SDP and SOCP relaxations of a Class of Quadratic Optimization Problems

Masakazu Kojima
Tokyo Institute of Technology, Tokyo, Japan
kojima@is.titech.ac.jp
Sunyoung Kim
Ewha Women's University, Seoul, Korea
skim@math.ewha.ac.kr

[1] S. Kim and M. Kojima "Second Order Cone Programming Relaxation of Nonconvex Quadratic Optimization Problems", Optimization Methods and Software Vol .15, No.3-4, 201-224 (2001).
[2] S. Kim and M. Kojima "Exact Solutions of Some Nonconvex Quadratic Optimization Problems via SDP and SOCP Relaxations," January 2002.

This talk

1. Quadratic Optimization Problem (QOP)
2. SDP and Lift-and-Project LP relaxations of QOPs
3. SOCP relaxation - 1
4. SOCP relaxation - 2
5. A Class of QOPs that can be solved by SDP and SOCP \Longleftarrow An extension of S.Zhang 2000
6. Numerical experiments
7. Invariance under Linear Transformation

1. QOP (Quadratic Optimization Problem)

$$
\begin{array}{ll}
\text { Min. } & \boldsymbol{x}^{T} \boldsymbol{Q}_{0} \boldsymbol{x}+2 \boldsymbol{q}_{0}^{T} \boldsymbol{x}+\gamma_{0} \\
\text { sub.to } & \boldsymbol{x}^{T} \boldsymbol{Q}_{i} \boldsymbol{x}+2 \boldsymbol{q}_{i}^{T} \boldsymbol{x}+\gamma_{i} \leq 0(1 \leq i \leq m)
\end{array}
$$

Here $\quad \boldsymbol{Q}_{i} \in \mathcal{S}^{n}$ (the set of $n \times n$ symmetric matrices) $\boldsymbol{q}_{i} \in \mathbb{R}^{n}$ (the n dimensional Euclidean space)
$\gamma_{i} \in \mathbb{R}$ (the set of real numbers)
Let $\boldsymbol{M}_{i}=\left(\begin{array}{cc}\gamma_{i} & \boldsymbol{q}_{i}^{T} \\ \boldsymbol{q}_{i} & \boldsymbol{Q}_{i}\end{array}\right) \in \mathcal{S}^{1+n}$. Then we can rewrite

$$
\begin{aligned}
\boldsymbol{x}^{T} \boldsymbol{Q}_{i} \boldsymbol{x}+2 \boldsymbol{q}_{i}^{T} \boldsymbol{x}+\gamma_{i} & \equiv\left(\begin{array}{cc}
\gamma_{i} & \boldsymbol{q}_{i}^{T} \\
\boldsymbol{q}_{i} & \boldsymbol{Q}_{i}
\end{array}\right) \bullet\left(\begin{array}{cc}
1 & \boldsymbol{x}^{T} \\
\boldsymbol{x} & \boldsymbol{x} \boldsymbol{x}^{T}
\end{array}\right) \\
& \equiv \boldsymbol{M}_{i} \bullet \boldsymbol{X} \equiv \sum_{j=0}^{n} \sum_{k=0}^{n}\left[M_{i}\right]_{j k} X_{j k}
\end{aligned}
$$

Here

$$
\boldsymbol{X}=\left(\begin{array}{cc}
1 & \boldsymbol{x}^{T} \\
\boldsymbol{x} & \overline{\boldsymbol{X}}
\end{array}\right) \in \mathcal{S}_{+}^{1+n}, \quad \overline{\boldsymbol{X}}=\boldsymbol{x} \boldsymbol{x}^{T} .
$$

QOP: min. $M_{0} \bullet X$
s.t. $\quad \boldsymbol{M}_{i} \bullet \boldsymbol{X} \leq 0(1 \leq i \leq m), \quad \boldsymbol{X}=\left(\begin{array}{cc}1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \overline{\boldsymbol{X}}\end{array}\right) \in \mathcal{S}_{+}^{1+n}, \quad \overline{\boldsymbol{X}}=\boldsymbol{x} \boldsymbol{x}^{T}$

SDP Relaxation \Downarrow
$\min . \quad M_{0} \bullet X$
s.t. $\quad \boldsymbol{M}_{i} \bullet \boldsymbol{X} \leq 0(1 \leq i \leq m), \quad \boldsymbol{X}=\left(\begin{array}{cc}1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \overline{\boldsymbol{X}}\end{array}\right) \in \mathcal{S}_{+}^{1+n}$

Lift-and-Project LP Relaxation \Downarrow
$\min . \quad M_{0} \bullet X$
s.t. $\quad \boldsymbol{M}_{i} \bullet \boldsymbol{X} \leq 0(1 \leq i \leq m), \quad \boldsymbol{X}=\left(\begin{array}{cc}1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \overline{\boldsymbol{X}}\end{array}\right) \in \mathcal{S}^{1+n}$

SDP is more effective than LP but more expensive. $\Longrightarrow \mathrm{SOCP}$ relaxation as a reasonable compromise.

3. SOCP Relaxation - 1 (Kim-Kojima 2001).

QOP: min. $\boldsymbol{Q}_{0} \bullet \overline{\boldsymbol{X}}+2 \boldsymbol{q}_{0}^{T} \boldsymbol{x}+\gamma_{0}$

$$
\text { s.t. } \boldsymbol{Q}_{i} \bullet \overline{\boldsymbol{X}}+2 \boldsymbol{q}_{i}^{T} \boldsymbol{x}+\gamma_{i} \leq 0(1 \leq i \leq m), \boldsymbol{x} \boldsymbol{x}^{T}-\overline{\boldsymbol{X}}=\boldsymbol{O}
$$

Relaxation \Downarrow

$$
-\left(\boldsymbol{x} \boldsymbol{x}^{T}-\overline{\boldsymbol{X}}\right) \in \mathcal{S}_{+}^{n}
$$

```
min. \(\quad \boldsymbol{Q}_{0} \bullet \overline{\boldsymbol{X}}+2 \boldsymbol{q}_{0}^{T} \boldsymbol{x}+\gamma_{0}\)
s.t. \(\quad \boldsymbol{Q}_{i} \bullet \overline{\boldsymbol{X}}+2 \boldsymbol{q}_{i}^{T} \boldsymbol{x}+\gamma_{i} \leq 0(1 \leq i \leq m), \boldsymbol{C} \bullet\left(\boldsymbol{x} \boldsymbol{x}^{T}-\overline{\boldsymbol{X}}\right) \leq 0\) for \(\forall \boldsymbol{C} \in \mathcal{S}_{+}^{n}\)
```

Further Relaxation \Downarrow

SOCP1: min. $\quad \boldsymbol{Q}_{0} \bullet \overline{\boldsymbol{X}}+2 \boldsymbol{q}_{0}^{T} \boldsymbol{x}+\gamma_{0}$
s.t. $\quad \boldsymbol{Q}_{i} \bullet \overline{\boldsymbol{X}}+2 \boldsymbol{q}_{i}^{T} \boldsymbol{x}+\gamma_{i} \leq 0(1 \leq i \leq m)$, $\boldsymbol{C}_{p} \bullet\left(\boldsymbol{x} \boldsymbol{x}^{T}-\overline{\boldsymbol{X}}\right) \leq 0(1 \leq p \leq \ell)$

Here $\boldsymbol{C}_{p} \in \mathcal{S}_{+}^{n}(1 \leq p \leq \ell)$. Note that each $\boldsymbol{C}_{p} \bullet\left(\boldsymbol{x} \boldsymbol{x}^{T}-\overline{\boldsymbol{X}}\right) \leq 0$ is linear in \bar{X} and convex quadratic in \boldsymbol{x}.
\Longrightarrow an SOCP inequality constraint.

How strong is the inequality $\boldsymbol{C}_{p} \bullet\left(\boldsymbol{x} \boldsymbol{x}^{T}-\overline{\boldsymbol{X}}\right) \leq 0$?
Comparison:

$$
\begin{aligned}
& \overline{\boldsymbol{X}}-\boldsymbol{x} \boldsymbol{x}^{T} \in \mathcal{S}_{+}^{n} \quad \Longleftrightarrow \quad\left(\begin{array}{ll}
1 & \boldsymbol{x}^{T} \\
\boldsymbol{x} & \overline{\boldsymbol{X}}
\end{array}\right) \in \mathcal{S}_{+}^{1+n} \\
& \Downarrow \\
& \Downarrow \\
& \boldsymbol{C} \bullet\left(\overline{\boldsymbol{X}}-\boldsymbol{x} \boldsymbol{x}^{T}\right) \geq 0 \\
& \left(\text { or } C \bullet\left(\boldsymbol{x} \boldsymbol{x}^{T}-\overline{\boldsymbol{X}}\right) \leq 0 \quad\right. \text {) } \\
& \left(\begin{array}{ll}
1 & \boldsymbol{x}^{T} \\
\boldsymbol{x} & \overline{\boldsymbol{X}}
\end{array}\right) \bullet\left(\begin{array}{ll}
\delta & \boldsymbol{d}^{T} \\
\boldsymbol{d} & \boldsymbol{C}
\end{array}\right) \geq 0, \\
& \text { where } C \in \mathcal{S}_{+}^{n} \\
& \text { where }\left(\begin{array}{ll}
\delta & \boldsymbol{d}^{T} \\
\boldsymbol{d} & \boldsymbol{C}
\end{array}\right) \in \mathcal{S}_{+}^{1+n}
\end{aligned}
$$

Which is stronger?
Let $C \in \mathcal{S}_{+}^{n}$ be fixed.
$\boldsymbol{C} \bullet\left(\overline{\boldsymbol{X}}-\boldsymbol{x} \boldsymbol{x}^{T}\right) \geq 0 \Longleftrightarrow\left(\begin{array}{cc}1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \overline{\boldsymbol{X}}\end{array}\right) \bullet \boldsymbol{B} \geq 0$ for $\forall \boldsymbol{B} \in \mathcal{S}_{+}^{1+n}$ of the form

$$
\boldsymbol{B}=\left(\begin{array}{ll}
\delta & \boldsymbol{d}^{T} \\
\boldsymbol{d} & \boldsymbol{C}
\end{array}\right)
$$

Conversion of $\boldsymbol{C}_{p} \bullet\left(\boldsymbol{x} \boldsymbol{x}^{T}-\overline{\boldsymbol{X}}\right) \leq 0$ into an SOCP constraint

Since \boldsymbol{C}_{p} is positive semidefinite, we can take an $n \times \ell$ matrix \boldsymbol{L}_{p} such that $C_{p}=L_{p} \boldsymbol{L}_{p}^{T}$. Then we can rewrite the inequality above as an SOCP constraint:

$$
\begin{aligned}
& \binom{v_{p 0}}{\boldsymbol{v}_{p}}=\left(\begin{array}{c}
1-\boldsymbol{C}_{p} \bullet \boldsymbol{X} \\
1+\boldsymbol{C}_{p} \bullet \boldsymbol{X} \\
\boldsymbol{L}_{p}^{T} \boldsymbol{x}
\end{array}\right), \\
& \left\|\boldsymbol{v}_{p}\right\| \leq v_{p 0}
\end{aligned}
$$

4. SOCP Relaxation - 2

QOP: min. $M_{0} \bullet X$

$$
\text { s.t. } \quad \boldsymbol{M}_{i} \bullet \boldsymbol{X} \leq 0(1 \leq i \leq m), \quad \boldsymbol{X}=\left(\begin{array}{cc}
1 & \boldsymbol{x}^{T} \\
\boldsymbol{x} & \overline{\boldsymbol{X}}
\end{array}\right) \in \mathcal{S}_{+}^{1+n}, \quad \overline{\boldsymbol{X}}=\boldsymbol{x} \boldsymbol{x}^{T}
$$

SOCP Relaxation \Downarrow
SOCP2: min. $\boldsymbol{M}_{0} \bullet \boldsymbol{X}$ s.t. $\boldsymbol{M}_{i} \bullet \boldsymbol{X} \leq 0(\forall i), X_{00}=1$,

$$
\left(\begin{array}{ll}
X_{j j} & X_{j k} \\
X_{k j} & X_{k k}
\end{array}\right) \in \mathcal{S}_{+}^{2} \quad \text { for } \forall(j, k) \in \Lambda
$$

Here $\quad \boldsymbol{M}_{i}=\left(\begin{array}{cc}\gamma_{i} & \boldsymbol{q}_{i}^{T} \\ \boldsymbol{q}_{i} & \boldsymbol{Q}_{i}\end{array}\right) \in \mathcal{S}^{1+n}$,

$$
\begin{aligned}
& \boldsymbol{x}^{T} \boldsymbol{Q}_{i} \boldsymbol{x}+2 \boldsymbol{q}_{i}^{T} \boldsymbol{x}+\gamma_{i} \equiv\left(\begin{array}{cc}
\gamma_{i} & \boldsymbol{q}_{i}^{T} \\
\boldsymbol{q}_{i} & \boldsymbol{Q}_{i}
\end{array}\right) \bullet\left(\begin{array}{ll}
1 & \boldsymbol{x}^{T} \\
\boldsymbol{x} & \boldsymbol{x} \boldsymbol{x}^{T}
\end{array}\right) \equiv \boldsymbol{M}_{i} \bullet \boldsymbol{X}, \\
& \Lambda \equiv\left\{(j, k): 0 \leq j<k \leq n,\left[M_{i}\right]_{j k} \neq 0 \text { for } \exists i\right\} ; \\
& \Lambda^{c} \equiv\left\{(j, k): 0 \leq j<k \leq n,\left[M_{i}\right]_{j k}=0 \text { for } \forall i\right\} ; \\
& \text { no off-diagonal } X_{j k}(j, k) \in \Lambda^{c} \text { in SOCP2 } \\
& \Rightarrow \text { Advantage when } \boldsymbol{M}_{0}, \ldots, \boldsymbol{M}_{m} \text { are sparse. }
\end{aligned}
$$

Note that

$$
\begin{aligned}
& \left(\begin{array}{cc}
X_{j j} & X_{j k} \\
X_{k j} & X_{k k}
\end{array}\right) \in \mathcal{S}_{+}^{n} \Longleftrightarrow X_{j j} \geq 0, X_{k k} \geq 0, X_{j j} X_{k k}-X_{j k}^{2} \geq 0 \\
& \Longleftrightarrow\left\|\binom{X_{j j}-X k k}{2 X_{j k}}\right\| \leq X_{j j}+X_{k k}(\text { an SOCP constraint })
\end{aligned}
$$

(a) SOCP relaxation is weaker than SDP relaxation.
(b) SOCP relaxation is stronger than Lift-Project LP relaxation.
(c) A class of QOPs that can be solved by SOCP relaxation?
5. A class of QOPs that can be solved by SOCP

QOP: min. $M_{0} \bullet X$

$$
\text { s.t. } \quad \boldsymbol{M}_{i} \bullet \boldsymbol{X} \leq 0(1 \leq i \leq m), \quad \boldsymbol{X}=\left(\begin{array}{cc}
1 & \boldsymbol{x}^{T} \\
\boldsymbol{x} & \overline{\boldsymbol{X}}
\end{array}\right) \in \mathcal{S}_{+}^{1+n}, \quad \overline{\boldsymbol{X}}=\boldsymbol{x} \boldsymbol{x}^{T}
$$

ODN-Assumption (OD-non-positiveness): All off-diagonal elements of $\boldsymbol{M}_{i}(0 \leq i \leq m)$ are non-positive. S.Zhang 2000.

Here $\quad \boldsymbol{M}_{i}=\left(\begin{array}{cc}\gamma_{i} & \boldsymbol{q}_{i}^{T} \\ \boldsymbol{q}_{i} & \boldsymbol{Q}_{i}\end{array}\right) \in \mathcal{S}^{1+n}$,

$$
\boldsymbol{x}^{T} \boldsymbol{Q}_{i} \boldsymbol{x}+2 \boldsymbol{q}_{i}^{T} \boldsymbol{x}+\gamma_{i} \equiv\left(\begin{array}{cc}
\gamma_{i} & \boldsymbol{q}_{i}^{T} \\
\boldsymbol{q}_{i} & \boldsymbol{Q}_{i}
\end{array}\right) \bullet\left(\begin{array}{cc}
1 & \boldsymbol{x}^{T} \\
\boldsymbol{x} & \boldsymbol{x} \boldsymbol{x}^{T}
\end{array}\right) \equiv \boldsymbol{M}_{i} \bullet \boldsymbol{X} .
$$

Example.
Min. $\quad 6 x_{1}^{2}+3 x_{2}^{2}+4 x_{3}^{2}-2 x_{1} x_{2}-3 x_{2} x_{3}-x_{1}-2 x_{2}$
sub.to $2 x_{1}^{2}+x_{2}^{2}+5 x_{3}^{2}-2 x_{1} x_{2}-x_{2} x_{3}-3 x_{3} \leq 0$
$-x_{1}^{2}+4 x_{2}^{2}-2 x_{1} x_{2}-4 x_{1} x_{3}-x_{2} \leq 0$
$3 x_{1}^{2}+2 x_{2}^{2}-x_{3}^{2}-x_{1} x_{2}-2 x_{2} x_{3} \leq 0$

SOCP2 (and SDP) relaxation attain the same optimal value as QOP. Let X be an optimal solution of SOCP2 (or SDP). Then $\hat{\boldsymbol{x}}=\left(\sqrt{X_{11}}, \sqrt{X_{22}}, \ldots, \sqrt{X_{n n}}\right)^{T}$ is an optimal solution of QOP

SOCP2: min. $\boldsymbol{M}_{0} \bullet \boldsymbol{X}$ s.t. $\boldsymbol{M}_{i} \bullet \boldsymbol{X} \leq 0(\forall i), X_{00}=1$,

$$
\left(\begin{array}{ll}
X_{j j} & X_{j k} \\
X_{k j} & X_{k k}
\end{array}\right) \in \mathcal{S}_{+}^{2} \quad \text { for } \forall(j, k) \in \Lambda
$$

Here $\Lambda=\left\{(j, k): 0 \leq j<k \leq n,\left[M_{i}\right]_{j k} \neq 0\right.$ for $\left.\exists i\right\}$, i.e., $\Lambda^{c}=\left\{(j, k): 0 \leq j<k \leq n,\left[M_{i}\right]_{j k}=0\right.$ for $\left.\forall i\right\} ;$ no off-diagonal $X_{j k}(j, k) \in \Lambda^{c}$ in SOCP2. \Rightarrow Advantage when $\boldsymbol{M}_{0}, \ldots, \boldsymbol{M}_{m}$ are sparse.
(i) Different from convexity.
(ii) Some numerical results comparing SOCP and SDP relaxations \Longrightarrow next.

Proof: Let $\boldsymbol{X}=\left(\begin{array}{cc}1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X}\end{array}\right)$ be an optimal solution of
SOCP2: min. $M_{0} \bullet X$

$$
\begin{array}{ll}
\text { s.t. } & \boldsymbol{M}_{i} \bullet \boldsymbol{X} \leq 0(1 \leq i \leq m), \quad X_{00}=1, \\
& \binom{X_{j j} X_{j k}}{X_{k j} X_{k k}} \in \mathcal{S}_{+}^{2} \text { for } \forall(j, k) \in \Lambda \tag{*}
\end{array}
$$

where $\Lambda=\left\{(j, k): 0 \leq j<k \leq n,\left[M_{i}\right]_{j k} \neq 0\right.$ for $\left.\exists i\right\}$, i.e., $\Lambda^{c}=\left\{(j, k): 0 \leq j<k \leq n,\left[M_{i}\right]_{j k}=0\right.$ for $\left.\forall i\right\}$. Let

$$
\hat{\boldsymbol{x}}=\left(\sqrt{X_{11}}, \sqrt{X_{22}}, \ldots, \sqrt{X_{n n}}\right)^{T}
$$

Then $\left[\boldsymbol{M}_{i}\right]_{j j} \hat{x}_{j}^{2}=\left[\boldsymbol{M}_{i}\right]_{j j} X_{j j}(0 \leq j \leq n, 0 \leq i \leq m)$.
By (*), $0 \leq X_{j j}, 0 \leq X_{k k}, X_{j k}^{2} \leq X_{j j} X_{k k}((j, k) \in \Lambda)$, and by ODN-Assumpt., $\left[M_{i}\right]_{j k} \leq 0((j, k) \in \Lambda)$; hence

$$
\left[M_{i}\right]_{j k} \hat{x}_{j} \hat{x}_{k}=\left[\boldsymbol{M}_{i}\right]_{j k} \sqrt{X_{j j}} \sqrt{X_{k k}} \leq\left[\boldsymbol{M}_{i}\right]_{j k} X_{j k} \quad((j, k) \in \Lambda, 0 \leq i \leq m)
$$

Therefore \hat{x} satisfies

$$
\begin{aligned}
& \sum \sum\left[M_{0}\right]_{j k} \hat{x}_{j} \hat{x}_{k} \leq \sum \sum\left[M_{0}\right]_{j k} X_{j k}=\boldsymbol{M}_{0} \bullet \boldsymbol{X} \text { (objective function), } \\
& \sum \sum\left[M_{i}\right]_{j k} \hat{x}_{j} \hat{x}_{k} \leq \boldsymbol{M}_{i} \bullet \boldsymbol{X} \leq 0(1 \leq p \leq m) \quad \text { (constraint) }
\end{aligned}
$$

QOP: min. $\quad \boldsymbol{x}^{T} \boldsymbol{Q}_{0} \boldsymbol{x}+2 \boldsymbol{q}_{0}^{T} \boldsymbol{x}+\gamma_{0}$

$$
\text { s.t. } \quad \boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{x}^{T} \boldsymbol{Q}_{i} \boldsymbol{x}+2 \boldsymbol{q}_{i}^{T} \boldsymbol{x}+\gamma_{i} \leq 0(1 \leq i \leq m)
$$

- SeDuMi ver.1.03, Sun Enterprise 4500 (CPU 400 MHz)
- Random sparse matrices \boldsymbol{Q}_{i} and vectors $\boldsymbol{q}_{i}(0 \leq i \leq m)$
- Each problem generated satisfies ODN-Assump.
- Three parameters, n, m and the density of \boldsymbol{Q}_{i} and \boldsymbol{q}_{i}.

n	Density	SDP	SOCP2	cpu.ratio
		cpu it.	cpu it.	
200100	5\%	198.819	15.118	13.1
200100	10\%	290.419	28.820	10.1
200100	50\%	1430.731	173.127	8.3
200100	70\%	1858.333	212.426	8.7
200100	100\%	2282.833	342.532	6.7

Table 1. QOPs with $n=200, m=100$ and varying density

n	m	Density	SDP	SOCP2		cpu.ratio
			cpu	it.	cpu	it.

Table 2. QOPs with $n=100$ and varying m

n		m	Density	SDP	SOCP2	cpu.ratio
		cpu	it.	cpu	it.	
50	100	10%	12.6	15	1.3	13
100	100	10%	42.1	20	6.5	19

Table 3. QOPs with $m=100$ and varying n

Summary: SDP, LP and SOCP2 relaxations

QOP: min. $\quad \boldsymbol{x}^{T} \boldsymbol{Q}_{0} \boldsymbol{x}+2 \boldsymbol{q}_{0}^{T} \boldsymbol{x}+\gamma_{0}$

$$
\text { s.t. } \quad \boldsymbol{x}^{T} \boldsymbol{Q}_{i} \boldsymbol{x}+2 \boldsymbol{q}_{i}^{T} \boldsymbol{x}+\gamma_{i} \leq 0
$$

$$
\boldsymbol{M}_{i}=\left(\begin{array}{cc}
\gamma_{i} & \boldsymbol{q}_{i}^{T} \\
\boldsymbol{q}_{i} & \boldsymbol{Q}_{i}
\end{array}\right) \quad(0 \leq i \leq m),
$$

QOP: min. $M_{0} \bullet X$

$$
\text { s.t. } \quad \boldsymbol{M}_{i} \bullet \boldsymbol{X} \leq 0(1 \leq i \leq m), X_{00}=1-(\sharp),
$$

$$
\boldsymbol{X}=\left(\begin{array}{ll}
1 & \boldsymbol{x}^{T} \\
\boldsymbol{x} & \overline{\boldsymbol{X}}
\end{array}\right) \in \mathcal{S}_{+}^{1+n}, \quad \overline{\boldsymbol{X}}=\boldsymbol{x} \boldsymbol{x}^{T}
$$

SDP: $\quad \min . \quad \boldsymbol{M}_{0} \bullet \boldsymbol{X}$ s.t. (\sharp) and $\boldsymbol{X} \in \mathcal{S}_{+}^{1+n}$
SOCP2: min. $\boldsymbol{M}_{0} \bullet \boldsymbol{X}$ s.t. (\sharp) and $\left(\begin{array}{cc}X_{j j} & X_{j k} \\ X_{k j} & X_{k k}\end{array}\right) \in \mathcal{S}_{+}^{2} \quad$ for $\forall(j, k) \in \Lambda$
LP: $\quad \min . \quad M_{0} \bullet X$ s.t. ($\left.\#\right)$
Here $\Lambda=\left\{(j, k): 0 \leq j<k \leq n,\left[M_{i}\right]_{j k} \neq 0\right.$ for $\left.\exists i\right\}$, i.e., $\Lambda^{c}=\left\{(j, k): 0 \leq j<k \leq n,\left[M_{i}\right]_{j k}=0\right.$ for $\left.\forall i\right\}$.

- Quality of obj. values: $\mathrm{QOP} \leq \mathrm{SDP} \leq \mathrm{SOCP} 2 \leq \mathrm{LP}$ in general. $\mathrm{QOP}=\mathbf{S D P}=\mathbf{S O C P} 2 \leq \mathrm{LP}$ under ODN-Assump.
- CPU time to solve the problems: $\mathrm{SDP} \geq \mathrm{SOCP} 2 \geq$ LP.
- Density: no off-diagonal $X_{j k}(j, k) \in \Lambda^{c}$ in QOP, SOCP2, LP.

Let \boldsymbol{P} be an $n \times n$ nonsing. matrix. Apply a linear trans. $\boldsymbol{x}=\overline{\boldsymbol{P}} \boldsymbol{y}$ to
QOP: min. $M_{0} \bullet X$

$$
\text { s.t. } \boldsymbol{M}_{i} \bullet \boldsymbol{X} \leq 0(1 \leq i \leq m), \quad \boldsymbol{X}=\left(\begin{array}{cc}
1 & \boldsymbol{x}^{T} \\
\boldsymbol{x} & \overline{\boldsymbol{X}}
\end{array}\right) \in \mathcal{S}_{+}^{1+n}, \quad \overline{\boldsymbol{X}}=\boldsymbol{x} \boldsymbol{x}^{T}
$$

to obtain an equiv. QOP' in the matrix variable

$$
\boldsymbol{Y}=\left(\begin{array}{ll}
1 & \boldsymbol{y}^{T} \\
\boldsymbol{y} & \overline{\boldsymbol{Y}}
\end{array}\right)=\boldsymbol{P} \boldsymbol{X} \boldsymbol{P}^{T}=\left(\begin{array}{ll}
1 & \mathbf{0} \\
\mathbf{0} & \overline{\boldsymbol{P}}
\end{array}\right)\left(\begin{array}{ll}
1 & \boldsymbol{x}^{T} \\
\boldsymbol{x} & \overline{\boldsymbol{X}}
\end{array}\right)\left(\begin{array}{ll}
1 & \mathbf{0} \\
\mathbf{0} & \overline{\boldsymbol{P}}^{T}
\end{array}\right), \overline{\boldsymbol{Y}}=\boldsymbol{y} \boldsymbol{y}^{T}
$$

with the data matrices $\boldsymbol{M}_{i}^{\prime}=\boldsymbol{P} \boldsymbol{M}_{i} \boldsymbol{P}^{T}$.

QOP': min. $M_{0}^{\prime} \bullet Y$

$$
\text { s.t. } \boldsymbol{M}_{i}^{\prime} \bullet \boldsymbol{Y} \leq 0(1 \leq i \leq m), \boldsymbol{Y}=\left(\begin{array}{ll}
1 & \boldsymbol{y}^{T} \\
\boldsymbol{y} & \overline{\boldsymbol{Y}}
\end{array}\right) \in \mathcal{S}_{+}^{1+n}, \quad \overline{\boldsymbol{Y}}=\boldsymbol{y} \boldsymbol{y}^{T}
$$

$$
\begin{array}{ccc}
\boldsymbol{M}_{i}^{\prime}=\boldsymbol{P} \boldsymbol{M}_{i} \boldsymbol{P}^{T} \begin{array}{c}
\text { QOP } \\
\text { QOP } \\
\\
\\
\end{array} & \Longrightarrow & \mathrm{SDP} \\
\text { SDP relaxation }
\end{array}
$$

$$
\boldsymbol{M}_{i}^{\prime}=\boldsymbol{P} \boldsymbol{M}_{i} \boldsymbol{P}^{T} \begin{array}{ccc}
\text { QOP } \\
\text { QOP }
\end{array}, ~ \Longrightarrow \quad \begin{gathered}
\text { SOCP2 } \\
\\
\end{gathered}
$$

\mathbb{I} : Valid when \bar{P} is diag. or permut. mat. but invalid in general.

IODN-Assumpt. (Implicit OD-non-positiveness): \exists nonsig. $\overline{\boldsymbol{P}}$ (unknown); all off-diagonal elements of $M_{i}^{\prime}, \forall i$ are non-positive.
(i) Opt. val. : SOCP2 "=" SDP = QOP, where "=" holds when \bar{P} is a diag. or permut. mat. but not in general.
(ii) Opt. sol.: "If X is an opt. sol. of SOCP2 (or SDP), then $\hat{\boldsymbol{x}}=\left(\sqrt{X_{11}}, \ldots, \sqrt{X_{n n}}\right)^{T}$ is an opt. sol. of QOP" does not hold.

- Can we verify whether a given QOP satisfies IODN-Assump?
- How we construct an opt. sol. of a QOP satisfying IODNAssumpt?
(a) Two types of SOCP relaxations, SOCP1 and SOCP2.
(b) Reasonable compromise between the effectiveness of the SDP relaxation and the low computational cost of the lift-and-project LP relaxation.
(c) A class of QOPs that can be solved by the SOCP2 - ODN-Assumption.
(d) Application?
- Should be combinedly used with the branch and bound method for solving general QOPs; the role of SOCP relaxations is to compute effective bounds for objective values for subproblems at low cost.

