Global Optimization Using Semidefinite Programming Relaxation

Masakazu Kojima

Tokyo Institute of Technology

Nonlinear Analysis and Convex Analysis

Tokyo Institute of Technology, Tokyo March 27-31, 2009 Purpose of this talk —

Introduction to Semidefinite Programming Relaxation for Polynomial Optimization Problems

- 1. Global optimization of nonconvex problems
 - 1-1 Polynomial Optimization Problems (POPs)
 - 1-2 SemiDefinite Programs (SDPs)
- 2. SDP relaxation
- 3. Exploiting sparsity in SDP relaxation
- 4. Numerical results
- 5. Concluding remarks

- 1. Global optimization of nonconvex problems
 - 1-1 Polynomial Optimization Problems (POPs)
 - 1-2 SemiDefinite Programs (SDPs)
- 2. SDP relaxation
- 3. Exploiting sparsity in SDP relaxation
- 4. Numerical results
- 5. Concluding remarks

OP : Optimization problem in the *n*-dim. Euclidean space \mathbb{R}^n min. $f(\boldsymbol{x})$ sub.to $\boldsymbol{x} \in S \subseteq \mathbb{R}^n$, where $f : \mathbb{R}^n \to \mathbb{R}$.

We want to approximate a global optimal solution x^* ;

 $\boldsymbol{x}^* \in S \text{ and } f(\boldsymbol{x}^*) \leq f(\boldsymbol{x}) \text{ for all } \boldsymbol{x} \in S$

if it exists. But, impossible without any assumption.

Various assumptions

- continuity, differentiability, compactness, ...
- convexity \Rightarrow local opt. sol. \equiv global opt. sol.

 \Rightarrow local improvement leads to a global opt. sol.

• Powerful software for convex problems \ni LPs, SDPs, ...

OP : Optimization problem in the *n*-dim. Euclidean space \mathbb{R}^n min. $f(\boldsymbol{x})$ sub.to $\boldsymbol{x} \in S \subseteq \mathbb{R}^n$, where $f : \mathbb{R}^n \to \mathbb{R}$.

We want to approximate a global optimal solution x^* ;

 $\boldsymbol{x}^* \in S \text{ and } f(\boldsymbol{x}^*) \leq f(\boldsymbol{x}) \text{ for all } \boldsymbol{x} \in S$

if it exists. But, impossible without any assumption.

Various assumptions

- continuity, differentiability, compactness,
- convexity \Rightarrow local opt. sol. \equiv global opt. sol.
 - \Rightarrow local improvement leads to a global opt. sol.
 - Powerful software for convex problems \ni LPs, SDPs, ...

What can we do beyond convexity?

- We still need proper models and assumptions
 - Polynomial Optimization Problems (POPs) this talk
- Main tool is SDP relaxation this talk Powerful in theory but expensive in practice
- Exploiting sparsity in large scale SDPs & POPs this talk

- 1. Global optimization of nonconvex problems
 - 1-1 Polynomial Optimization Problems (POPs)
 - 1-2 SemiDefinite Programs (SDPs)
- 2. SDP relaxation
- 3. Exploiting sparsity in SDP relaxation
- 4. Numerical results
- 5. Concluding remarks

 $\boldsymbol{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$: a vector variable $f_i(\boldsymbol{x})$: a real-valued polynomial in x_1, \ldots, x_n $(j = 0, 1, \ldots, m)$ **POP:** min $f_0(x)$ sub.to $f_i(x) \ge 0$ or $= 0 \ (j = 1, ..., m)$ Example. n = 3, $\boldsymbol{x} = (x_1, x_2, x_3) \in \mathbb{R}^3$: a vector variable $f_0(\boldsymbol{x}) \equiv x_1^3 - 2x_1x_2^2 + x_1^2x_2x_3 - 4x_3^2$ min $f_1(\boldsymbol{x}) \equiv -x_1^2 + 5x_2x_3 + 1 > 0,$ sub.to $f_2(\boldsymbol{x}) \equiv x_1^2 - 3x_1x_2x_3 + 2x_3 + 2 \ge 0,$ $f_3(\mathbf{x}) \equiv -x_1^2 - x_2^2 - x_3^2 + 1 > 0.$ $x_1(x_1 - 1) = 0$ (0-1 integer cond.), $x_2 \ge 0, x_3 \ge 0, x_2x_3 = 0$ (comp. cond.).

• Various problems (including 0-1 integer programs) \Rightarrow POP

• POP serves as a unified theoretical model for global optimization in nonlinear and combinatorial optimization problems.

- 1. Global optimization of nonconvex problems
 - 1-1 Polynomial Optimization Problems (POPs)
 - 1-2 SemiDefinite Programs (SDPs)
- 2. SDP relaxation
- 3. Exploiting sparsity in SDP relaxation
- 4. Numerical results
- 5. Concluding remarks

SDP is an extension of Linear Program (LP)

LP: minimize
$$-x_1 - 2x_2 - 5x_3$$

subject to $2x_1 + 3x_2 + x_3 = 7, x_1 + x_2 \ge 1,$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$

SDP: minimize
$$-x_1 - 2x_2 - 5x_3$$

subject to $2x_1 + 3x_2 + x_3 = 7, x_1 + x_2 \ge 1,$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0,$
 $\begin{pmatrix} x_1 & x_2 \\ x_2 & x_3 \end{pmatrix} \succeq O$ (positive semidefinite).

- **•** common : a linear objective function in x_1, x_2, x_3
- **•** common : linear equality/inequality constraints in x_1, x_2, x_3
- difference : SDP can have positive semidefinite constraints
- difference in their feasible regions :

polyhedral set VS nonpolyhedral convex set

common : the primal-dual interior-point method

- 1. Global optimization of nonconvex problems
 - 1-1 Polynomial Optimization Problems (POPs)
 - 1-2 SemiDefinite Programs (SDPs)
- 2. SDP relaxation Lasserre 2001
- 3. Exploiting sparsity in SDP relaxation
- 4. Numerical results
- 5. Concluding remarks

Three ways of describing the SDP relaxation by Lasserre:

- Sum of squares of polynomials
- Linearization of polynomial SDPs
- Probability measure and its moments \Rightarrow this talk

 μ : a probability measure on \mathbb{R}^n . We assume n = 2 in this talk. For every r = 0, 1, 2, ..., define

$$\boldsymbol{u}_r(\boldsymbol{x}) = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2, x_1^3, \dots, x_2^r)$$
: row vector
(all monomials with degree $\leq r$)

$$\boldsymbol{M}_{r}(\boldsymbol{y}) = \int_{\mathbb{R}^{2}} \boldsymbol{u}_{r}(\boldsymbol{x})^{T} \boldsymbol{u}_{r}(\boldsymbol{x}) d\mu \begin{pmatrix} \text{moment matrix, symmetric,} \\ \text{positive semidefinite} \end{pmatrix}$$
$$y_{\alpha\beta} = \int_{\mathbb{R}^{2}} x_{1}^{\alpha} x_{2}^{\beta} d\mu = (\alpha, \beta) \text{-element depending on } \mu, \ y_{00} = 1 \end{pmatrix}$$

Example with r = 2: $y_{21} = \int_{\mathbb{R}} \begin{pmatrix} y_{00} & y_{10} & y_{01} & y_{20} & y_{11} & y_{02} \\ y_{10} & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} \\ y_{01} & y_{11} & y_{02} & y_{21} & y_{12} & y_{03} \\ y_{20} & y_{30} & y_{21} & y_{40} & y_{31} & y_{22} \\ y_{11} & y_{21} & y_{12} & y_{31} & y_{22} & y_{13} \\ y_{02} & y_{12} & y_{03} & y_{22} & y_{13} & y_{04} \end{pmatrix}, y_{00} =$

$$= \int_{\mathbb{R}^2} x_1^2 x_2 d\mu$$
$$y_{00} = 1$$

 μ : a probability measure on \mathbb{R}^n . We assume n=2 in this talk. For every $r=0,1,2,\ldots$, define

$$\boldsymbol{u}_r(\boldsymbol{x}) = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2, x_1^3, \dots, x_2^r)$$
: row vector
(all monomials with degree $\leq r$)

$$\begin{split} \boldsymbol{M}_{r}(\boldsymbol{y}) &= \int_{\mathbb{R}^{2}} \boldsymbol{u}_{r}(\boldsymbol{x})^{T} \boldsymbol{u}_{r}(\boldsymbol{x}) d\mu \left(\begin{array}{c} \text{moment matrix, symmetric,} \\ \text{positive semidefinite} \end{array} \right) \\ y_{\alpha\beta} &= \int_{\mathbb{R}^{2}} x_{1}^{\alpha} x_{2}^{\beta} d\mu \ = (\alpha, \beta) \text{-element depending on } \mu, \ y_{00} = 1 \end{split}$$

 μ : a probability measure on \mathbb{R}^2 \downarrow $y_{00} = 1$, $M_r(y) \succeq O$ (positive semidefinite) (r = 1, 2, ...)

✓ We will use this necessary cond. with a finite r for μ to be a probability measure in relaxation of a POP \Rightarrow next slide.

- $\zeta_r \leq \zeta_{r+1} \leq \zeta^*$, and $\zeta_r \to \zeta^*$ as $r \to \infty$ under a moderate assumption that requires *S* is bounded (Lasserre '01).
- We can apply SDP relaxation to general POPs in \mathbb{R}^n .

SDP relaxation (Lasserre '01) of a POP — an example

$$r = 2$$

min $y_{40} - 2y_{11}$ s.t. $\int \begin{pmatrix} 1\\x_1\\x_2 \end{pmatrix} \begin{pmatrix} 1\\x_1\\x_2 \end{pmatrix}^T x_1 d\mu \succeq O, \quad \leqslant x_1 \ge 0$
 $1 - x_1^2 - x_2^2 \ge 0 \Rightarrow \int \begin{pmatrix} 1\\x_1\\x_2 \end{pmatrix} \begin{pmatrix} 1\\x_1\\x_2 \end{pmatrix}^T (1 - x_1^2 - x_2^2) d\mu \succeq O,$
(moment matrix) $\int \begin{pmatrix} 1\\x_1\\x_2\\x_1^2\\x_1^2\\x_2^2 \end{pmatrix} \begin{pmatrix} 1\\x_1\\x_2\\x_2^2\\x_2^2 \end{pmatrix}^T d\mu \succeq O.$
 $\downarrow \quad y_{\alpha\beta} = \int_{\mathbb{R}^2} x_1^{\alpha} x_2^{\beta} d\mu$

SDP relaxation (Lasserre '01) of a POP — an example

$$r = 2$$

min $y_{40} - 2y_{11}$ s.t. $\begin{pmatrix} y_{10} & y_{20} & y_{11} \\ y_{20} & y_{30} & y_{21} \\ y_{11} & y_{21} & y_{12} \end{pmatrix} \succeq O$,
 $\begin{pmatrix} 1 - y_{20} - y_{02} & y_{10} - y_{30} - y_{12} & y_{01} - y_{21} - y_{03} \\ y_{10} - y_{30} - y_{12} & y_{20} - y_{40} - y_{22} & y_{11} - y_{31} - y_{13} \\ y_{01} - y_{21} - y_{03} & y_{11} - y_{31} - y_{13} & y_{02} - y_{22} - y_{04} \end{pmatrix} \succeq O$,
(moment matrix) $\begin{pmatrix} 1 & y_{10} & y_{01} & y_{20} & y_{11} & y_{02} \\ y_{10} & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} \\ y_{01} & y_{11} & y_{02} & y_{21} & y_{12} & y_{03} \\ y_{20} & y_{30} & y_{21} & y_{40} & y_{31} & y_{22} \\ y_{11} & y_{21} & y_{12} & y_{31} & y_{22} & y_{13} \\ y_{02} & y_{12} & y_{03} & y_{22} & y_{13} & y_{04} \end{pmatrix} \succeq O$.

 We can apply SDP relaxation to general POPs in ℝⁿ.
 Poweful in theory but very expensive in computation
 ⇒ Exploiting sparsity is crucial in practice.

- 1. Global optimization of nonconvex problems
 - 1-1 Polynomial Optimization Problems (POPs)
 - 1-2 SemiDefinite Programs (SDPs)
- 2. SDP relaxation
- 3. Exploiting sparsity in SDP relaxation Joint work by S. Kim, M. Kojima, M. Muramatsu, H. Waki
- 4. Numerical results
- 5. Concluding remarks

 $\boldsymbol{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$: a vector variable $f_i(\boldsymbol{x})$: a real-valued polynomial w. deg $\leq q \ (j = 0, 1, \dots, m)$ POP: min $f_0(\boldsymbol{x})$ sub.to $f_i(\boldsymbol{x}) \geq$ or = 0 (j = 1, ..., m) $\mathcal{F}^* = \text{the set of all monomials with deg} \leq q; \ \#\mathcal{F}^* = \begin{pmatrix} n+q \\ q \end{pmatrix}$ $\mathcal{F}^* \supseteq \mathcal{F}_i$ = the set of monomials involved in f_i $\min f_0 = -6.3x_5x_8 + 5.04x_2 + 0.35x_3 + x_4 + 3.36x_6$ sub.to $f_1 = -0.820x_2 + x_5 - 0.820x_6 = 0$ $f_2 = -x_2x_9 + 10x_3 + x_6 = 0$ $f_3 = 0.98x_4 - x_7(0.01x_5x_{10} + x_4) = 0$, $\mathsf{Ibd}_i \le x_i \le \mathsf{ubd}_i$ $f_4 = x_5 x_{12} - x_2 (1.12 + 0.132 x_9 - 0.0067 x_9^2) = 0$ $f_5 = x_8 x_{13} - 0.01 x_9 (1.098 - 0.038 x_9) - 0.325 x_7 - 0.574 = 0$ $f_6 = x_{10}x_{14} + 22.2x_{11} - 35.82 = 0 f_7 = x_1x_{11} - 3x_8 - 1.33 = 0$

- n = 14 variables. polynomials with deg $\leq q = 3$; $\#\mathcal{F}^* = 680$
- $\forall f_j$ involves less than 6 monomials + structured sparsity
- $Hf_0(\boldsymbol{x})$: Hessian mat., $F(\boldsymbol{x}) = (f_1, \dots, f_7)^T$, $DF(\boldsymbol{x})$: 7 × 14 Jacobian mat.. Sparsity pattern of $Hf_0 + DF^T DF \Rightarrow$

Sparsity pattern of $Hf_0 + DF^T DF$ with simultaneous row and column reordering (Reverse Cuthill-McKee ordering)

Structured sparsity

- Sparse (symbolic) Cholesky factorization
- Also, characterized by a sparse chordal graph structure

Structured sparsity condition Original SDP relaxation Lasserre 2001Sparse SDP relaxation proposed in Waki-Kim-Kojima-Muramatsu 2007 **Sparse SDP Dense SDP**

 $\mathcal{F}^* = \text{the set of all monomials with deg} \leq r; \#\mathcal{F}^* = \begin{pmatrix} n+r \\ r \end{pmatrix}$

POP: min $f_0(\boldsymbol{x})$ sub.to $f_j(\boldsymbol{x}) \geq$ or = 0 $(j = 1, \dots, m)$

 $f_i(\boldsymbol{x})$: a real-valued polynomial w. deg $\leq r \ (j = 0, 1, \dots, m)$

 $\mathcal{F}^* \supseteq \mathcal{F}_i$ = the set of monomials involved in f_i

 $\boldsymbol{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$: a vector variable

(a) \mathcal{F}_i does not involve many monomials. (b) $\{\mathcal{F}_i : j = 0, \dots, n\}$ satisfy a cond. characterized by a chordal graph.

 \downarrow

SDP is "smaller", and "more efficient" than dense SDP

Theoretical convergence to the opt. val. of POP

- 1. Global optimization of nonconvex problems
 - 1-1 Polynomial Optimization Problems (POPs)
 - 1-2 SemiDefinite Programs (SDPs)
- 2. SDP relaxation
- 3. Exploiting sparsity in SDP relaxation
- 4. Numerical results
 - SparsePOP by Waki-Kim-Kojima-Muramats-Sugimoto (2008) for polynomial optimization problems
 - SFSDP by Kim-Kojima-Waki (2008) for sensor network localization problem
- 5. Concluding remarks

In both cases, the SDP relaxation problems were solved by a MATLAB software SeDuMi developed by Sturm.

P1: a POP alkyl from globalib — presented previously
min
$$-6.3x_5x_8 + 5.04x_2 + 0.35x_3 + x_4 + 3.36x_6$$

sub.to $-0.820x_2 + x_5 - 0.820x_6 = 0$,
 $0.98x_4 - x_7(0.01x_5x_{10} + x_4) = 0$, $-x_2x_9 + 10x_3 + x_6 = 0$,
 $x_5x_{12} - x_2(1.12 + 0.132x_9 - 0.0067x_9^2) = 0$,
 $x_8x_{13} - 0.01x_9(1.098 - 0.038x_9) - 0.325x_7 = 0.574$,
 $x_{10}x_{14} + 22.2x_{11} = 35.82$, $x_1x_{11} - 3x_8 = -1.33$,
 $lbd_i \le x_i \le ubd_i$ $(i = 1, 2, ..., 14)$.

Sparse			Dense (Lasserre)		
€obj	ϵ feas	cpu	€obj	ϵ feas	cpu
1.8e-9	9.6e-9	4.1	out of	memory	

 $\epsilon_{\text{obj}} = \frac{|\text{lbd. for opt.val.} - \text{approx.opt.val.}|}{\max\{1, |\text{lbd. for opt.val.}|\}}.$

 ϵ_{feas} = the max. error in equalities, cpu : cpu time in second

Global optimality is guaranteed with high accuracy.

Unconstrained optimization problem

The gneralized Rosenbrock function — poly. with deg = 4 $f_R(\boldsymbol{x}) = 1 + \sum_{i=2}^n \left(100(x_i - x_{i-1}^2)^2 + (1 - x_i^2)^2 \right)$

The chained singular function — poly. with deg = 4

 $f_C(\boldsymbol{x}) = \sum_{i \in J} \left((x_i + 10x_{i+1})^2 + 5(x_{i+2} - x_{i+3})^2 + (x_{i+1} - 2x_{i+2})^4 + 10(x_i - 10x_{i+3})^4 \right)$ Here $J = \{1, 3, 5, \dots, n-3\}$, n is a mutiple of 4.

P2 : min $f_R(\boldsymbol{x}) + f_C(\boldsymbol{x})$ — unknown global optimal value and solution $Hf_R(\boldsymbol{x}) + Hf_C(\boldsymbol{x})$: very sparse \Rightarrow next Sparsity pattern of $Hf_R + Hf_C$ (n = 100) with simultaneous row and column reordering (Reverse Cuthill-McKee ordering)

Structured sparsity

Sparse (symbolic) Cholesky factorization

P2: min $f_R(x) + f_C(x)$ — deg. 4, sparse, unknown opt.val.

	Sparse			Dense (Lasserre)		
n	ϵ obj	# =	cpu	ϵ obj	# =	cpu
12	6e-9	214	0.2	1e-9	1,819	64.1
16	5e-9	294	0.2	1e-9	4,844	1311.1
100	2e-9	1,974	1.2	out of	mem	
1000	7e-11	19,974	16.9			
2000	6e-12	39,974	45.1			
3000	out of	mem				

 $\epsilon_{obj} = \frac{|lbd. for opt.val. - approx.opt.val.|}{\max\{1, |lbd. for opt.val.|\}}$. # = : the number of equalities of SDP, cpu : cpu time in second

Global optimality is guaranteed with high accuracy.

Sensor network localization problem: Let s = 2 or 3.

$$\begin{split} \boldsymbol{x}^{p} \in \mathbb{R}^{s} &: \quad \text{unknown location of sensors } (p = 1, 2, \dots, m), \\ \boldsymbol{x}^{r} = \boldsymbol{a}^{r} \in \mathbb{R}^{s} &: \quad \text{known location of anchors } (r = m + 1, \dots, n), \\ d_{pq}^{2} &= \quad \|\boldsymbol{x}^{p} - \boldsymbol{x}^{q}\|^{2} + \epsilon_{pq} - \text{given for } (p, q) \in \mathcal{N}, \\ \mathcal{N} &= \quad \{(p, q) : \|\boldsymbol{x}^{p} - \boldsymbol{x}^{q}\| \leq \rho = \text{a given radio range}\} \\ \text{Here } \epsilon_{pq} \text{ denotes a noise.} \end{split}$$

. . .

Anchors' positions are known. A distance is given for \forall edge. Compute locations of sensors.

- \Rightarrow Some nonconvex QOPs
- SDP relaxation FSDP by Biswas-Ye '06, ESDP by Wang et al '07, ... for s = 2.
- SOCP relaxation Tseng '07 for s = 2.

Numerical results on 3 methods applied to a sensor network localization problem with

m = the number of sensors dist. randomly in $[0, 1]^2$,

4 anchors located at the corner of $[0, 1]^2$,

 $\rho = radio distance = 0.1$, no noise.

FSDP — Biswas-Ye '06, powerful but expensive SFSDP = FSDP + exploiting sparsity, equivalent to FSDP ESDP — a further relaxation of FSDP, weaker than FSDP

	SeDuMi cpu time in second					
m	FSDP	SFSDP	ESDP			
500	389.1	35.0	62.5			
1000	3345.2	60.4	200.3			
2000		111.1	1403.9			
4000		182.1	11559.8			

m = 1000 sensors, 4 anchors located at the corner of $[0, 1]^2$, $\rho = radio distance = 0.1$, no noise

SFSDP = **FSDP** + exploiting sparsity

3 dim, 500 sensors, radio range = 0.3, noise \leftarrow N(0,0.1);

(estimated distance) $\hat{d}_{pq} = (1 + \epsilon_{pq}) d_{pq}$ (true unknown distance) $\epsilon_{pq} \leftarrow N(0, 0.1)$

SFSDP = **FSDP** + exploiting sparsity

3 dim, 500 sensors, radio range = 0.3, noise \leftarrow N(0,0.1);

(estimated distance) $\hat{d}_{pq} = (1 + \epsilon_{pq}) d_{pq}$ (true unknown distance) $\epsilon_{pq} \leftarrow N(0, 0.1)$

(SFSDP = FSDP + exploiting sparsity) + Gradient method

- 1. Global optimization of nonconvex problems
 - 1-1 Polynomial Optimization Problems (POPs)
 - 1-2 SemiDefinite Programs (SDPs)
- 2. SDP relaxation
- 3. Exploiting sparsity in SDP relaxation
- 4. Numerical results
- 5. Concluding remarks

Concluding remarks

- Sparse SDP relaxation (Waki-Kim-Kojima-Muramatsu)
 - = Lasserre's (dense) SDP relaxation + exploiting sparsity
 - poweful in practice and theoretical convergence
- Some important issues to be studied.
 - Exploiting sparsity further to solve larger scale and/or higher degree POPs.
 - Huge-scale SDPs.
 - Numerical difficulty in solving SDP relaxations of POPs.

Thank you!