Lagrangian dual interior-point method for semidefinite programs

Mituhiro Fukuda[†] **Masayuki Shida**^{\ddagger} (shida@cc.nda.ac.jp)

(mituhiro@is.titech.ac.jp) Masakazu Kojima^{\dagger} (kojima@is.titech.ac.jp)

Tokyo Institute of Technology

National Defense Academy of Japan t

Contents of this talk

- 1. Brief overview of existing methods for SDPs
- 2. Major difficulties in primal-dual interior-point methods for SDPs
- 3. A Class of Semidefinite Programs (SDPs) solved by LDIPM
- 4. Lagrangian Dual Interior-Point Method (LDIPM)
 - Primal-dual predictor-corrector path-following method
 - Corrector procedure
 - BFGS quasi-Newton method instead of Newton method
 - Predictor procedure
 - CG method instead of Cholesky factorization
- 5. Preliminary numerical experiments

Brief overview of existing methods to solve SDPs

- (I) Primal-dual path-following interior-point methods
 - for general SDPs
 - search directions: AHO, NT, H..K..M, etc.
 - use of CG method, Nakata et al. '98, Toh et al. '00, etc.
 - p.definite matrix completion, Fukuda et al. '00, Nakata et al. '01
 - SDPT3, SeDuMi, CSDP, SDPA
- (II) Dual interior-point method, S.Benson-Ye-Zhang'00
- (III) Spectral Bundle method, Helmberg-Rendl'00
- (IV) Nonlinear programming formulation
 - Burer-Monteiro-Zhang'99, Vanderbei-H.Benson'00
 - (II), (III), (IV) : effective for SDPs from comb. optim.
 - Solving general large scale SDPs in high accuracy is challenging!

Major difficulties in primal-dual IPMs for SDPs - 1

Large scale fully dense positive definite system of equations

$$oldsymbol{M}^k oldsymbol{dy} = oldsymbol{r}^k$$

to compute a search direction (dX, dS, dy) at each iteration k. Here the size m of M^k = the number of constraints of an SDP to be solved;

m can be more than 200,000.

\Downarrow

• Use iterative methods such as CG and CR methods

• However, the condition number of M^k gets worse rapidly as the iterated approx. sol. (X^k, S^k, y^k) approaches to an opt. sol.

• Effective preconditioner for the fully positive definite dense matrix M^k without storing M^k .

 \Downarrow

LDIPM tries to resolve this difficulty by using "the BFGS quasi-Newton matrix" as a preconditioner in the CG method.

Major difficulties in primal-dual IPMs for $\mathrm{SDPs}-2$

Primal matrix variable X becomes fully dense even when data matrices A_0, A_1, \ldots, A_m are sparse. The size of X can be $10,000 \times 10,000$. But the dual matrix variable S can be sparse because

$$oldsymbol{S} = oldsymbol{A}_0 - \sum_{i=1}^m oldsymbol{A}_i y_i.$$

• Dual interior-point methods, S.Benson-Ye-Zhang'00

— effective for SDPs from max cut and graph partition problems.

• p.definite matrix completion, *Fukuda et al.'00, Nakata et al.'01* — effective for special sparse cases.

LDIPM tries to resolve this difficulty by evaluating X only when $XS = \mu I$. Instead of X itself, we store and utilize $\mu X^{-1} = S = LL^T =$ a sparse Cholesky factorization of S

A class of SDPs solved by LDIPM (Lagrangian Dual Interior-Point Method)

$$\begin{aligned} \mathbf{Primal} \begin{cases} \mathbf{max.} \quad \boldsymbol{C} \bullet \boldsymbol{X} \\ \mathbf{sub.to} \quad \boldsymbol{A}_{p} \bullet \boldsymbol{X} = a_{p} \ (p = 1, 2, \dots, m), \ \boldsymbol{I} \bullet \boldsymbol{X} = b, \boldsymbol{X} \succeq \boldsymbol{O} \end{cases} \end{aligned} \tag{1} \\ \begin{aligned} \mathbf{Dual} \begin{cases} \mathbf{min.} \quad \sum_{p=1}^{m} a_{p} y_{p} + bw \\ \mathbf{sub.to} \quad \sum_{p=1}^{m} \boldsymbol{A}_{p} y_{p} + \boldsymbol{I} w - \boldsymbol{S} = \boldsymbol{C}, \ \boldsymbol{S} \succeq \boldsymbol{O} \end{cases} \end{aligned}$$

Here

- S^n : the space of $n \times n$ symmetric matrices
- \mathbb{R}^m : the *n*-dimensional Euclidean space

 $C, A_1, \cdots, A_m \in S^n, \ a = (1_1, \dots, a_m) \in \mathbb{R}^m, \ \mathbb{R} \in b > 0$ are given data.

- I: the $n \times n$ identity matrix
- $A \bullet X$: the inner product $\sum_{p=1}^{n} \sum_{q=1}^{n} A_{pq} X_{pq}$
- $X \succeq O$: X is a symm. positive semidefinite matrix
- $oldsymbol{X}\in\mathcal{S}^n$: primal matrix variable
- $oldsymbol{S} \in \mathcal{S}^n$: dual matrix variable

Important feature of the SDP above — "the simplex constraint"

$$I \bullet X = b, X \succeq O.$$

This is restrictive. But

• (1) covers various SDPs,

• when the feasible region of an SDP to be solved is bounded and its bound is known in advance, we can transform it into (1).

Assumption 1. $\exists X^0 \succ O$ feasible for Primal SDP (Slater c.q.) 2. A_p (p = 1, 2, ..., m) and I are linearly independent.

For any
$$y \in \mathbb{R}^n$$
, $S = Iw + \sum_{p=1}^m A_p y_p - C \succ O$
whenever w is sufficiently large;
hence (y, w, S) is an interior feasible solution of Dual.

 \implies In LDIPM, y can vary over the entire space \mathbb{R}^m .

Lagrangian Dual IPM

Given $\boldsymbol{y} \in \mathbb{R}^{m}$ and $\mu > 0$, consider $g(\boldsymbol{y}, \mu) \equiv \begin{bmatrix} \widetilde{\mathbf{D}}(\boldsymbol{y}, \mu) & \{ \begin{array}{l} \min. \quad \sum_{p=1}^{m} a_{p}y_{p} + bw - \mu \log \det \boldsymbol{S} \\ \operatorname{sub.to} \ \boldsymbol{I}w - \boldsymbol{S} = \boldsymbol{C} - \sum_{p=1}^{m} \boldsymbol{A}_{p}y_{p}, \ \boldsymbol{S} \succ \boldsymbol{O} \\ \end{bmatrix} \\ \downarrow \end{bmatrix}$ Unconstrained convex minimization (Lagrangian dual):

Given
$$\mu > 0$$
, $\widehat{\mathbf{D}}(\mu)$: min. $g(\boldsymbol{y}, \mu)$ sub.to $\boldsymbol{y} \in \mathbb{R}^m$

$$\boldsymbol{y}(\boldsymbol{\mu}) = \stackrel{\mathbf{argmin}}{\boldsymbol{y} \in \mathbb{R}^m} g(\boldsymbol{y}, \boldsymbol{\mu})$$

Basic idea of LDIPM

• Trace $y(\mu)$, which converges to an optimal Lagrange multiplier vector of Primal as $\mu \to 0$, by the predictor-corrector method.

• When we compute $y(\mu)$, we can retrieve p. and d. int. feasible solutions $X(\mu), y(\mu), w(\mu), S(\mu)$, which lie on the central trajectory. Therefore they converge to p. and d. opt. solutions as $\mu \to 0$, and $\{y(\mu) : \mu > 0\}$ forms the central trajectory in the y space.

Corrector { Newton procedure { BFGS quasi-Newton

Predictor procedure — CG to compute a predictor direction $-\dot{y}(\mu)$

Algorithm framework of the LDIPM

Step 0: Let $0 < \epsilon_c < \epsilon_p, \ \gamma \in (0,1)$. Initial $\mu^0 \in \mathbb{R}_{++}, \ \bar{\boldsymbol{y}}^0 \in \mathbb{R}^m, \ k = 0$

Step 1: (CORRECTOR procedure) Let $z = y^k$. Solve approximately {min $g(y; \mu^k) : y \in \mathbb{R}^m$ }. Repeat

- find a search direction d
- choose a step length $\alpha \in (0, 1]$, update $\boldsymbol{z} := \boldsymbol{z} + \alpha \boldsymbol{d} \in \mathbb{R}^m$

until $(\boldsymbol{z}, \mu^k) \in N(\epsilon_c)$. Let $\boldsymbol{y}^k := \boldsymbol{z}$.

Direction d in Step 1 (Newton Method)

$$oldsymbol{d} = -\left[oldsymbol{
abla}^2 g(oldsymbol{z};\mu^k)
ight]^{-1}oldsymbol{
abla} g(oldsymbol{z};\mu^k)$$

- Need to compute the Hessian ${oldsymbol
 abla}^2 g({oldsymbol y};\mu^k)$
- Neighborhood

$$N(\epsilon) = \{ (\boldsymbol{y}, \boldsymbol{\mu}^k) \in \mathbb{R}^m \times \mathbb{R}_{++} : \boldsymbol{\nabla} g(\boldsymbol{y}; \boldsymbol{\mu}^k)^T \boldsymbol{\nabla}^2 g(\boldsymbol{y}; \boldsymbol{\mu}^k)^{-1} \boldsymbol{\nabla} g(\boldsymbol{y}; \boldsymbol{\mu}^k) \leq \boldsymbol{\mu} \epsilon \}$$

A neighborhood based on the self-concordant theory by Nesterov and Nemirovskii

Direction d in Step 1 (BFGS Quasi-Newton Method)

• Initialize
$$H = I$$
 at the beginning
 $d = -H\nabla g(\boldsymbol{z}; \mu^k),$
 $H^+ = H - \frac{H\eta\sigma^T + \sigma(H\eta)^T}{\sigma^T\eta} + \left(1 + \frac{\eta^T H\eta}{\sigma^T\eta}\right) \frac{\sigma\sigma^T}{\sigma^T\eta},$
where $\sigma = \boldsymbol{z}^+ - \boldsymbol{z}$ and $\eta = \nabla g(\boldsymbol{z}^+; \mu^k) - \nabla g(\boldsymbol{z}; \mu^k)$
• Neighborhood
 $\tilde{N}(\epsilon) = \{(\boldsymbol{y}, \mu^k) \in \mathbb{R}^m \times \mathbb{R}_{++} : \nabla g(\boldsymbol{y}; \mu^k)^T H \nabla g(\boldsymbol{y}; \mu^k) \leq \mu\epsilon\}$

Step 2: (PREDICTOR procedure) Compute $\dot{\boldsymbol{y}}(\mu^k)$. Let $\gamma \in (0, 1)$, $\delta = 1/\gamma$. Repeat

•
$$\delta = \gamma \delta$$
, $\bar{\mu} = (1 - \delta)\mu^k$
• $\bar{\boldsymbol{y}} = \boldsymbol{y}^k + (\bar{\mu} - \mu^k) \dot{\boldsymbol{y}}^k = \boldsymbol{y}^k - \delta \dot{\boldsymbol{y}}^k$ (the 1st order)
until $(\bar{\boldsymbol{y}}, \bar{\mu}) \in N(\epsilon_p)$. Let $\mu^{k+1} := \bar{\mu}, \ \bar{\boldsymbol{y}}^{k+1} := \bar{\boldsymbol{y}}$
Step 3: $k := k + 1$, go to Step 1

• We may be able to use $\bar{y} = y^k + (\bar{\mu} - \mu^k)\dot{y}^k + ((\bar{\mu} - \mu^k)^2/2)\ddot{y}^k$ (the 2nd order)

Computation of the 1st order derivative $\dot{\boldsymbol{y}}^k = \dot{\boldsymbol{y}}(\mu^k)$

$$\boldsymbol{
abla}^2 g(oldsymbol{y}^k,\mu^k) \dot{oldsymbol{y}}^k = \exists oldsymbol{a}^k$$

• The cholesky factorization, the CG or CR methods

Computation of the 2nd order derivative $\ddot{\boldsymbol{y}}^k = \ddot{\boldsymbol{y}}(\mu^k)$

$$oldsymbol{
abla}^2 g(oldsymbol{y}^k,\mu^k) \ddot{oldsymbol{y}}^k = \exists oldsymbol{r}^k$$

• Computation of r^k is much more expensive than that of a^k !

• How do we combine the predictor and the corrector procedures effectively?

• How do we utilize the information obtained at the corrector procedure for the succeeding predictor procedure?

Corrector procedure with the use of BFGS quasi-Newton method \downarrow An effective preconditioning matrix for the CG method in the succeeding predictor procedure

(Morales-Nocedal '01)

Smooth nonlinear equation system for $y(\mu)$ ($\mu > 0$):

$$\boldsymbol{y}(\mu) = \underset{\boldsymbol{y} \in \mathbb{R}^m}{\operatorname{argmin}} g(\boldsymbol{y}, \mu) \iff \boldsymbol{\nabla} g(\boldsymbol{y}, \mu) = \boldsymbol{0}$$
(2)

L. eq. system for a pred. direction
$$\dot{\boldsymbol{y}}(\mu^k)$$
 at $\mu = \mu^k$ and $\boldsymbol{y}^k = \boldsymbol{y}(\mu^k)$:

$$\frac{\boldsymbol{\nabla}g(\boldsymbol{y},\mu)}{d\mu}\Big|_{\boldsymbol{y}=\boldsymbol{y}^k,\mu=\mu^k} = \boldsymbol{\nabla}^2 g(\boldsymbol{y}^k,\mu^k) \dot{\boldsymbol{y}}(\mu^k) + \frac{\partial \boldsymbol{\nabla}g(\boldsymbol{y},\mu)}{\partial \mu}\Big|_{\boldsymbol{y}=\boldsymbol{y}^k,\mu=\mu^k} = \boldsymbol{0}.$$
 (3)
Solve (3) by CG method. Let $\boldsymbol{z}^0 = \boldsymbol{y}^k + \alpha \dot{\boldsymbol{y}}(\mu^k)$ and $\mu^{k+1} = \mu^k + \alpha$, where

 $\alpha \in (0, 1]$: a step length.

Corrector iterations to minimize $g(z, \mu^{k+1})$ using the Newton method with the initial point $z = z^0$. Let p = 0.

$$\boldsymbol{z}^{p+1} = \boldsymbol{z}^p - \left(\boldsymbol{\nabla}^2 \ g(\boldsymbol{z}^p, \boldsymbol{\mu}^{k+1})\right)^{-1} \boldsymbol{\nabla} g(\boldsymbol{z}^p, \boldsymbol{\mu}^{k+1})$$
(4)

• Hessian mat. $\nabla^2 g(\boldsymbol{z}, \mu)$ in both pred. and corr. procedures.

• If we use BFGS method: $\boldsymbol{z}^{p+1} = \boldsymbol{z}^p - \boldsymbol{H}_p \boldsymbol{D}_{\boldsymbol{z}} g(\boldsymbol{z}^p, \mu^{k+1})$, then $\boldsymbol{H}_p \approx \left(\boldsymbol{\nabla}^2 g(\boldsymbol{z}^p, \mu^{k+1})\right)^{-1}$ works as a preconditioner for CG meth.

More details about LDIPM

How do we compute

$$g(\boldsymbol{y},\mu) = \min\left\{\sum_{p=1}^{m} a_p y_p + b w - \mu \log \det \boldsymbol{S}: \begin{array}{l} \boldsymbol{I} w - \boldsymbol{S} = \boldsymbol{C} - \sum_{p=1}^{m} \boldsymbol{A}_p y_p, \\ \boldsymbol{S} \succ \boldsymbol{O}\end{array}
ight\},$$

 $\boldsymbol{
abla} \ g(\boldsymbol{y},\mu)$ (the gradient vector), and

 $\boldsymbol{\nabla}^2 g(\boldsymbol{y}, \mu)$ (the Hessian matrix)?

$$y \in \mathbb{R}^{m} \text{ and } \mu > 0 : \text{ given.}$$

$$g(y, \mu) = \min \left\{ \sum_{p=1}^{m} a_{p}y_{p} + bw - \mu \log \det S : \frac{Iw - S = C - \sum_{p=1}^{m} A_{p}y_{p}}{S \succ O} \right\}.$$
KKT cond.:

$$I \bullet X(y, \mu) = b, \quad S(y, \mu) = \sum_{p=1}^{m} A_{p}y_{p} + Iw(y, \mu) - C,$$

$$X(y, \mu)S(y, \mu) = \mu I, \quad X(y, \mu) \succeq O, \quad S(y, \mu) \succeq O$$

$$\downarrow \quad X(y, \mu) = \mu S(y, \mu)^{-1}$$

$$\phi(w; y, \mu) \equiv \mu I \bullet \left(\sum_{p=1}^{m} A_{p}y_{p} + Iw - C\right)^{-1} = b, \quad \left(\sum_{p=1}^{m} A_{p}y_{p} + Iw - C\right) \succ O$$

1. Newton meth. to $\phi(w; \boldsymbol{y}, \mu) = b$ to compute $w = w(\boldsymbol{y}, \mu)$ using

$$rac{d\phi}{dw}(w; \boldsymbol{y}, \mu) = -\mu \boldsymbol{I} \bullet \left(\sum_{p=1}^{m} \boldsymbol{A}_{p} y_{p} + \boldsymbol{I} w - \boldsymbol{C}\right)^{-2},$$

Cholesky factorization of $\boldsymbol{S} = \sum_{p=1}^{m} \boldsymbol{A}_{p} y_{p} + \boldsymbol{I} w - \boldsymbol{C}$

2. Let
$$S(y, \mu) = Iw(y, \mu) - C + \sum_{p=1}^{m} A_p y_p$$
.
3. Let $g(y, \mu) = \sum_{p=1}^{m} a_p y_p + bw(y, \mu) - \mu \log \det S(y, \mu)$

$oldsymbol{ abla} g(oldsymbol{y},\mu), \, oldsymbol{ abla}^2 g(oldsymbol{y},\mu) \, \, ext{and properties of } g(oldsymbol{y},\mu)$

1.
$$\nabla g(\boldsymbol{y}, \mu) = (a_1 - \mu \boldsymbol{A}_1 \bullet \boldsymbol{S}(\boldsymbol{y}, \mu)^{-1}, \dots, a_m - \mu \boldsymbol{A}_m \bullet \boldsymbol{S}(\boldsymbol{y}, \mu)^{-1})^T$$

 $= (a_1 - \boldsymbol{A}_1 \bullet \boldsymbol{X}(\boldsymbol{y}, \mu), \dots, a_m - \boldsymbol{A}_m \bullet \boldsymbol{X}(\boldsymbol{y}, \mu))^T$
2. $\nabla^2 g(\boldsymbol{y}, \mu) = (\boldsymbol{M} - \boldsymbol{h} \boldsymbol{h}^T / \boldsymbol{h}_{m+1})$, where
 $M_{qr} = \mu \boldsymbol{A}_q \bullet \boldsymbol{S}(\boldsymbol{y}, \mu)^{-1} \boldsymbol{A}_r \boldsymbol{S}(\boldsymbol{y}, \mu)^{-1} \qquad (q, r = 1, \dots, m)$
 $\boldsymbol{h} = (\mu \boldsymbol{A}_1 \bullet \boldsymbol{S}(\boldsymbol{y}, \mu)^{-2}, \dots, \mu \boldsymbol{A}_m \bullet \boldsymbol{S}(\boldsymbol{y}, \mu)^{-2})^T$
 $h_{m+1} = \mu \boldsymbol{I} \bullet \boldsymbol{S}(\boldsymbol{y}, \mu)^{-2}$
 (the coefficient matrix of the Schur complement equation)
 (the most expensive part to compute)
3. $\nabla^2 g(\boldsymbol{y}, \mu)$ is positive definite
 $(g(\boldsymbol{y}, \mu) \text{ is strictly convex})$
4. $\{g(\cdot, \mu) : \mu \in \mathbb{R}_{++}\}$ is "a self-concordant family" on \mathbb{R}^m

Preliminary numerical experiments

• 4 variants of the LDIPM

	Corrector			
Predictor	Newton	BFGS quasi-Newton		
1st order				
2nd order [†]				

†:
$$\boldsymbol{y}^{k+1} = \boldsymbol{y}(\mu^k) + \alpha \dot{\boldsymbol{y}}(\mu^k) + \frac{1}{2}\alpha^2 \ddot{\boldsymbol{y}}(\mu^k)$$

• Stopping criterion

 $\boxed{ \begin{array}{l} \textbf{relative error} = \frac{|\textbf{primal obj.} - \textbf{dual obj.}|}{\max\{\textbf{primal obj.}, 1.0\}} < 1.0e - 6 \\ \textbf{primal feasibility error} = \max_{p=1,...,m} |a_p - \boldsymbol{A}_p \bullet \boldsymbol{X}| < 1.0e - 6 \end{array} }$

- MATLAB Version 5.2
- Macintosh with PowerPC 750 400MHz and 360 MB memory

Box Constrained Quadratic ± 1 Program

- Average of 5 problems {max $\boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x}$ sub.to $x_i^2 = 1, (i = 1, 2, ..., n)$ }
- Matrix size n = 200

Corrector	Newton	Newton	BFGS	BFGS
Predictor	1st-order	2nd-order	1st-order	2nd-order
major # it.	13.4	10.8	12.6	10.2
CPU	$3252 \mathrm{s}$	$1529 \mathrm{s}$	763s	585s
Newton # it.	27.0	19.6	-	-
BFGS $\#$ it.	-	-	210.2	180.0
Cholesky of S	285.4	165.8	795.8	567.8
\mathbf{CG}	-	-	188.4	177.2
$\kappa(oldsymbol{ abla}^2oldsymbol{g}(oldsymbol{y},\mu))$	$6.2\mathrm{e}{+7}$	$3.4\mathrm{e}{+7}$	$2.7\mathrm{e}{+7}$	$2.2\mathrm{e}{+7}$
$\kappa(oldsymbol{H}oldsymbol{ abla}^2oldsymbol{g}(oldsymbol{y},\mu))$	-	-	$7.8\mathrm{e}{+1}$	$8.6\mathrm{e}{+1}$

 $\boldsymbol{\nabla}^2 \boldsymbol{g}(\boldsymbol{y},\boldsymbol{\mu})$: the Hessian matrix of $\boldsymbol{g}(\cdot,\boldsymbol{\mu})$

- H : the BFGS matrix
- $\kappa({\pmb{A}})$: the condition number of ${\pmb{A}}.$

Norm Minimization Problem

- Average of 5 problems
- Matrix size n = 50, constraints m = 200

Corrector	Newton	Newton	BFGS	BFGS
Predictor	1st-order	2nd-order	1st-order	2nd-order
major # it.	14.8	12.6	14.2	12.6
CPU	843s	544s	$240\mathrm{s}$	210s
Newton # it.	39.2	28.0	-	-
BFGS # it.	-	-	340.0	319.8
Cholesky of S	198.6	107.8	608.2	509.4
CG	-	-	228.2	262.2
$\kappa(oldsymbol{ abla}^2oldsymbol{g}(oldsymbol{y},\mu))$	7.8e + 9	9.2e + 9	4.8e + 9	$1.2e{+10}$
$\kappa(oldsymbol{H}oldsymbol{ abla}^2oldsymbol{g}(oldsymbol{y},\mu))$	-	-	$3.3\mathrm{e}{+2}$	$1.7\mathrm{e}{+3}$

 $\boldsymbol{\nabla}^2 \boldsymbol{g}(\boldsymbol{y},\boldsymbol{\mu})$: the Hessian matrix of $\boldsymbol{g}(\cdot,\boldsymbol{\mu})$

- H: the BFGS matrix
- $\kappa({\boldsymbol{A}})$: the condition number of ${\boldsymbol{A}}$

Condition and scaled condition numbers along the iterations

- Box Constrained Quadratic ± 1 Program
- Matrix size n = 200, constraints m = 201

k	μ^k	rel.error	$oldsymbol{ abla}^2 g(oldsymbol{y}^k,\mu^k)$	$\kappa(oldsymbol{H}^koldsymbol{ abla}^2g(oldsymbol{y}^k,\mu^k))$	#CG
1	1.41e+1	+2.81e+1	$2.17\mathrm{e}{+2}$	$3.03\mathrm{e}{+3}$	4
2	3.83e+0	$+1.87\mathrm{e}{+0}$	$\mathbf{3.42e}{+2}$	$9.00\mathrm{e}{+2}$	9
3	2.00e+0	$+6.17\mathrm{e}{-1}$	$7.57\mathrm{e}{+2}$	$6.75\mathrm{e}{+2}$	14
4	$8.19e{-1}$	$+1.92\mathrm{e}{-1}$	$1.75\mathrm{e}{+3}$	$1.07\mathrm{e}{+3}$	24
5	$2.22\mathrm{e}{-1}$	$+4.62e{-2}$	$2.58\mathrm{e}{+3}$	$\mathbf{2.86\mathrm{e}{+1}}$	16
6	$4.22\mathrm{e}{-2}$	+8.48e-3	$3.01\mathrm{e}{+3}$	$5.94\mathrm{e}{+1}$	18
7	$4.22e{-3}$	+8.47e-4	$1.32\mathrm{e}{+4}$	$1.93\mathrm{e}{+4}$	44
8	$4.22e{-4}$	+8.47e-5	$1.33\mathrm{e}{+5}$	$1.62\mathrm{e}{+2}$	18
9	$4.22\mathrm{e}{-5}$	+8.43e-6	$1.33\mathrm{e}{+6}$	$3.37\mathrm{e}{+1}$	14
10	$4.22\mathrm{e}{-6}$	+8.45e-7	$1.33\mathrm{e}{+7}$	$5.18\mathrm{e}{+2}$	16

 $\nabla^2 g(y,\mu)$: the Hessian matrix of $g(\cdot,\mu)$

- H: the BFGS matrix
- $\kappa({\boldsymbol{A}})$: the condition number of ${\boldsymbol{A}}.$

Summary

 \implies New type of predictor-corrector dual IP method for SDP

 $\left\{ \begin{array}{ll} \mathbf{dual \ feasible, \ primal \ infeasible} \\ \boldsymbol{XS} = \mu \boldsymbol{I} \end{array} \right.$

 \Rightarrow (CORRECTOR procedure)

Quasi-Newton BFGS instead of Newton method \implies (PREDICTOR Step)

BFGS matrix H is a good preconditioner for the CG

 \Rightarrow Can be extended to Linear Optimization Problems over convex cones (LP, SOCP)

Further Directions

- \implies Implementation in C/C++
- \implies Improve numerical convergence
- \implies Limited memory BFGS method for large scale problems