Conversion Methods for Large Scale SDPs to Exploit Their Structured Sparsity

The MIT Computation for Design and Optimization Program
Distinguished Speaker Series
Massachusetts Institute of Technology
14 May, 2008

Masakazu Kojima

Tokyo Institute of Technology

Contents

1. Introduction

- Semidefinite Programs (SDPs) and their conversion -

2. Two kinds of sparsities

2-1. Aggregated sparsity and positive definite matrix completion
2-2. Correlative sparsity and sparsity pattern of the Schur complement matrix
3. Conversion nethods for a large sparse SDP

3-1. Conversion to a c-sparse LMI form SDP with small mat. variables
3-2. Conversion to a c-sparse equality form SDP with small mat. variables
4. An application to sensor network localization
5. Concluding remarks

Contents

1. Introduction

- Semidefinite Programs (SDPs) and their conversion -

2. Two kinds of sparsities
$2-1$. Aggregated sparsity and positive definite matrix completion
2-2. Correlative sparsity and sparsity pattern of the Schur complement matrix
3. Conversion nethods for a large sparse SDP

3-1. Conversion to a c-sparse LMI form SDP with small mat. variables
3-2. Conversion to a c-sparse equality form SDP with small mat. variables
4. An application to sensor network localization
5. Concluding remarks

Equality standard form SDP:
$\min \boldsymbol{A}_{0} \bullet \boldsymbol{X}$ sub.to $\boldsymbol{A}_{p} \bullet \boldsymbol{X}=b_{p}(p=1, \ldots, m), \mathcal{S}^{n} \ni \boldsymbol{X} \succeq \boldsymbol{O}$
Here
$A_{p} \in \mathcal{S}^{n}$ the linear space of $n \times n$ symmetric matrices

$$
\text { with the inner product } \boldsymbol{A}_{p} \bullet \boldsymbol{X}=\sum_{i, j}\left[A_{p}\right]_{i j} X_{i j} \text {. }
$$

$$
b_{p} \in \mathbb{R}, \boldsymbol{X} \succeq \boldsymbol{O} \Leftrightarrow \boldsymbol{X} \in \mathcal{S}^{n} \text { is positive semidefinite. }
$$

Lots of Applications to Various Problems

- Systems and control theory - Linear Matrix Inequality
- SDP relaxations of combinatorial and nonconvex problems
- Max cut and max clique problems
- Quadratic assignment problems
- Polynomial optimization problems
- Robust optimization
- Quantum chemistry
- Moment problems (applied probability)
- Sensor network localization problem - later
O. . .

Equality standard form SDP:
$\min \boldsymbol{A}_{0} \bullet \boldsymbol{X}$ sub.to $\boldsymbol{A}_{p} \bullet \boldsymbol{X}=b_{p}(p=1, \ldots, m), \mathcal{S}^{n} \ni \boldsymbol{X} \succeq \boldsymbol{O}$
SDP can be large-scale easily

- $n \times n$ mat. variable \boldsymbol{X} involves $n(n+1) / 2$ real variables; $n=2000 \Rightarrow n(n+1) / 2 \approx 2$ million
- m linear equality constraints or $m \boldsymbol{A}_{p}$'s $\in \mathcal{S}^{n}$
\diamond How can we solve a larger scale SDP?
(a) Use more powerful computer system such as clusters and grids of computers - parallel computation.
(b) Develop new numerical methods for SDPs.
(c) Improve primal-dual interior-point methods.
(d) Convert a large sparse SDP to an SDP which existing pdipms can solve efficiently:
- multiple but small size mat. variables.
- a sparse Schur complement mat. (a coef. mat. of a sys. of equations solved at \forall iteration of the pdipm).

Outline of the conversion

sparsity used	A large scale and structured sparse SDP	technique
aggregated sparsity	\downarrow	positive definite mat. completion
	An SDP with small SDP cones and shared variables among SDP cones	
correlative sparsity	$\Downarrow \begin{array}{ll}\Downarrow \\ \\ \\ \\ \end{array}$	conversion to LMI form SDP or conversion to Equality form SDP
	A c-sparse SDP with small matrix variables (i.e., small SDP cones)	

An SDP example - Conversion makes a critical difference

```
\(\min \quad \sum_{p=1}^{m} x_{p}+\boldsymbol{I} \bullet \boldsymbol{X}\)
sub.to \(\quad a_{p} x_{p}+\boldsymbol{A}_{p} \bullet \boldsymbol{X}=2, x_{p} \geq 0(p=1, \ldots, m), \boldsymbol{X} \succeq \boldsymbol{O}\).
```

Here $a_{p} \in(0,1)$ and $\boldsymbol{A}_{p} \in \mathcal{S}^{k}$ are generated randomly.

		SeDuMi	conv. + SeDuMi
m	k	cpu time in sec.	cpu time in sec.
1000	10	29.6	4.3
2000	10	360.4	10.3
4000	10		20.9

SeDuMi - one of the most popular software for SDPs

- Low rank update? But the rank of dense column $=10(10+1) / 2=55$.
- Application to sensor network localization - later

Contents

1. Introduction

- Semidefinite Programs (SDPs) and their conversion -

2. Two Kinds of Sparsities

2-1. Aggregated sparsity and positive definite matrix completion (Fukuda et al. '01, Nakata et al. '03)
2-2. Correlative sparsity and sparsity pattern of the Schur complement matrix
3. Conversion nethods for a large sparse SDP

3-1. Conversion to a c-sparse LMI form SDP with small mat. variables
3-2. Conversion to a c-sparse equality form SDP with small mat. variables
4. An application to sensor network localization
5. Concluding remarks

Equality standard form SDP:
$\min \boldsymbol{A}_{0} \bullet \boldsymbol{X}$ sub.to $\boldsymbol{A}_{p} \bullet \boldsymbol{X}=b_{p}(p=1, \ldots, m), \mathcal{S}^{n} \ni \boldsymbol{X} \succeq \boldsymbol{O}$
$\boldsymbol{A}_{*}: n \times n$ aggregated sparsity pattern mat.
$\left[A_{*}\right]_{i j}= \begin{cases}\star & \text { if } i=j \text { or }\left[A_{p}\right]_{i j} \neq 0 \text { for some } p=0, \ldots, m, \\ 0 & \text { otherwise }\end{cases}$
SDP : a-sparse if \boldsymbol{A}_{*} allows a sparse Cholesky factorization
Two typical cases
1: bandwidth along diagonal

$$
\begin{aligned}
& 2 \text { : arrow } \\
& \boldsymbol{A}_{*}=\left(\begin{array}{ccccc}
\star & 0 & 0 & 0 & \star \\
0 & \star & 0 & 0 & \star \\
0 & 0 & \star & 0 & \star \\
0 & 0 & 0 & \star & \star \\
\star & \star & \star & \star & \star
\end{array}\right)
\end{aligned}
$$

- \boldsymbol{X} : fully dense, so standard pdipms can not effectively utilize this type of sparsity \Rightarrow pos.def.mat.completion

Equality standard form SDP:
$\min \boldsymbol{A}_{0} \bullet \boldsymbol{X}$ sub.to $\boldsymbol{A}_{p} \bullet \boldsymbol{X}=b_{p}(p=1, \ldots, m), \mathcal{S}^{n} \ni \boldsymbol{X} \succeq \boldsymbol{O}$
$\boldsymbol{A}_{*}: n \times n$ aggregated sparsity pattern mat.
$\left[A_{*}\right]_{i j}= \begin{cases}\star & \text { if } i=j \text { or }\left[A_{p}\right]_{i j} \neq 0 \text { for some } p=0, \ldots, m, \\ 0 & \text { otherwise }\end{cases}$
SDP : a-sparse if \boldsymbol{A}_{*} allows a sparse Cholesky factorization
$G(N, E)$: the asp graph, an undirected graph with
$N=\{1, \ldots, n\}, E=\left\{(i, j):\left[A_{*}\right]_{i j}=\star\right.$ and $\left.i<j\right\}$.
$G(N, \bar{E})$: a chordal extension of $G(N, E)$.
$C_{1}, \ldots, C_{\ell} \subset N$: the family of maximal cliques of $G(N, \bar{E})$.
SDP \equiv an SDP with shared variables among small SDP cones:
$\min \quad \sum_{(i, j) \in \widetilde{E}}\left[A_{0}\right]_{i j} X_{i j}$
sub.to $\quad \sum_{(i, j) \in \tilde{E}}\left[A_{p}\right]_{i j} X_{i j}=b_{p}(\forall p), \boldsymbol{X}\left(C_{r}\right) \succeq \boldsymbol{O}(r=1, \ldots, \ell)$,
where $\boldsymbol{X}\left(C_{r}\right)$: the submatrix of \boldsymbol{X} consisting of $X_{i j}\left(i, j \in C_{r}\right)$.
Here $\widetilde{E}=\{(i, j):(i, j),(j, i) \in \bar{E}$ or $i=j\} \Longrightarrow$ Section 3.

Equality standard form SDP:
$\min \boldsymbol{A}_{0} \bullet \boldsymbol{X}$ sub.to $\boldsymbol{A}_{p} \bullet \boldsymbol{X}=b_{p}(p=1, \ldots, m), \mathcal{S}^{n} \ni \boldsymbol{X} \succeq \boldsymbol{O}$
$\boldsymbol{A}_{*}: n \times n$ aggregated sparsity pattern mat.
$\left[A_{*}\right]_{i j}= \begin{cases}\star & \text { if } i=j \text { or }\left[A_{p}\right]_{i j} \neq 0 \text { for some } p=0, \ldots, m, \\ 0 & \text { otherwise }\end{cases}$
SDP : a-sparse if \boldsymbol{A}_{*} allows a sparse Cholesky factorization
$\min \sum_{(i, j) \in \widetilde{E}}\left[A_{0}\right]_{i j} X_{i j}$ sub.to $\sum_{(i, j) \in \widetilde{E}}\left[A_{p}\right]_{i j} X_{i j}=b_{p}$,
$\left(\begin{array}{cc}X_{11} & X_{12} \\ X_{21} & X_{22}\end{array}\right),\left(\begin{array}{lll}X_{22} & X_{23} & X_{24} \\ X_{32} & X_{33} & X_{34} \\ X_{42} & X_{43} & X_{44}\end{array}\right),\left(\begin{array}{lll}X_{33} & X_{34} & X_{35} \\ X_{43} & X_{44} & X_{45} \\ X_{53} & X_{54} & X_{55}\end{array}\right) \succeq \boldsymbol{O}$

Contents

1. Introduction

- Semidefinite Programs (SDPs) and their conversion -

2. Two kinds of sparsities
$2-1$. Aggregated sparsity and positive definite matrix completion
2-2. Correlative sparsity and sparsity pattern of the Schur complement matrix
3. Conversion nethods for a large sparse SDP

3-1. Conversion to a c-sparse LMI form SDP with small mat. variables
3-2. Conversion to a c-sparse equality form SDP with small mat. variables
4. An application to sensor network localization
5. Concluding remarks

SDP with small matrix variables:
$\min \quad \sum_{r=1}^{\ell} \boldsymbol{A}_{0 r} \bullet \boldsymbol{X}_{r}$
sub.to $\quad \sum_{r=1}^{\ell} \boldsymbol{A}_{p r} \bullet \boldsymbol{X}_{r}=b_{p}(p=1, \ldots, m), \boldsymbol{X}_{r} \succeq \boldsymbol{O}(\forall r)$

$$
\boldsymbol{A}_{p \diamond}=\operatorname{diag}\left(\boldsymbol{A}_{p 1}, \ldots, \boldsymbol{A}_{p \ell}\right), \boldsymbol{X}_{\diamond}=\operatorname{diag}\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\ell}\right),
$$

$$
\boldsymbol{A}_{p \diamond} \bullet \boldsymbol{X}_{\diamond}=\sum_{r=1}^{\ell} \boldsymbol{A}_{p r} \bullet \boldsymbol{X}_{r} .
$$

SDP: min $\boldsymbol{A}_{0 \diamond} \bullet \boldsymbol{X}_{\diamond}$ sub.to $\boldsymbol{A}_{p \diamond} \bullet \boldsymbol{X}_{\diamond}=b_{p}(\forall p), \boldsymbol{X}_{\diamond} \succeq \boldsymbol{O}$

$m \times m \boldsymbol{R}_{*}$: correlative sparsity pattern (csp) mat.

$$
\left[R_{*}\right]_{p q}= \begin{cases}0 & \text { if } \boldsymbol{A}_{p \diamond} \text { and } \boldsymbol{A}_{q \diamond} \text { are bw-comp } \\ \star & \text { otherwise }\end{cases}
$$

$\boldsymbol{A}_{p \diamond}$ and $\boldsymbol{A}_{q \diamond}$: block-wise complementary i

$$
\boldsymbol{A}_{p r}=\boldsymbol{O} \text { or } \boldsymbol{A}_{q r}=\boldsymbol{O} \text { for every } r=1, \ldots, \ell ;
$$

SDP with small matrix variables:
$\min \quad \sum_{r=1}^{\ell} \boldsymbol{A}_{0 r} \bullet \boldsymbol{X}_{r}$
sub.to $\quad \sum_{r=1}^{\ell} \boldsymbol{A}_{p r} \bullet \boldsymbol{X}_{r}=b_{p}(p=1, \ldots, m), \boldsymbol{X}_{r} \succeq \boldsymbol{O}(\forall r)$

$$
\boldsymbol{A}_{p \diamond}=\operatorname{diag}\left(\boldsymbol{A}_{p 1}, \ldots, \boldsymbol{A}_{p \ell}\right), \boldsymbol{X}_{\diamond}=\operatorname{diag}\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\ell}\right)
$$

$$
\boldsymbol{A}_{p \diamond} \bullet \boldsymbol{X}_{\diamond}=\sum_{r=1}^{\ell} \boldsymbol{A}_{p r} \bullet \boldsymbol{X}_{r} .
$$

SDP: $\min \boldsymbol{A}_{0 \diamond} \bullet \boldsymbol{X}_{\diamond}$ sub.to $\boldsymbol{A}_{p \diamond} \bullet \boldsymbol{X}_{\diamond}=b_{p}(\forall p), \boldsymbol{X}_{\diamond} \succeq \boldsymbol{O}$
$m \times m \boldsymbol{R}_{*}$: correlative sparsity pattern (csp) mat.

$$
\left[R_{*}\right]_{p q}= \begin{cases}0 & \text { if } \boldsymbol{A}_{p \diamond} \text { and } \boldsymbol{A}_{q \diamond} \text { are bw-comp } \\ \star & \text { otherwise }\end{cases}
$$

SDP with small matrix variables:
$\min \quad \sum_{r=1}^{\ell} \boldsymbol{A}_{0 r} \bullet \boldsymbol{X}_{r}$
sub.to $\quad \sum_{r=1}^{\ell} \boldsymbol{A}_{p r} \bullet \boldsymbol{X}_{r}=b_{p}(p=1, \ldots, m), \boldsymbol{X}_{r} \succeq \boldsymbol{O}(\forall r)$

$$
\boldsymbol{A}_{p \diamond}=\operatorname{diag}\left(\boldsymbol{A}_{p 1}, \ldots, \boldsymbol{A}_{p \ell}\right), \boldsymbol{X}_{\diamond}=\operatorname{diag}\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\ell}\right),
$$

$$
\boldsymbol{A}_{p \diamond} \bullet \boldsymbol{X}_{\diamond}=\sum_{r=1}^{\ell} \boldsymbol{A}_{p r} \bullet \boldsymbol{X}_{r} .
$$

SDP: $\min \boldsymbol{A}_{0 \diamond} \bullet \boldsymbol{X}_{\diamond}$ sub.to $\boldsymbol{A}_{p \diamond} \bullet \boldsymbol{X}_{\diamond}=b_{p}(\forall p), \boldsymbol{X}_{\diamond} \succeq \boldsymbol{O}$

$m \times m \boldsymbol{R}_{*}$: correlative sparsity pattern (csp) mat.

$$
\left[R_{*}\right]_{p q}= \begin{cases}0 & \text { if } \boldsymbol{A}_{p \diamond} \text { and } \boldsymbol{A}_{q \diamond} \text { are bw-comp } \\ \star & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& \boldsymbol{A}_{1 \diamond}=\operatorname{diag}\left(\boldsymbol{A}_{11}, \boldsymbol{O}, \boldsymbol{O}, \boldsymbol{A}_{14}\right) \\
& \boldsymbol{A}_{2 \diamond}=\operatorname{diag}\left(\boldsymbol{O}, \boldsymbol{A}_{22}, \boldsymbol{O}, \boldsymbol{A}_{24}\right) \\
& \boldsymbol{A}_{3 \diamond}=\operatorname{diag}\left(\boldsymbol{O}, \boldsymbol{O}, \boldsymbol{A}_{33}, \boldsymbol{A}_{34}\right) \\
& \boldsymbol{A}_{4 \diamond}=\operatorname{diag}\left(\boldsymbol{O}, \boldsymbol{O}, \boldsymbol{O}, \boldsymbol{A}_{44}\right)
\end{aligned} \Rightarrow \boldsymbol{R}_{*}=\left(\begin{array}{llll}
\star & \star & \star & \star \\
\star & \star & \star & \star \\
\star & \star & \star & \star \\
\star & \star & \star & \star
\end{array}\right)
$$

fully dense

SDP with small matrix variables:
$\min \quad \sum_{r=1}^{\ell} \boldsymbol{A}_{0 r} \bullet \boldsymbol{X}_{r}$
sub.to $\quad \sum_{r=1}^{\ell} \boldsymbol{A}_{p r} \bullet \boldsymbol{X}_{r}=b_{p}(p=1, \ldots, m), \boldsymbol{X}_{r} \succeq \boldsymbol{O}(\forall r)$

$$
\begin{aligned}
& \boldsymbol{A}_{p \diamond}=\operatorname{diag}\left(\boldsymbol{A}_{p 1}, \ldots, \boldsymbol{A}_{p \ell}\right), \boldsymbol{X}_{\diamond}=\operatorname{diag}\left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\ell}\right), \\
& \boldsymbol{A}_{p \diamond} \bullet \boldsymbol{X}_{\diamond}=\sum_{r=1}^{\ell} \boldsymbol{A}_{p r} \bullet \boldsymbol{X}_{r} .
\end{aligned}
$$

SDP: min $\boldsymbol{A}_{0 \diamond} \bullet \boldsymbol{X}_{\diamond}$ sub.to $\boldsymbol{A}_{p \diamond} \bullet \boldsymbol{X}_{\diamond}=b_{p}(\forall p), \boldsymbol{X}_{\diamond} \succeq \boldsymbol{O}$

$m \times m \boldsymbol{R}_{*}$: correlative sparsity pattern (csp) mat.

$$
\left[R_{*}\right]_{p q}= \begin{cases}0 & \text { if } \boldsymbol{A}_{p \diamond} \text { and } \boldsymbol{A}_{q \diamond} \text { are bw-comp } \\ \star & \text { otherwise }\end{cases}
$$

- $\boldsymbol{R}_{*}=$ the sparsity pattern of the Schur complement mat. = a coef. mat. of equations solved at \forall iteration of the pdipm by the Cholesky fact.
SDP : c-sparse if \boldsymbol{R}_{*} allows a sparse Cholesky factorization
c-sparse SDP with small mat. variables - target for conv.

Contents

1. Introduction

- Semidefinite Programs (SDPs) and their conversion -

2. Two kinds of sparsities
$2-1$. Aggregated sparsity and positive definite matrix completion
2-2. Correlative sparsity and sparsity pattern of the Schur complement matrix
3. Conversion methods for a large sparse SDP

3-1. Conversion to a c-sparse LMI form SDP with small mat. variables
3-2. Conversion to a c-sparse equality form SDP with small mat. variables
4. An application to sensor network localization
5. Concluding remarks

Outline of the conversion

sparsity used	A large scale and structured sparse SDP	technique
aggregated sparsity	\downarrow	positive definite mat. completion
	An SDP with small SDP cones and shared variables among SDP cones	
correlative sparsity	$\Downarrow \begin{array}{ll}\Downarrow \\ \\ \\ \\ \end{array}$	conversion to LMI form SDP or conversion to Equality form SDP
	A c-sparse SDP with small matrix variables (i.e., small SDP cones)	

SDP with shared variables among SDP cones
$\min \sum\left[A_{0}\right]_{i j} X_{i j}$ sub.to $\sum\left[A_{p}\right]_{i j} X_{i j}=b_{p}(p=1, \ldots, m)$,

$$
(\overline{i, j) \in \widetilde{E}} \quad(\overline{i, j) \in \widetilde{E}}
$$

$$
\boldsymbol{X}\left(C_{r}\right) \succeq \boldsymbol{O}(r=1, \ldots, \ell)
$$

${\underset{\sim}{1}}^{C_{1}}, \ldots, C_{r}$: the max. cliques of a chordal graph $G(N, \bar{E})$ $\widetilde{E}=\{(i, j):(i, j),(j, i) \in \bar{E}$ or $i=j\}$.
3-1. Conversion to a c-sparse LMI form SDP
Represent each $\boldsymbol{X}\left(C_{r}\right)$ as

$$
\boldsymbol{X}\left(C_{r}\right)=\sum_{i, j \in C_{r}, i \leq j} \boldsymbol{E}^{i j}\left(C_{r}\right) X_{i j}
$$

where $\boldsymbol{E}^{i j}\left(C_{r}\right)$: a sym. mat. with 1 at the (i, j) th, (j, i) th elements and 0 elsewhere. Then, a c-sparse LMI form SDP having eq. const.

$$
\begin{aligned}
& \min \sum_{(i, j) \in \widetilde{E}}\left[A_{0}\right]_{i j} X_{i j} \text { sub.to } \sum_{(i, j) \in \widetilde{E}}\left[A_{p}\right]_{i j} X_{i j}=b_{p}(\forall p), \\
& \sum_{i, j \in C_{r}, i \leq j} \boldsymbol{E}^{i j}\left(C_{r}\right) X_{i j} \succeq \boldsymbol{O}(\forall r) .
\end{aligned}
$$

SDP with shared variables among SDP cones
$\min \sum\left[A_{0}\right]_{i j} X_{i j}$ sub.to $\sum\left[A_{p}\right]_{i j} X_{i j}=b_{p}(p=1, \ldots, m)$,

$$
(i, j) \in \widetilde{E} \quad(i, j) \in \widetilde{E}
$$

$$
\boldsymbol{X}\left(C_{r}\right) \succeq \boldsymbol{O}(r=1, \ldots, \ell)
$$

$\widetilde{\widetilde{E}}_{1}, \ldots, C_{r}$: the max. cliques of a chordal graph $G(N, \bar{E})$ $\widetilde{E}=\{(i, j):(i, j),(j, i) \in \bar{E}$ or $i=j\}$.

3-1. Conversion to a c-sparse LMI form SDP: Example $n=100, m=98, C_{r}=\{r, 99,100\}(1 \leq r \leq 98)$.

SDP with shared variables among SDP cones
$\begin{aligned} & \min \sum_{(i, j) \in \widetilde{E}}\left[A_{0}\right]_{i j} X_{i j} \text { sub.to } \sum_{(i, j) \in \widetilde{E}}\left[A_{p}\right]_{i j} X_{i j}=b_{p}(p=1, \ldots, m), \\ & \boldsymbol{X}\left(C_{r}\right) \succeq \boldsymbol{O}(r=1, \ldots, \ell),\end{aligned}$
C_{1}, \ldots, C_{r} : the max. cliques of a chordal graph $G(N, \bar{E})$
$\widetilde{E}=\{(i, j):(i, j),(j, i) \in \bar{E}$ or $i=j\}$.
3-2. Conversion to a c-sparse equality form SDP
We can rewite SDP as
Equality form SDP with indep. mat. var. $\widetilde{\boldsymbol{X}}_{r}(r=1, \ldots, \ell)$
$\min \quad \sum_{r=1}^{\ell} \widetilde{\boldsymbol{A}}_{0 r} \bullet \widetilde{\boldsymbol{X}}_{r}$
sub.to $\quad \sum_{r=1}^{\ell} \widetilde{\boldsymbol{A}}_{p r} \bullet \widetilde{\boldsymbol{X}}_{r}=b_{p}(p=1, \ldots, m)$,
equalities to identify \exists elements of $\widetilde{\boldsymbol{X}}_{r}(r=1, \ldots, \ell)$, $\widetilde{\boldsymbol{X}}_{r} \succeq \boldsymbol{O}(r=1, \ldots, \ell)$.

- Various choices for $\widetilde{A}_{p r}$ and equalities.
- How do we choose them for better c-sparsity?

Various choices for equalities
SDP with shared variables $\Rightarrow \boldsymbol{X}\left(C_{r}\right) \succeq \boldsymbol{O}(r=1, \ldots, \ell)$, where C_{1}, \ldots, C_{r} : the max. cliques of $G(N, \bar{E})$
Equality form SDP $\Rightarrow \quad \widetilde{\boldsymbol{X}}_{r} \succeq \boldsymbol{O}(r=1, \ldots, \ell)$
and equalities to identify \exists elements of $\widetilde{\boldsymbol{X}}_{r}(r=1, \ldots, \ell)$
Example: $n=100, m=98, C_{r}=\{r, 99,100\}(1 \leq r \leq 98)$.

$$
\text { each } \widetilde{\boldsymbol{X}}_{r}=\left(\begin{array}{ccc}
\star & \star & \star \\
\star & \star & \star \\
\star & \star & \star
\end{array}\right): 3 \times 3
$$

$\left[\widetilde{X}_{r}\right]_{i j}=\left[\widetilde{X}_{1}\right]_{i j} \quad\left[\widetilde{X}_{r}\right]_{i j}=\left[\widetilde{X}_{r-1}\right]_{i j}$
$(2 \leq i, j \leq 3) \quad(2 \leq i, j \leq 3)$
$(r=2, \ldots, 98) \quad(r=2, \ldots, 98)$
$\boldsymbol{R}_{*}=389 \times 389$, fully dense

$$
\boldsymbol{R}^{*}=
$$

Various choices for equalities
SDP with shared variables $\Rightarrow \boldsymbol{X}\left(C_{r}\right) \succeq \boldsymbol{O}(r=1, \ldots, \ell)$, where C_{1}, \ldots, C_{r} : the max. cliques of $G(N, \bar{E})$
Equality form SDP $\Rightarrow \quad \widetilde{\boldsymbol{X}}_{r} \succeq \boldsymbol{O}(r=1, \ldots, \ell)$
and equalities to identify \exists elements of $\widetilde{\boldsymbol{X}}_{r}(r=1, \ldots, \ell)$

- It is often necessary to reduce the number of equalities by combining some cliques.
- Fujisawa, Fukuda, Kojima, Murota and Nakata 2001, 2003, 2006 proposed conversion to an equality form SDP, but correlative sparsity was not exploited \Longrightarrow further study.
- \exists some cases where conversion to a c-sparse LMI form SDP is better, and \exists some cases where conversion to a c-sparse equality form SDP is better.
- Some method to judge which conversion is better for a given problem needs to be studied.

Contents

1. Introduction

- Semidefinite Programs (SDPs) and their conversion -

2. Two kinds of sparsities
$2-1$. Aggregated sparsity and positive definite matrix completion
2-2. Correlative sparsity and sparsity pattern of the Schur complement matrix
3. Conversion nethods for a large sparse SDP

3-1. Conversion to a c-sparse LMI form SDP with small mat. variables
3-2. Conversion to a c-sparse equality form SDP with small mat. variables
4. An application to sensor network localization
5. Concluding remarks

Sensor network localization problem: Let $s=2$ or 3 .
$\boldsymbol{x}^{p} \in \mathbb{R}^{s} \quad: \quad$ unknown location of sensors $(p=1,2, \ldots, m)$,
$\boldsymbol{x}^{r}=\boldsymbol{a}^{r} \in \mathbb{R}^{s} \quad: \quad$ known location of anchors $(r=m+1, \ldots, n)$,

$$
\begin{aligned}
d_{p q} & =\left\|\boldsymbol{x}^{p}-\boldsymbol{x}^{q}\right\|+\epsilon_{p q}-\operatorname{given} \text { for }(p, q) \in \mathcal{N} \\
\mathcal{N} & =\left\{(p, q):\left\|\boldsymbol{x}^{p}-\boldsymbol{x}^{q}\right\| \leq \rho=\text { a given radio range }\right\}
\end{aligned}
$$

Here $\epsilon_{p q}$ denotes a noise.

$$
m=5, n=9
$$

$1, \ldots, 5$: sensors
6, 7, 8, 9: anchors

Anchors' positions are fixed.
A distance is given for \forall edge.
Compute locations of sensors.
\Rightarrow Some nonconvex QOPs

- SDP relaxation +? - FSDP by Biswas-Ye '06, ESDP by Wang et al '07, \ldots for $s=2$.
- SOCP relaxation - Tseng '07 for $s=2$.
- ...

Numerical results on 4 methods (a), (b), (c) and (d) applied to a sensor network localization problem with $m=$ the number of sensors dist. randomly in $[0,1]^{2}$, 4 anchors located at the corner of $[0,1]^{2}$, $\rho=$ radio distance $=0.1$, no noise.
(a) FSDP (b) FSDP + Conv. to LMI form SDP, as strong as (a)
(c) FSDP + Conv. to equality form SDP (Fujisawa-F-K-M-N '01, '03, '06), as strong as (a)
(d) ESDP - a further relaxation of FSDP, weaker than (a);

	SeDuMi cpu time in second				SeDuMi
m	(a)	(b)	(c)	(d)	
parameters					
pars.free=0;					

$m=1000$ sensors, (b) FSDP+Conversion to an LMI form SDP

anchor : \diamond true :
computed: * deviation : -

$m=1000$ sensors, (d) ESDP

> anchor : \diamond true :
> computed: * deviation:-

A Cholesky fact. of the a-sparsity pattern matrix \boldsymbol{A}_{*} with the symm. min. deg. ordering
(a) FSDP (Biswas-Ye '06)
(b) FSDP + Conversion to an LMI form SDP

$1002 \times 1002, n z=7062$
$n z$ density $=0.014$

$7381 \times 7381, \mathrm{nz}=37,701$ $n z$ density $=0.0014$

A Cholesky fact. of the c-sparsity pattern matrix R_{*} (= the Schur comp. matrix) with the symm. min. deg. ordering
(a) FSDP (Biswas-Ye '06)
(b) FSDP + Conversion to an LMI form SDP

$3686 \times 3686, \mathrm{nz}=6,795,141$ $n z$ density $=1.00$ 3345.2 second
$8916 \times 8916, n z=805,183$
$n z$ density $=0.020$ 60.4 second

Contents

1. Introduction

- Semidefinite Programs (SDPs) and their conversion -

2. Two kinds of sparsities
$2-1$. Aggregated sparsity and positive definite matrix completion
2-2. Correlative sparsity and sparsity pattern of the Schur complement matrix
3. Conversion nethods for a large sparse SDP

3-1. Conversion to a c-sparse LMI form SDP with small mat. variables
3-2. Conversion to a c-sparse equality form SDP with small mat. variables
4. An application to sensor network localization
5. Concluding remarks

1. Large scale SDPs are difficult to solve.
2. Methods which convert a large scale SDP into an SDP having small mat. variables and a sparse Schur complement mat. by exploiting the structured sparsity,

- aggregated sparsity,
- correlative sparsity.

3. Two different methods:

- Conversion to a c-sparse LMI form SDP.
- Conversion to a c-sparse equality form SDP - further study to exploit correlative sparsity.

4. An application to sensor network localization.
