Global Optimization Using Semidefinite Programming Relaxation

Masakazu Kojima

Tokyo Institute of Technology
Nonlinear Analysis and Convex Analysis

Tokyo Institute of Technology, Tokyo
March 27-31, 2009

Purpose of this talk -
Introduction to Semidefinite Programming Relaxation for Polynomial Optimization Problems

Contents

1. Global optimization of nonconvex problems

1-1 Polynomial Optimization Problems (POPs)
1-2 SemiDefinite Programs (SDPs)
2. SDP relaxation
3. Exploiting sparsity in SDP relaxation
4. Numerical results
5. Concluding remarks

Contents

1. Global optimization of nonconvex problems

1-1 Polynomial Optimization Problems (POPs)
1-2 SemiDefinite Programs (SDPs)
2. SDP relaxation
3. Exploiting sparsity in SDP relaxation
4. Numerical results
5. Concluding remarks

OP : Optimization problem in the n-dim. Euclidean space \mathbb{R}^{n} \min. $f(\boldsymbol{x})$ sub.to $\boldsymbol{x} \in S \subseteq \mathbb{R}^{n}$, where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

We want to approximate a global optimal solution x^{*};

$$
\boldsymbol{x}^{*} \in S \text { and } f\left(\boldsymbol{x}^{*}\right) \leq f(\boldsymbol{x}) \text { for all } \boldsymbol{x} \in S
$$

if it exists. But, impossible without any assumption.
Various assumptions

- continuity, differentiability, compactness, ...
- convexity \Rightarrow local opt. sol. \equiv global opt. sol.
\Rightarrow local improvement leads to a global opt. sol.
- Powerful software for convex problems \ni LPs, SDPs, ...

OP : Optimization problem in the n-dim. Euclidean space \mathbb{R}^{n} min. $f(\boldsymbol{x})$ sub.to $\boldsymbol{x} \in S \subseteq \mathbb{R}^{n}$, where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

We want to approximate a global optimal solution x^{*};

$$
\boldsymbol{x}^{*} \in S \text { and } f\left(\boldsymbol{x}^{*}\right) \leq f(\boldsymbol{x}) \text { for all } \boldsymbol{x} \in S
$$

if it exists. But, impossible without any assumption.
Various assumptions

- continuity, differentiability, compactness, ...
- convexity \Rightarrow local opt. sol. \equiv global opt. sol.
\Rightarrow local improvement leads to a global opt. sol.
- Powerful software for convex problems \ni LPs, SDPs, ...

What can we do beyond convexity?

- We still need proper models and assumptions
- Polynomial Optimization Problems (POPs) - this talk
- Main tool is SDP relaxation - this talk

Powerful in theory but expensive in practice

- Exploiting sparsity in large scale SDPs \& POPs - this talk

Contents

1. Global optimization of nonconvex problems 1-1 Polynomial Optimization Problems (POPs)
1-2 SemiDefinite Programs (SDPs)
2. SDP relaxation
3. Exploiting sparsity in SDP relaxation
4. Numerical results
5. Concluding remarks
$\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:$ a vector variable
$f_{j}(\boldsymbol{x})$: a real-valued polynomial in $x_{1}, \ldots, x_{n}(j=0,1, \ldots, m)$
POP: $\min f_{0}(\boldsymbol{x})$ sub.to $f_{j}(\boldsymbol{x}) \geq 0$ or $=0(j=1, \ldots, m)$
Example. $n=3, \boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$: a vector variable

$$
\begin{aligned}
\min & f_{0}(\boldsymbol{x}) \equiv x_{1}^{3}-2 x_{1} x_{2}^{2}+x_{1}^{2} x_{2} x_{3}-4 x_{3}^{2} \\
\text { sub.to } & f_{1}(\boldsymbol{x}) \equiv-x_{1}^{2}+5 x_{2} x_{3}+1 \geq 0, \\
& f_{2}(\boldsymbol{x}) \equiv x_{1}^{2}-3 x_{1} x_{2} x_{3}+2 x_{3}+2 \geq 0 \\
& f_{3}(\boldsymbol{x}) \equiv-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}+1 \geq 0 . \\
& x_{1}\left(x_{1}-1\right)=0(0-1 \text { integer cond.) } \\
& x_{2} \geq 0, x_{3} \geq 0, x_{2} x_{3}=0 \text { (comp. cond.). }
\end{aligned}
$$

- Various problems (including 0-1 integer programs) $\Rightarrow \mathrm{POP}$
- POP serves as a unified theoretical model for global optimization in nonlinear and combinatorial optimization problems.

Contents

1. Global optimization of nonconvex problems

1-1 Polynomial Optimization Problems (POPs)
1-2 SemiDefinite Programs (SDPs)
2. SDP relaxation
3. Exploiting sparsity in SDP relaxation
4. Numerical results
5. Concluding remarks

SDP is an extension of Linear Program (LP)

$$
\begin{array}{lll}
\text { LP: } & \text { minimize } & -x_{1}-2 x_{2}-5 x_{3} \\
\text { subject to } & 2 x_{1}+3 x_{2}+x_{3}=7, x_{1}+x_{2} \geq 1, \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0
\end{array}
$$

SDP: minimize $-x_{1}-2 x_{2}-5 x_{3}$
subject to $2 x_{1}+3 x_{2}+x_{3}=7, x_{1}+x_{2} \geq 1$,

$$
x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0
$$

$$
\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{3}
\end{array}\right) \succeq \boldsymbol{O} \text { (positive semidefinite). }
$$

- common: a linear objective function in x_{1}, x_{2}, x_{3}
- common : linear equality/inequality constraints in x_{1}, x_{2}, x_{3}
- difference : SDP can have positive semidefinite constraints
- difference in their feasible regions: polyhedral set VS nonpolyhedral convex set
- common : the primal-dual interior-point method

Contents

1. Global optimization of nonconvex problems 1-1 Polynomial Optimization Problems (POPs) 1-2 SemiDefinite Programs (SDPs)
2. SDP relaxation - Lasserre 2001
3. Exploiting sparsity in SDP relaxation
4. Numerical results
5. Concluding remarks

Three ways of describing the SDP relaxation by Lasserre:

- Sum of squares of polynomials
- Linearization of polynomial SDPs
- Probabilty measure and its moments \Rightarrow this talk
μ : a probability measure on \mathbb{R}^{n}. We assume $n=2$ in this talk. For every $r=0,1,2, \ldots$, define

$$
\boldsymbol{u}_{r}(\boldsymbol{x})=\left(1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}, x_{1}^{3}, \ldots, x_{2}^{r}\right): \text { row vector }
$$

(all monomials with degree $\leq r$)
$\boldsymbol{M}_{r}(\boldsymbol{y})=\int_{\mathbb{R}^{2}} \boldsymbol{u}_{r}(\boldsymbol{x})^{T} \boldsymbol{u}_{r}(\boldsymbol{x}) d \mu\binom{$ moment matrix, symmetric, }{ positive semidefinite }
$y_{\alpha \beta}=\int_{\mathbb{R}^{2}} x_{1}^{\alpha} x_{2}^{\beta} d \mu=(\alpha, \beta)$-element depending on $\mu, y_{00}=1$

$$
\begin{aligned}
& \text { Example with } r=2: \\
& \boldsymbol{M}_{r}(\boldsymbol{y})=\left(\begin{array}{llllll}
y_{00} & y_{10} & y_{01} & y_{20} & y_{11} & y_{02} \\
y_{10} & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} \\
y_{01} & y_{11} & y_{02} & y_{21} & y_{12} & y_{03} \\
y_{20} & y_{30} & y_{21} & y_{40} & y_{31} & y_{22} \\
y_{11} & y_{21} & y_{12} & y_{31} & y_{22} & y_{13} \\
y_{02} & y_{12} & y_{03} & y_{22} & y_{13} & y_{04}
\end{array}\right), y_{00}=1
\end{aligned}
$$

μ : a probability measure on \mathbb{R}^{n}. We assume $n=2$ in this talk. For every $r=0,1,2, \ldots$, define

$$
\boldsymbol{u}_{r}(\boldsymbol{x})=\left(1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}, x_{1}^{3}, \ldots, x_{2}^{r}\right): \text { row vector }
$$

(all monomials with degree $\leq r$)
$\boldsymbol{M}_{r}(\boldsymbol{y})=\int_{\mathbb{R}^{2}} \boldsymbol{u}_{r}(\boldsymbol{x})^{T} \boldsymbol{u}_{r}(\boldsymbol{x}) d \mu\binom{$ moment matrix, symmetric,}{ positive semidefinite }
$y_{\alpha \beta}=\int_{\mathbb{R}^{2}} x_{1}^{\alpha} x_{2}^{\beta} d \mu=(\alpha, \beta)$-element depending on $\mu, y_{00}=1$

$$
\begin{gathered}
\mu: \text { a probability measure on } \mathbb{R}^{2} \\
\Downarrow \\
y_{00}=1, \boldsymbol{M}_{r}(\boldsymbol{y}) \succeq \boldsymbol{O} \text { (positive semidefinite) }(r=1,2, \ldots)
\end{gathered}
$$

- We will use this necessary cond. with a finite r for μ to be a probability measure in relaxation of a $\mathrm{POP} \Rightarrow$ next slide.

SDP relaxation (Lasserre '01) of a POP - an example
POP: min $\quad f_{0}(\boldsymbol{x})=x_{1}^{4}-2 x_{1} x_{2} \quad$ opt. val. ζ^{*} : unknown
sub. to $\quad \boldsymbol{x} \in S \equiv\left\{\boldsymbol{x} \in \mathbb{R}^{2}: \begin{array}{l}f_{1}(\boldsymbol{x})=1-x_{1}^{2}-x_{2}^{2} \geq 0 \\ f_{2}(\boldsymbol{x})=x_{1} \geq 0\end{array}\right\}$.
॥
$\min \quad \int f_{0}(\boldsymbol{x}) d \mu$
sub. to $\quad \mu$: a prob. meas. on S.

$$
\Downarrow y_{\alpha \beta}=\int_{\mathbb{R}^{2}} x_{1}^{\alpha} x_{2}^{\beta} d \mu
$$

$\min \quad y_{40}-2 y_{11} \Rightarrow$ SDP relaxation, opt. val. $\zeta_{r} \leq \zeta^{*}$
sub. to "a certain moment cond. with a parameter r for μ to be a probability measure on $S^{\prime \prime} \Rightarrow$ next slide

- $\zeta_{r} \leq \zeta_{r+1} \leq \zeta^{*}$, and $\zeta_{r} \rightarrow \zeta^{*}$ as $r \rightarrow \infty$ under a moderate assumption that requires S is bounded (Lasserre '01).
- We can apply SDP relaxation to general POPs in \mathbb{R}^{n}.

SDP relaxation (Lasserre '01) of a POP $\frac{\text { an example }}{}$ $r=2$
$\min y_{40}-2 y_{11}$ s.t. $\int\left(\begin{array}{c}1 \\ x_{1} \\ x_{2}\end{array}\right)\left(\begin{array}{c}1 \\ x_{1} \\ x_{2}\end{array}\right) \quad x_{1} d \mu \succeq \boldsymbol{O}, \Leftarrow x_{1} \geq 0$
$1-x_{1}^{2}-x_{2}^{2} \geq 0 \Rightarrow \int\left(\begin{array}{c}1 \\ x_{1} \\ x_{2}\end{array}\right)\left(\begin{array}{c}1 \\ x_{1} \\ x_{2}\end{array}\right)^{T}\left(1-x_{1}^{2}-x_{2}^{2}\right) d \mu \succeq \boldsymbol{O}$,
$\begin{array}{cc}\text { (moment matrix) } & \int\left(\begin{array}{c}1 \\ x_{1} \\ x_{2} \\ x_{1}^{2} \\ x_{1} x_{2} \\ x_{2}^{2}\end{array}\right)\left(\begin{array}{c}1 \\ x_{1} \\ x_{2} \\ x_{1}^{2} \\ x_{1} x_{2} \\ x_{2}^{2}\end{array}\right)^{T} d \mu \succeq \boldsymbol{O} . \\ & \Downarrow \quad y_{\alpha \beta}=\int_{\mathbb{R}^{2}} x_{1}^{\alpha} x_{2}^{\beta} d \mu\end{array}$

SDP relaxation (Lasserre '01) of a POP — an example
$\left.\begin{array}{l}r=2 \\ \min y_{40}-2 y_{11} \text { s.t. }\left(\begin{array}{lll}y_{10} & y_{20} & y_{11} \\ y_{20} & y_{30} & y_{21} \\ y_{11} & y_{21} & y_{12}\end{array}\right) \succeq \boldsymbol{O}, \\ \left(\begin{array}{c}1-y_{20}-y_{02}\end{array} y_{10}-y_{30}-y_{12}\right. \\ y_{10}-y_{01}-y_{21}-y_{03} \\ y_{01}-y_{12}-y_{20}-y_{40}-y_{22} \\ y_{11}-y_{31}-y_{13} \\ y_{11}-y_{31}-y_{13} \\ y_{02}-y_{22}-y_{04}\end{array}\right) \succeq \boldsymbol{O}$,

- We can apply SDP relaxation to general POPs in \mathbb{R}^{n}.
- Poweful in theory but very expensive in computation \Rightarrow Exploiting sparsity is crucial in practice.

Contents

1. Global optimization of nonconvex problems 1-1 Polynomial Optimization Problems (POPs) 1-2 SemiDefinite Programs (SDPs)
2. SDP relaxation
3. Exploiting sparsity in SDP relaxation Joint work by S. Kim, M. Kojima, M. Muramatsu, H. Waki
4. Numerical results
5. Concluding remarks
$\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$: a vector variable $f_{j}(\boldsymbol{x})$: a real-valued polynomial w. deg $\leq q(j=0,1, \ldots, m)$
POP: $\min f_{0}(\boldsymbol{x})$ sub.to $f_{j}(\boldsymbol{x}) \geq$ or $=0(j=1, \ldots, m)$
$\left.\begin{array}{l}\mathcal{F}^{*}=\text { the set of all monomials with deg } \leq q ; \# \mathcal{F}^{*}=\binom{n+q}{q} \\ \mathcal{F}^{*} \supseteq \mathcal{F}_{j}=\text { the set of monomials involved in } f_{j}\end{array}\right)$

$$
\begin{aligned}
& \min f_{0}=-6.3 x_{5} x_{8}+5.04 x_{2}+0.35 x_{3}+x_{4}+3.36 x_{6} \text { sub.to } \\
& f_{1}=-0.820 x_{2}+x_{5}-0.820 x_{6}=0 f_{2}=-x_{2} x_{9}+10 x_{3}+x_{6}=0 \\
& f_{3}=0.98 x_{4}-x_{7}\left(0.01 x_{5} x_{10}+x_{4}\right)=0, \quad \operatorname{lbd}_{i} \leq x_{i} \leq \text { ubd } \\
& i \\
& f_{4}=x_{5} x_{12}-x_{2}\left(1.12+0.132 x_{9}-0.0067 x_{9}^{2}\right)=0 \\
& f_{5}=x_{8} x_{13}-0.01 x_{9}\left(1.098-0.038 x_{9}\right)-0.325 x_{7}-0.574=0 \\
& f_{6}=x_{10} x_{14}+22.2 x_{11}-35.82=0 f_{7}=x_{1} x_{11}-3 x_{8}-1.33=0
\end{aligned}
$$

- $n=14$ variables. polynomials with $\operatorname{deg} \leq q=3 ; \# \mathcal{F}^{*}=680$
- $\forall f_{j}$ involves less than 6 monomials + structured sparsity
- $H f_{0}(\boldsymbol{x})$: Hessian mat., $F(\boldsymbol{x})=\left(f_{1}, \ldots, f_{7}\right)^{T}, D F(\boldsymbol{x})$: 7×14 Jacobian mat.. Sparsity pattern of $H f_{0}+D F^{T} D F \Rightarrow$

Sparsity pattern of $H f_{0}+D F^{T} D F$ with simultaneous row and column reordering (Reverse Cuthill-McKee ordering)

Structured sparsity

- Sparse (symbolic) Cholesky factorization
- Also, characterized by a sparse chordal graph structure
$\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$: a vector variable
$f_{j}(\boldsymbol{x})$: a real-valued polynomial w. deg $\leq r(j=0,1, \ldots, m)$
POP: $\min f_{0}(\boldsymbol{x})$ sub.to $f_{j}(\boldsymbol{x}) \geq$ or $=0(j=1, \ldots, m)$
$\mathcal{F}^{*}=$ the set of all monomials with deg $\leq r ; \# \mathcal{F}^{*}=\binom{n+r}{\mathcal{F}^{*} \supseteq \mathcal{F}_{j}=$ the set of monomials involved in $f_{j}}$
Structured sparsity condition
(a) \mathcal{F}_{j} does not involve many monomials.
(b) $\left\{\mathcal{F}_{j}: j=0, \ldots, n\right\}$ satisfy a cond. characterized by a chordal graph.

Original
SDP
relaxation
Lasserre 2001

Sparse SDP relaxation proposed in Waki-Kim-Kojima-Muramatsu 2007

Sparse SDP

Dense SDP

- SDP is "smaller", and "more efficient" than dense SDP
- Theoretical convergence to the opt. val. of POP

Contents

1. Global optimization of nonconvex problems

 1-1 Polynomial Optimization Problems (POPs) 1-2 SemiDefinite Programs (SDPs)2. SDP relaxation
3. Exploiting sparsity in SDP relaxation
4. Numerical results

- SparsePOP by Waki-Kim-Kojima-Muramats-Sugimoto (2008) for polynomial optimization problems
- SFSDP by Kim-Kojima-Waki (2008) for sensor network localization problem

5. Concluding remarks

In both cases, the SDP relaxation problems were solved by a MATLAB software SeDuMi developed by Sturm.

P1: a POP alkyl from globalib - presented previously

$$
\begin{aligned}
& \min \quad-6.3 x_{5} x_{8}+5.04 x_{2}+0.35 x_{3}+x_{4}+3.36 x_{6} \\
& \text { sub.to }-0.820 x_{2}+x_{5}-0.820 x_{6}=0, \\
& 0.98 x_{4}-x_{7}\left(0.01 x_{5} x_{10}+x_{4}\right)=0,-x_{2} x_{9}+10 x_{3}+x_{6}=0, \\
& x_{5} x_{12}-x_{2}\left(1.12+0.132 x_{9}-0.0067 x_{9}^{2}\right)=0, \\
& x_{8} x_{13}-0.01 x_{9}\left(1.098-0.038 x_{9}\right)-0.325 x_{7}=0.574, \\
& x_{10} x_{14}+22.2 x_{11}=35.82, x_{1} x_{11}-3 x_{8}=-1.33, \\
& \operatorname{lbd}_{i} \leq x_{i} \leq \operatorname{ubd}_{i}(i=1,2, \ldots, 14) .
\end{aligned}
$$

Sparse			Dense (Lasserre)		
$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }} \quad \mathrm{cpu}$	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }} \quad \mathrm{cpu}$		
$1.8 \mathrm{e}-9$	$9.6 \mathrm{e}-9$	4.1	out of	memory	

$\epsilon_{\text {obj }}=\frac{\text { |lbd. for opt.val. }- \text { approx.opt.val. } \mid}{\max \{1, \mid \text { |lbd. for opt.val. } \mid\}}$.
$\epsilon_{\text {feas }}=$ the max. error in equalities, cpu : cpu time in second

- Global optimality is guaranteed with high accuracy.

Unconstrained optimization problem
The gneralized Rosenbrock function — poly. with deg $=4$

$$
f_{R}(\boldsymbol{x})=1+\sum_{i=2}^{n}\left(100\left(x_{i}-x_{i-1}^{2}\right)^{2}+\left(1-x_{i}^{2}\right)^{2}\right)
$$

The chained singular function - poly. with deg $=4$

$$
\begin{aligned}
f_{C}(\boldsymbol{x})= & \sum_{i \in J}\left(\left(x_{i}+10 x_{i+1}\right)^{2}+5\left(x_{i+2}-x_{i+3}\right)^{2}\right. \\
& \left.+\left(x_{i+1}-2 x_{i+2}\right)^{4}+10\left(x_{i}-10 x_{i+3}\right)^{4}\right)
\end{aligned}
$$

Here $J=\{1,3,5, \ldots, n-3\}, n$ is a mutiple of 4 .
$\mathrm{P} 2: \min f_{R}(\boldsymbol{x})+f_{C}(\boldsymbol{x})$

- unknown global optimal value and solution $H f_{R}(\boldsymbol{x})+H f_{C}(\boldsymbol{x})$: very sparse \Rightarrow next

Sparsity pattern of $H f_{R}+H f_{C}(n=100)$ with simultaneous row and column reordering (Reverse Cuthill-McKee ordering)

Structured sparsity

- Sparse (symbolic) Cholesky factorization

P2 : $\min f_{R}(\boldsymbol{x})+f_{C}(\boldsymbol{x})$ - deg. 4, sparse, unknown opt.val.

	Sparse			Dense (Lasserre)		
n	$\epsilon_{\text {obj }}$	$\#=$	cpu	$\epsilon_{\text {obj }}$	$\#=$	cpu
12	$6 \mathrm{e}-9$	214	0.2	$1 \mathrm{e}-9$	1,819	64.1
16	$5 \mathrm{e}-9$	294	0.2	$1 \mathrm{e}-9$	4,844	1311.1
100	$2 \mathrm{e}-9$	1,974	1.2	out of	mem	
1000	$7 \mathrm{e}-11$	19,974	16.9			
2000	$6 \mathrm{e}-12$	39,974	45.1			
3000	out of	mem				

$$
\epsilon_{\text {obj }}=\frac{\mid \text { |lbd. for opt.val. }- \text { approx.opt.val. } \mid}{\max \{1, \mid \text { |bd. for opt.val. } \mid\}}
$$

\# = : the number of equalities of SDP,
cpu : cpu time in second

- Global optimality is guaranteed with high accuracy.

Sensor network localization problem: Let $s=2$ or 3 .
$\boldsymbol{x}^{p} \in \mathbb{R}^{s} \quad: \quad$ unknown location of sensors $(p=1,2, \ldots, m)$,
$\boldsymbol{x}^{r}=\boldsymbol{a}^{r} \in \mathbb{R}^{s} \quad: \quad$ known location of anchors $(r=m+1, \ldots, n)$,

$$
\begin{aligned}
d_{p q}^{2} & =\left\|\boldsymbol{x}^{p}-\boldsymbol{x}^{q}\right\|^{2}+\epsilon_{p q}-\text { given for }(p, q) \in \mathcal{N} \\
\mathcal{N} & =\left\{(p, q):\left\|\boldsymbol{x}^{p}-\boldsymbol{x}^{q}\right\| \leq \rho=\text { a given radio range }\right\}
\end{aligned}
$$

Here $\epsilon_{p q}$ denotes a noise.
$m=5, n=9$.
$1, \ldots, 5$: sensors
6, 7, 8, 9: anchors

Anchors' positions are known.
A distance is given for \forall edge.
Compute locations of sensors.
\Rightarrow Some nonconvex QOPs

- SDP relaxation - FSDP by Biswas-Ye '06, ESDP by Wang et al '07, ... for $s=2$.
- SOCP relaxation - Tseng '07 for $s=2$.
- ...

Numerical results on 3 methods applied to a sensor network localization problem with $m=$ the number of sensors dist. randomly in $[0,1]^{2}$, 4 anchors located at the corner of $[0,1]^{2}$, $\rho=$ radio distance $=0.1$, no noise.

FSDP — Biswas-Ye '06, powerful but expensive SFSDP = FSDP + exploiting sparsity, equivalent to FSDP ESDP - a further relaxation of FSDP, weaker than FSDP

	SeDuMi cpu time in second		
m	FSDP	SFSDP	ESDP
500	389.1	35.0	62.5
1000	3345.2	60.4	200.3
2000		111.1	1403.9
4000		182.1	11559.8

$m=1000$ sensors, 4 anchors located at the corner of $[0,1]^{2}$, $\rho=$ radio distance $=0.1$, no noise

SFSDP = FSDP + exploiting sparsity

$3 \mathrm{dim}, 500$ sensors, radio range $=0.3$, noise $\leftarrow \mathrm{N}(0,0.1)$;
(estimated distance) $\hat{d}_{p q}=\left(1+\epsilon_{p q}\right) d_{p q}$ (true unknown distance)

$$
\epsilon_{p q} \leftarrow N(0,0.1)
$$

SFSDP = FSDP + exploiting sparsity

3 dim, 500 sensors, radio range $=0.3$, noise $\leftarrow \mathrm{N}(0,0.1)$;
(estimated distance) $\hat{d}_{p q}=\left(1+\epsilon_{p q}\right) d_{p q}$ (true unknown distance) $\epsilon_{p q} \leftarrow N(0,0.1)$
(SFSDP = FSDP + exploiting sparsity) + Gradient method

Contents

1. Global optimization of nonconvex problems

1-1 Polynomial Optimization Problems (POPs)
1-2 SemiDefinite Programs (SDPs)
2. SDP relaxation
3. Exploiting sparsity in SDP relaxation
4. Numerical results
5. Concluding remarks

Concluding remarks

- Sparse SDP relaxation (Waki-Kim-Kojima-Muramatsu)
= Lasserre's (dense) SDP relaxation + exploiting sparsity
- poweful in practice and theoretical convergence
- Some important issues to be studied.
- Exploiting sparsity further to solve larger scale and/or higher degree POPs.
- Huge-scale SDPs.
- Numerical difficulty in solving SDP relaxations of POPs.

Thank you!

