsymbol{X}(\boldsymbol{y}, \mu) \boldsymbol{S}(\boldsymbol{y}, \mu)=\mu \boldsymbol{I}, \quad \boldsymbol{X}(\boldsymbol{y}, \mu) \succeq \boldsymbol{O}, \quad \boldsymbol{S}(\boldsymbol{y}, \mu) \succeq \boldsymbol{O} \\
\Downarrow \boldsymbol{X}(\boldsymbol{y}, \mu)=\mu \boldsymbol{S}(\boldsymbol{y}, \mu)^{-1} \\
\phi(w ; \boldsymbol{y}, \mu) \equiv \mu \boldsymbol{I} \bullet\left(\sum_{p=1}^{m} \boldsymbol{A}_{p} y_{p}+\boldsymbol{I} w-\boldsymbol{C}\right)^{-1}=b,\left(\sum_{p=1}^{m} \boldsymbol{A}_{p} y_{p}+\boldsymbol{I} w-\boldsymbol{C}\right) \succ \boldsymbol{O}
\end{array}
\end{gathered}
$$

1. Newton meth. to $\phi(w ; \boldsymbol{y}, \mu)=b$ to compute $w=w(\boldsymbol{y}, \mu)$ using

$$
\frac{d \phi}{d w}(w ; \boldsymbol{y}, \mu)=-\mu \boldsymbol{I} \bullet\left(\sum_{p=1}^{m} \boldsymbol{A}_{p} y_{p}+\boldsymbol{I} w-\boldsymbol{C}\right)^{-2}
$$

Cholesky factorization of $\boldsymbol{S}=\sum_{p=1}^{m} \boldsymbol{A}_{p} y_{p}+\boldsymbol{I} w-\boldsymbol{C}$.
2. Let $\boldsymbol{S}(\boldsymbol{y}, \mu)=\boldsymbol{I} w(\boldsymbol{y}, \mu)-\boldsymbol{C}+\sum_{p=1}^{m} \boldsymbol{A}_{p} y_{p}$.
3. Let $g(\boldsymbol{y}, \mu)=\sum_{p=1}^{m} a_{p} y_{p}+b w(\boldsymbol{y}, \mu)-\mu \log \operatorname{det} \boldsymbol{S}(\boldsymbol{y}, \mu)$

1. $\boldsymbol{\nabla} g(\boldsymbol{y}, \mu)=\left(a_{1}-\mu \boldsymbol{A}_{1} \bullet \boldsymbol{S}(\boldsymbol{y}, \mu)^{-1}, \ldots, a_{m}-\mu \boldsymbol{A}_{m} \bullet \boldsymbol{S}(\boldsymbol{y}, \mu)^{-1}\right)^{T}$

$$
=\left(a_{1}-\boldsymbol{A}_{1} \bullet \boldsymbol{X}(\boldsymbol{y}, \mu), \ldots, a_{m}-\boldsymbol{A}_{m} \bullet \boldsymbol{X}(\boldsymbol{y}, \mu)\right)^{T}
$$

2. $\boldsymbol{\nabla}^{2} g(\boldsymbol{y}, \mu)=\left(\boldsymbol{M}-\boldsymbol{h} \boldsymbol{h}^{T} / h_{m+1}\right)$, where

$$
\begin{aligned}
M_{q r} & =\mu \boldsymbol{A}_{q} \bullet \boldsymbol{S}(\boldsymbol{y}, \mu)^{-1} \boldsymbol{A}_{r} \boldsymbol{S}(\boldsymbol{y}, \mu)^{-1} \\
\boldsymbol{h} & =\left(\mu \boldsymbol{A}_{1} \bullet \boldsymbol{S}(\boldsymbol{y}, \mu)^{-2}, \ldots, \mu \boldsymbol{A}_{m} \bullet \boldsymbol{S}(\boldsymbol{y}, \mu)^{-2}\right)^{T} \\
h_{m+1} & =\mu \boldsymbol{I} \bullet \boldsymbol{S}(\boldsymbol{y}, \mu)^{-2}
\end{aligned}
$$

(the coefficient matrix of the Schur complement equation) (the most expensive part to compute)
3. $\nabla^{2} g(\boldsymbol{y}, \mu)$ is positive definite
$(g(\boldsymbol{y}, \mu)$ is strictly convex)
4. $\left\{g(\cdot, \mu): \mu \in \mathbb{R}_{++}\right\}$is "a self-concordant family" on \mathbb{R}^{m}

Preliminary numerical experiments

- 4 variants of the LDIPM

	Corrector	
Predictor	Newton	BFGS quasi-Newton
1st order		
2nd order		

$\dagger: \boldsymbol{y}^{k+1}=\boldsymbol{y}\left(\mu^{k}\right)+\alpha \dot{\boldsymbol{y}}\left(\mu^{k}\right)+\frac{1}{2} \alpha^{2} \ddot{\boldsymbol{y}}\left(\mu^{k}\right)$

- Stopping criterion

$$
\begin{aligned}
& \text { relative error }=\frac{\mid \text { primal obj. }- \text { dual } \mathbf{o b j} . \mid}{\max \{\text { primal obj. } \mid 1.0\}}<1.0 e-6 \\
& \text { primal feasibility error }=\max _{p=1, \ldots, m}\left|a_{p}-\boldsymbol{A}_{p} \bullet \boldsymbol{X}\right|<1.0 e-6
\end{aligned}
$$

- MATLAB Version 5.2
- Macintosh with PowerPC 750400 MHz and 360 MB memory

Box Constrained Quadratic ± 1 Program

- Average of 5 problems $\left\{\max \boldsymbol{x}^{T} \boldsymbol{Q} \boldsymbol{x}\right.$ sub.to $\left.x_{i}^{2}=1,(i=1,2, \ldots, n)\right\}$
- Matrix size $n=200$

Corrector Predictor	Newton 1st-order	Newton 2nd-order	$\begin{array}{r} \text { BFGS } \\ \text { 1st-order } \end{array}$	BFGS 2nd-order
major \# it.	13.4	10.8	12.6	10.2
CPU	3252s	1529s	763s	585s
Newton \# it.	27.0	19.6	-	-
BFGS \# it.	-	-	210.2	180.0
Cholesky of S	285.4	165.8	795.8	567.8
CG	-	-	188.4	177.2
$\kappa\left(\boldsymbol{\nabla}^{2} \boldsymbol{g}(\boldsymbol{y}, \mu)\right)$	$6.2 \mathrm{e}+7$	$3.4 \mathrm{e}+7$	$2.7 \mathrm{e}+7$	$2.2 \mathrm{e}+7$
$\kappa\left(\boldsymbol{H} \nabla^{2} \boldsymbol{g}(\boldsymbol{y}, \mu)\right)$	-	-	$7.8 \mathrm{e}+1$	$8.6 \mathrm{e}+1$

$\boldsymbol{\nabla}^{2} \boldsymbol{g}(\boldsymbol{y}, \mu)$: the Hessian matrix of $\boldsymbol{g}(\cdot, \mu)$
H : the BFGS matrix
$\kappa(\boldsymbol{A})$: the condition number of \boldsymbol{A}.

Norm Minimization Problem

- Average of 5 problems
- Matrix size $n=50$, constraints $m=200$

Corrector Predictor	Newton 1st-order	Newton 2nd-order	BFGS 1st-order	BFGS 2nd-order
major \# it.	14.8	12.6	14.2	12.6
CPU	843 s	544 s	240 s	210 s
Newton \# it.	39.2	28.0	-	-
BFGS \# it.	-	-	340.0	319.8
Cholesky of S	198.6	107.8	608.2	509.4
CG	-	-	228.2	262.2
$\kappa\left(\boldsymbol{\nabla}^{2} \boldsymbol{g}(\boldsymbol{y}, \mu)\right)$	$7.8 \mathrm{e}+9$	$9.2 \mathrm{e}+9$	$4.8 \mathrm{e}+9$	$1.2 \mathrm{e}+10$
$\kappa\left(\boldsymbol{H} \boldsymbol{\nabla}^{2} \boldsymbol{g}(\boldsymbol{y}, \mu)\right)$	-	-	$3.3 \mathrm{e}+2$	$1.7 \mathrm{e}+3$

$\boldsymbol{\nabla}^{2} \boldsymbol{g}(\boldsymbol{y}, \mu)$: the Hessian matrix of $\boldsymbol{g}(\cdot, \mu)$
H : the BFGS matrix
$\kappa(\boldsymbol{A})$: the condition number of \boldsymbol{A}

Condition and scaled condition numbers along the iterations

- Box Constrained Quadratic ± 1 Program
- Matrix size $n=200$, constraints $m=201$

k	μ^{k}	rel.error	$\nabla^{2} g\left(\boldsymbol{y}^{k}, \mu^{k}\right)$	$\kappa\left(\boldsymbol{H}^{k} \nabla^{2} g\left(\boldsymbol{y}^{k}, \mu^{k}\right)\right)$	\#CG
1	$1.41 \mathrm{e}+1$	$+2.81 \mathrm{e}+1$	$2.17 \mathrm{e}+2$	$3.03 \mathrm{e}+3$	4
2	$3.83 \mathrm{e}+0$	$+1.87 \mathrm{e}+0$	$3.42 \mathrm{e}+2$	$9.00 \mathrm{e}+2$	9
3	$2.00 \mathrm{e}+0$	$+6.17 \mathrm{e}-1$	$7.57 \mathrm{e}+2$	$6.75 \mathrm{e}+2$	14
4	$8.19 \mathrm{e}-1$	$+1.92 \mathrm{e}-1$	$1.75 \mathrm{e}+3$	$1.07 \mathrm{e}+3$	24
5	$2.22 \mathrm{e}-1$	$+4.62 \mathrm{e}-2$	$2.58 \mathrm{e}+3$	$2.86 \mathrm{e}+1$	16
6	$4.22 \mathrm{e}-2$	$+8.48 \mathrm{e}-3$	$3.01 \mathrm{e}+3$	$5.94 \mathrm{e}+1$	18
7	$4.22 \mathrm{e}-3$	$+8.47 \mathrm{e}-4$	$1.32 \mathrm{e}+4$	$1.93 \mathrm{e}+4$	44
8	$4.22 \mathrm{e}-4$	$+8.47 \mathrm{e}-5$	$1.33 \mathrm{e}+5$	$1.62 \mathrm{e}+2$	18
9	$4.22 \mathrm{e}-5$	$+8.43 \mathrm{e}-6$	$1.33 \mathrm{e}+6$	$3.37 \mathrm{e}+1$	14
10	$4.22 \mathrm{e}-6$	$+8.45 \mathrm{e}-7$	$1.33 \mathrm{e}+7$	$5.18 \mathrm{e}+2$	16

$\nabla^{2} \boldsymbol{g}(\boldsymbol{y}, \mu)$: the Hessian matrix of $\boldsymbol{g}(\cdot, \mu)$
H : the BFGS matrix
$\kappa(\boldsymbol{A})$: the condition number of \boldsymbol{A}.

Summary

\Longrightarrow New type of predictor-corrector dual IP method for SDP
$\left\{\begin{array}{l}\text { dual feasible, primal infeasible } \\ \boldsymbol{X} \boldsymbol{S}=\mu \boldsymbol{I}\end{array}\right.$
\Longrightarrow (CORRECTOR procedure)
Quasi-Newton BFGS instead of Newton method
\Longrightarrow (PREDICTOR Step)
BFGS matrix H is a good preconditioner for the CG
\Longrightarrow Can be extended to Linear Optimization Problems over convex cones (LP, SOCP)

Further Directions
\Longrightarrow Implementation in $\mathrm{C} / \mathrm{C}++$
\Longrightarrow Improve numerical convergence
\Longrightarrow Limited memory BFGS method for large scale problems

