Conversion Methods for Large Scale SDPs to Exploit Their Structured Sparsity

The MIT Computation for Design and Optimization Program Distinguished Speaker Series

Massachusetts Institute of Technology 14 May, 2008

Masakazu Kojima

Tokyo Institute of Technology

1. Introduction

- 2. Two kinds of sparsities
 - 2-1. Aggregated sparsity and positive definite matrix completion
 - 2-2. Correlative sparsity and sparsity pattern of the Schur complement matrix
- 3. Conversion nethods for a large sparse SDP
 - 3-1. Conversion to a c-sparse LMI form SDP with small mat. variables
 - 3-2. Conversion to a c-sparse equality form SDP with small mat. variables
- 4. An application to sensor network localization
- 5. Concluding remarks

1. Introduction

- 2. Two kinds of sparsities
 - 2-1. Aggregated sparsity and positive definite matrix completion
 - 2-2. Correlative sparsity and sparsity pattern of the Schur complement matrix
- 3. Conversion nethods for a large sparse SDP
 - 3-1. Conversion to a c-sparse LMI form SDP with small mat. variables
 - 3-2. Conversion to a c-sparse equality form SDP with small mat. variables
- 4. An application to sensor network localization
- 5. Concluding remarks

min $A_0 \bullet X$ sub.to $A_p \bullet X = b_p \ (p = 1, \dots, m), \ S^n \ni X \succeq O$

Here

 $oldsymbol{A}_p \in \mathcal{S}^n$ the linear space of n imes n symmetric matrices

with the inner product
$$A_p \bullet X = \sum_{i, j} [A_p]_{ij} X_{ij}$$
.

 $b_p \in \mathbb{R}, \ \mathbf{X} \succeq \mathbf{O} \ \Leftrightarrow \ \mathbf{X} \in S^n$ is positive semidefinite.

Lots of Applications to Various Problems

- Systems and control theory Linear Matrix Inequality
- SDP relaxations of combinatorial and nonconvex problems
 - Max cut and max clique problems
 - Quadratic assignment problems
 - Polynomial optimization problems
- Robust optimization
- Quantum chemistry
- Moment problems (applied probability)
- Sensor network localization problem later

min $A_0 \bullet X$ sub.to $A_p \bullet X = b_p \ (p = 1, \dots, m), \ S^n \ni X \succeq O$

SDP can be large-scale easily

• $n \times n$ mat. variable X involves n(n+1)/2 real variables;

$$n = 2000 \Rightarrow n(n+1)/2 \approx 2$$
 million

• *m* linear equality constraints or $m \ A_p$'s $\in S^n$

 \Diamond How can we solve a larger scale SDP?

- (a) Use more powerful computer system such as clusters and grids of computers parallel computation.
- (b) Develop new numerical methods for SDPs.
- (c) Improve primal-dual interior-point methods.
- (d) Convert a large sparse SDP to an SDP which existing pdipms can solve efficiently:
 - multiple but small size mat. variables.
 - a sparse Schur complement mat. (a coef. mat. of a sys. of equations solved at ∀ iteration of the pdipm).

Outline of the conversion

sparsity used	A large scale and structured sparse SDP	technique
aggregated sparsity	\downarrow	positive definite mat. completion
	An SDP with small SDP cones and shared variables among SDP cones	
correlative sparsity	\Rightarrow	conversion to LMI form SDP or conversion to Equality form SDP
	A c-sparse SDP with small matrix variables (<i>i.e.</i> , small SDP cones)	

An SDP example — Conversion makes a critical difference

$$\begin{array}{ll} \min & \sum_{p=1}^{m} x_p + \boldsymbol{I} \bullet \boldsymbol{X} \\ \text{sub.to} & a_p x_p + \boldsymbol{A}_p \bullet \boldsymbol{X} = 2, x_p \geq 0 \ (p = 1, \ldots, m), \ \boldsymbol{X} \succeq \boldsymbol{O}. \\ \text{Here } a_p \in (0, 1) \text{ and } \boldsymbol{A}_p \in \mathcal{S}^k \text{ are generated randomly.} \end{array}$$

		SeDuMi	conv.+SeDuMi	
m	k	cpu time in sec.	cpu time in sec.	
1000	10	29.6	4.3	
2000	10	360.4	10.3	
4000	10		20.9	

SeDuMi — one of the most popular software for SDPs

- Low rank update? But the rank of dense column = 10(10+1)/2 = 55.
- Application to sensor network localization later

- 1. Introduction
 - Semidefinite Programs (SDPs) and their conversion -
- 2. Two Kinds of Sparsities
 - 2-1. Aggregated sparsity and positive definite matrix completion (Fukuda et al. '01, Nakata et al. '03)
 - 2-2. Correlative sparsity and sparsity pattern of the Schur complement matrix
- 3. Conversion nethods for a large sparse SDP
 - 3-1. Conversion to a c-sparse LMI form SDP with small mat. variables
 - 3-2. Conversion to a c-sparse equality form SDP with small mat. variables
- 4. An application to sensor network localization
- 5. Concluding remarks

min $A_0 \bullet X$ sub.to $A_p \bullet X = b_p \ (p = 1, \dots, m), \ S^n \ni X \succeq O$

 A_* : $n \times n$ aggregated sparsity pattern mat.

$$[A_*]_{ij} = \begin{cases} \star & \text{if } i = j \text{ or } [A_p]_{ij} \neq 0 \text{ for some } p = 0, \dots, m, \\ 0 & \text{otherwise} \end{cases}$$

SDP : a-sparse if A_* allows a sparse Cholesky factorization

Two typical cases

1: bandwidth along diagonal 2: arrow 📐

$$\boldsymbol{A}_{*} = \begin{pmatrix} * & * & 0 & 0 & 0 \\ * & * & * & 0 & 0 \\ 0 & * & * & * & 0 \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix} \qquad \boldsymbol{A}_{*} = \begin{pmatrix} * & 0 & 0 & 0 & * \\ 0 & * & 0 & 0 & * \\ 0 & 0 & * & 0 & * \\ 0 & 0 & 0 & * & * \\ * & * & * & * & * \end{pmatrix}$$

• X : fully dense, so standard pdipms can not effectively utilize this type of sparsity \Rightarrow pos.def.mat.completion

min $A_0 \bullet X$ sub.to $A_p \bullet X = b_p \ (p = 1, \dots, m), \ S^n \ni X \succeq O$

 A_* : $n \times n$ aggregated sparsity pattern mat.

$$[A_*]_{ij} = \begin{cases} \star & \text{if } i = j \text{ or } [A_p]_{ij} \neq 0 \text{ for some } p = 0, \dots, m, \\ 0 & \text{otherwise} \end{cases}$$

SDP : a-sparse if A_* allows a sparse Cholesky factorization

 $\begin{array}{l} & G(N,E): \text{ the asp graph, an undirected graph with} \\ & \mathbb{N} = \{1,\ldots,n\}, \ E = \{(i,j): [A_*]_{ij} = \star \text{ and } i < j\}. \\ & G(N,\overline{E}): \text{ a chordal extension of } G(N,E). \\ & C_1,\ldots,C_\ell \subset N: \text{ the family of maximal cliques of } G(N,\overline{E}). \end{array}$

 $SDP \equiv$ an SDP with shared variables among small SDP cones:

$$\begin{array}{l} \min & \sum_{(i,j)\in\widetilde{E}} \ [A_0]_{ij}X_{ij} \\ \text{sub.to} & \sum_{(i,j)\in\widetilde{E}} \ [A_p]_{ij}X_{ij} = b_p \ (\forall p), \ \boldsymbol{X}(C_r) \succeq \boldsymbol{O} \ (r = 1, \dots, \ell), \\ \\ \text{where } \boldsymbol{X}(C_r) : \text{the submatrix of } \boldsymbol{X} \text{ consisting of } X_{ij} \ (i,j \in C_r). \\ \end{array}$$

$$\begin{array}{l} \text{Here } \widetilde{E} = \{(i,j): (i,j), (j,i) \in \overline{E} \text{ or } i = j\} \Longrightarrow \text{Section 3.} \\ \end{array}$$

min $A_0 \bullet X$ sub.to $A_p \bullet X = b_p \ (p = 1, \dots, m), \ S^n \ni X \succeq O$

 A_* : $n \times n$ aggregated sparsity pattern mat.

$$[A_*]_{ij} = \begin{cases} \star & \text{if } i = j \text{ or } [A_p]_{ij} \neq 0 \text{ for some } p = 0, \dots, m, \\ 0 & \text{otherwise} \end{cases}$$

SDP : a-sparse if A_* allows a sparse Cholesky factorization

1. Introduction

- 2. Two kinds of sparsities
 - 2-1. Aggregated sparsity and positive definite matrix completion
 - 2-2. Correlative sparsity and sparsity pattern of the Schur complement matrix
- 3. Conversion nethods for a large sparse SDP
 - 3-1. Conversion to a c-sparse LMI form SDP with small mat. variables
 - 3-2. Conversion to a c-sparse equality form SDP with small mat. variables
- 4. An application to sensor network localization
- 5. Concluding remarks

$$\begin{array}{l} \text{SDP with small matrix variables:}\\ \min & \sum_{r=1}^{\ell} \boldsymbol{A}_{0r} \bullet \boldsymbol{X}_{r}\\ \text{sub.to} & \sum_{r=1}^{\ell} \boldsymbol{A}_{pr} \bullet \boldsymbol{X}_{r} = b_{p} \ (p = 1, \ldots, m), \ \boldsymbol{X}_{r} \succeq \boldsymbol{O} \ (\forall r) \\ \\ \Downarrow & \boldsymbol{A}_{p\diamond} = \text{diag} \ (\boldsymbol{A}_{p1}, \ldots, \boldsymbol{A}_{p\ell}), \ \boldsymbol{X}_{\diamond} = \text{diag} \ (\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\ell}), \\ \boldsymbol{A}_{p\diamond} \bullet \boldsymbol{X}_{\diamond} = \sum_{r=1}^{\ell} \boldsymbol{A}_{pr} \bullet \boldsymbol{X}_{r}. \end{array}$$

$$\begin{array}{l} \text{SDP: min } \boldsymbol{A}_{0\diamond} \bullet \boldsymbol{X}_{\diamond} \text{ sub.to } \boldsymbol{A}_{p\diamond} \bullet \boldsymbol{X}_{\diamond} = b_{p} \ (\forall p), \ \boldsymbol{X}_{\diamond} \succeq \boldsymbol{O} \\ \\ m \times m \ \boldsymbol{R}_{*} : \text{ correlative sparsity pattern (csp) mat.} \\ [R_{*}]_{pq} = \begin{cases} 0 & \text{if } \boldsymbol{A}_{p\diamond} \text{ and } \boldsymbol{A}_{q\diamond} \text{ are bw-comp}, \\ \star & \text{otherwise.} \end{cases} \end{array}$$

 $oldsymbol{A}_{p\diamond}$ and $oldsymbol{A}_{q\diamond}$: block-wise complementary $\label{eq:Apr}$ $oldsymbol{A}_{pr} = oldsymbol{O}$ or $oldsymbol{A}_{qr} = oldsymbol{O}$ for every $r = 1, \dots, \ell;$

$$\begin{array}{l} \begin{array}{l} \text{SDP with small matrix variables:} \\ \min & \sum_{r=1}^{\ell} A_{0r} \bullet X_{r} \\ \text{sub.to} & \sum_{r=1}^{\ell} A_{pr} \bullet X_{r} = b_{p} \ (p = 1, \ldots, m), \ X_{r} \succeq O \ (\forall r) \\ \\ \psi & \begin{array}{l} A_{p\diamond} = \text{diag} \ (A_{p1}, \ldots, A_{p\ell}), \ X_{\diamond} = \text{diag} \ (X_{1}, \ldots, X_{\ell}), \\ A_{p\diamond} \bullet X_{\diamond} = \sum_{r=1}^{\ell} A_{pr} \bullet X_{r}. \end{array} \\ \end{array}$$

$$\begin{array}{l} \begin{array}{l} \text{SDP: min } A_{0\diamond} \bullet X_{\diamond} \text{ sub.to } A_{p\diamond} \bullet X_{\diamond} = b_{p} \ (\forall p), \ X_{\diamond} \succeq O \\ \hline m \times m \ R_{*}: \text{ correlative sparsity pattern (csp) mat.} \\ [R_{*}]_{pq} &= \begin{cases} 0 & \text{if } A_{p\diamond} \text{ and } A_{q\diamond} \text{ are bw-comp}, \\ \star & \text{otherwise.} \end{cases} \\ \end{array} \\ \begin{array}{l} A_{1\diamond} = \text{diag}(A_{11}, \ O, \ O, \ O \) \\ A_{2\diamond} = \text{diag}(\ O, A_{22}, \ O, \ O \) \\ \end{array}$$

 $\begin{array}{c} \boldsymbol{A}_{3\diamond} = \operatorname{diag}(\boldsymbol{O}, \boldsymbol{O}, \boldsymbol{A}_{33}, \boldsymbol{O}) & \overrightarrow{\boldsymbol{A}_{*}} = \left(\begin{array}{ccc} 0 & 0 & \star & \star \\ \mathbf{A}_{4\diamond} = \operatorname{diag}(\boldsymbol{A}_{41}, \boldsymbol{A}_{42}, \boldsymbol{A}_{43}, \boldsymbol{A}_{44}) & & \left(\begin{array}{ccc} 0 & 0 & \star & \star \\ \star & \star & \star & \star \end{array} \right) \\ \exists \text{ sparse Cholesky factorization} \end{array}$

SDP with small matrix variables:
min
$$\sum_{r=1}^{\ell} A_{0r} \bullet X_r$$

sub.to $\sum_{r=1}^{\ell} A_{pr} \bullet X_r = b_p (p = 1, ..., m), X_r \succeq O (\forall r)$
 $\downarrow \quad A_{p\diamond} = \operatorname{diag}(A_{p1}, ..., A_{p\ell}), X_\diamond = \operatorname{diag}(X_1, ..., X_\ell),$
 $A_{p\diamond} \bullet X_\diamond = \sum_{r=1}^{\ell} A_{pr} \bullet X_r.$
SDP: min $A_{0\diamond} \bullet X_\diamond$ sub.to $A_{p\diamond} \bullet X_\diamond = b_p (\forall p), X_\diamond \succeq O$
 $m \times m R_*$: correlative sparsity pattern (csp) mat.
 $[R_*]_{pq} = \begin{cases} 0 & \text{if } A_{p\diamond} \text{ and } A_{q\diamond} \text{ are bw-comp}, \\ \star & \text{otherwise.} \end{cases}$
 $A_{1\diamond} = \operatorname{diag}(A_{11}, O, O, A_{14}) \qquad (\star \star \star \star)$

$$\begin{array}{l} \textbf{SDP with small matrix variables:}\\ \min & \sum_{r=1}^{\ell} \boldsymbol{A}_{0r} \bullet \boldsymbol{X}_{r}\\ \textbf{sub.to} & \sum_{r=1}^{\ell} \boldsymbol{A}_{pr} \bullet \boldsymbol{X}_{r} = b_{p} \ (p = 1, \ldots, m), \ \boldsymbol{X}_{r} \succeq \boldsymbol{O} \ (\forall r) \\ \\ \Downarrow & \boldsymbol{A}_{p\diamond} = \textbf{diag} \ (\boldsymbol{A}_{p1}, \ldots, \boldsymbol{A}_{p\ell}), \ \boldsymbol{X}_{\diamond} = \textbf{diag} \ (\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\ell}), \\ \boldsymbol{A}_{p\diamond} \bullet \boldsymbol{X}_{\diamond} = \sum_{r=1}^{\ell} \boldsymbol{A}_{pr} \bullet \boldsymbol{X}_{r}. \end{array}$$

$$\begin{array}{l} \textbf{SDP: min } \boldsymbol{A}_{0\diamond} \bullet \boldsymbol{X}_{\diamond} \ \textbf{sub.to} \ \boldsymbol{A}_{p\diamond} \bullet \boldsymbol{X}_{\diamond} = b_{p} \ (\forall p), \ \boldsymbol{X}_{\diamond} \succeq \boldsymbol{O} \\ \\ m \times m \ \boldsymbol{R}_{*}: \ \textbf{correlative sparsity pattern (csp) mat.} \\ [R_{*}]_{pq} = \begin{cases} 0 & \text{if } \boldsymbol{A}_{p\diamond} \ \textbf{and } \boldsymbol{A}_{q\diamond} \ \textbf{are bw-comp}, \\ \star & \text{otherwise.} \end{cases} \end{array}$$

■ R_{*} = the sparsity pattern of the Schur complement mat. = a coef. mat. of equations solved at ∀ iteration of the pdipm by the Cholesky fact.

SDP : c-sparse if \mathbf{R}_* allows a sparse Cholesky factorization

c-sparse SDP with small mat. variables — target for conv.

1. Introduction

- 2. Two kinds of sparsities
 - 2-1. Aggregated sparsity and positive definite matrix completion
 - 2-2. Correlative sparsity and sparsity pattern of the Schur complement matrix
- 3. Conversion methods for a large sparse SDP
 - 3-1. Conversion to a c-sparse LMI form SDP with small mat. variables
 - 3-2. Conversion to a c-sparse equality form SDP with small mat. variables
- 4. An application to sensor network localization
- 5. Concluding remarks

Outline of the conversion

sparsity used	A large scale and structured sparse SDP	technique
aggregated sparsity	\downarrow	positive definite mat. completion
	An SDP with small SDP cones and shared variables among SDP cones	
correlative sparsity	\Rightarrow	conversion to LMI form SDP or conversion to Equality form SDP
	A c-sparse SDP with small matrix variables (<i>i.e.</i> , small SDP cones)	

SDP with shared variables among SDP cones

$$\min \sum_{(i,j)\in\widetilde{E}} [A_0]_{ij}X_{ij} \text{ sub.to } \sum_{\substack{(i,j)\in\widetilde{E}\\(i,j)\in\widetilde{E}}} [A_p]_{ij}X_{ij} = b_p \ (p = 1, \dots, m),$$

$$X(C_r) \succeq O \ (r = 1, \dots, \ell),$$

$$C_1, \dots, C_r \text{ : the max. cliques of a chordal graph } G(N, \overline{E})$$

$$\widetilde{E} = \{(i,j): (i,j), (j,i)\in\overline{E} \text{ or } i = j\}.$$

3-1. Conversion to a c-sparse LMI form SDP Represent each $X(C_r)$ as $X(C_r) = \sum_{i,j\in C_r, i\leq j} E^{ij}(C_r)X_{ij},$

where $E^{ij}(C_r)$: a sym. mat. with 1 at the (i, j)th, (j, i)th elements and 0 elsewhere. Then, a c-sparse LMI form SDP having eq. const.

$$\min \sum_{(i,j)\in \widetilde{E}} [A_0]_{ij} X_{ij} \text{ sub.to } \sum_{\substack{(i,j)\in \widetilde{E}\\\sum_{i,j\in C_r,i\leq j}}} [A_p]_{ij} X_{ij} = b_p \ (\forall p),$$

SDP with shared variables among SDP cones

$$\min \sum_{(i,j)\in \widetilde{E}} [A_0]_{ij}X_{ij} \text{ sub.to } \sum_{\substack{(i,j)\in \widetilde{E}\\(i,j)\in \widetilde{E}}} [A_p]_{ij}X_{ij} = b_p \ (p = 1, \dots, m),$$

$$X(C_r) \succeq O \ (r = 1, \dots, \ell),$$

$$C_1, \dots, C_r \text{ : the max. cliques of a chordal graph } G(N, \overline{E})$$

$$\widetilde{E} = \{(i,j): (i,j), (j,i)\in \overline{E} \text{ or } i = j\}.$$

3-1. Conversion to a c-sparse LMI form SDP: Example $n = 100, m = 98, C_r = \{r, 99, 100\} (1 \le r \le 98).$

SDP with shared variables among SDP cones $\min \sum_{(i,j)\in\widetilde{E}} [A_0]_{ij}X_{ij} \text{ sub.to } \sum_{\substack{(i,j)\in\widetilde{E}\\(i,j)\in\widetilde{E}}} [A_p]_{ij}X_{ij} = b_p \ (p = 1, \dots, m),$ $X(C_r) \succeq O \ (r = 1, \dots, \ell),$ $C_1, \dots, C_r \text{ : the max. cliques of a chordal graph } G(N, \overline{E})$ $\widetilde{E} = \{(i,j): (i,j), (j,i)\in\overline{E} \text{ or } i = j\}.$

3-2. Conversion to a c-sparse equality form SDP We can rewite SDP as

Equality form SDP with indep. mat. var. \widetilde{X}_r $(r = 1, ..., \ell)$ min $\sum_{r=1}^{\ell} \widetilde{A}_{0r} \bullet \widetilde{X}_r$ sub.to $\sum_{r=1}^{\ell} \widetilde{A}_{pr} \bullet \widetilde{X}_r = b_p \ (p = 1, ..., m),$ equalities to identify \exists elements of $\widetilde{X}_r \ (r = 1, ..., \ell),$ $\widetilde{X}_r \succeq O \ (r = 1, ..., \ell).$

- Various choices for \widetilde{A}_{pr} and equalities.
- How do we choose them for better c-sparsity?

Various choices for equalities

SDP with shared variables $\Rightarrow X(C_r) \succeq O \ (r = 1, ..., \ell)$, where $C_1, ..., C_r$: the max. cliques of $G(N, \overline{E})$

Equality form SDP
$$\Rightarrow$$
 $\widetilde{X}_r \succeq O (r = 1, \dots, \ell)$ and equalities to identify \exists elements of $\widetilde{X}_r (r = 1, \dots, \ell)$

Example: $n = 100, m = 98, C_r = \{r, 99, 100\} (1 \le r \le 98).$

each
$$\widetilde{X}_r = \begin{pmatrix} \star & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix}$$
: 3 × 3

$$[X_r]_{ij} = [X_1]_{ij} \qquad [X_r]_{ij} = [X_{r-1}]_{ij} (2 \le i, j \le 3) \qquad (2 \le i, j \le 3) (r = 2, \dots, 98) \qquad (r = 2, \dots, 98)$$

 $R_* = 389 \times 389$, fully dense

 $R^* =$

Various choices for equalities

SDP with shared variables $\Rightarrow X(C_r) \succeq O \ (r = 1, ..., \ell)$, where $C_1, ..., C_r$: the max. cliques of $G(N, \overline{E})$

Equality form SDP
$$\Rightarrow$$
 $\widetilde{X}_r \succeq O (r = 1, ..., \ell)$
and equalities to identify \exists elements of $\widetilde{X}_r (r = 1, ..., \ell)$

- It is often necessary to reduce the number of equalities by combining some cliques.
- Fujisawa, Fukuda, Kojima, Murota and Nakata 2001, 2003, 2006 proposed conversion to an equality form SDP, but correlative sparsity was not exploited —> further study.
- Isome cases where conversion to a c-sparse LMI form SDP is better, and ∃ some cases where conversion to a c-sparse equality form SDP is better.
- Some method to judge which conversion is better for a given problem needs to be studied.

 $\cdot, \ell)$

1. Introduction

- 2. Two kinds of sparsities
 - 2-1. Aggregated sparsity and positive definite matrix completion
 - 2-2. Correlative sparsity and sparsity pattern of the Schur complement matrix
- 3. Conversion nethods for a large sparse SDP
 - 3-1. Conversion to a c-sparse LMI form SDP with small mat. variables
 - 3-2. Conversion to a c-sparse equality form SDP with small mat. variables
- 4. An application to sensor network localization
- 5. Concluding remarks

Sensor network localization problem: Let s = 2 or 3.

$$\begin{split} \boldsymbol{x}^{p} \in \mathbb{R}^{s} &: \text{ unknown location of sensors } (p = 1, 2, \dots, m), \\ \boldsymbol{x}^{r} = \boldsymbol{a}^{r} \in \mathbb{R}^{s} &: \text{ known location of anchors } (r = m + 1, \dots, n), \\ d_{pq} &= \|\boldsymbol{x}^{p} - \boldsymbol{x}^{q}\| + \epsilon_{pq} - \text{given for } (p, q) \in \mathcal{N}, \\ \mathcal{N} &= \{(p, q) : \|\boldsymbol{x}^{p} - \boldsymbol{x}^{q}\| \leq \rho = \text{a given radio range}\} \\ \text{Here } \epsilon_{pq} \text{ denotes a noise.} \end{split}$$

m = 5, n = 9.1,...,5: sensors 6,7,8,9: anchors

Anchors' positions are fixed. A distance is given for \forall edge. Compute locations of sensors.

 \Rightarrow Some nonconvex QOPs

- SDP relaxation +? FSDP by Biswas-Ye '06, ESDP by Wang et al '07, ... for s = 2.
- SOCP relaxation Tseng '07 for s = 2.

Numerical results on 4 methods (a), (b), (c) and (d) applied to a sensor network localization problem with

m = the number of sensors dist. randomly in $[0, 1]^2$,

4 anchors located at the corner of $[0, 1]^2$,

 $\rho = radio distance = 0.1$, no noise.

(a) FSDP (b) FSDP + Conv. to LMI form SDP, as strong as (a)
(c) FSDP + Conv. to equality form SDP (Fujisawa-F-K-M-N)

'01, '03, '06), as strong as (a)

(d) ESDP — a further relaxation of FSDP, weaker than (a);

	SeDu	ıMi cpu	time in se	econd	SeDuMi parameters
m	(a)	(b)	(C)	(d)	pars.free=0;
500	389.1	35.0	405.2	62.5	.eps=1.0e-5
1000	3345.2	60.4	1317.7	200.3	\Rightarrow a-sparsity,
2000		111.1		1403.9	c-sparsity
4000		182.1		11559.8	in (a) and (b)

m = 1000 sensors, (b) FSDP+Conversion to an LMI form SDP

anchor : true : computed : * deviation : —

m = 1000 sensors, (d) ESDP

anchor : true : computed : * deviation : — A Cholesky fact. of the a-sparsity pattern matrix A_* with the symm. min. deg. ordering

(a) FSDP (Biswas-Ye '06) (b) FSDP + Conversion

to an LMI form SDP

1002 × 1002, nz = 7062 nz density = 0.014

 7381×7381 , nz = 37,701 nz density = 0.0014

A Cholesky fact. of the c-sparsity pattern matrix R_* (= the Schur comp. matrix) with the symm. min. deg. ordering

(a) FSDP (Biswas-Ye '06)

(b) FSDP + Conversion to an LMI form SDP

3686 × 3686, nz = 6,795,141 nz density = 1.00 3345.2 second 8916 × 8916, nz = 805,183 nz density = 0.020 60.4 second

1. Introduction

- 2. Two kinds of sparsities
 - 2-1. Aggregated sparsity and positive definite matrix completion
 - 2-2. Correlative sparsity and sparsity pattern of the Schur complement matrix
- 3. Conversion nethods for a large sparse SDP
 - 3-1. Conversion to a c-sparse LMI form SDP with small mat. variables
 - 3-2. Conversion to a c-sparse equality form SDP with small mat. variables
- 4. An application to sensor network localization
- 5. Concluding remarks

- 1. Large scale SDPs are difficult to solve.
- 2. Methods which convert a large scale SDP into an SDP having small mat. variables and a sparse Schur complement mat. by exploiting the structured sparsity,
 - aggregated sparsity,
 - correlative sparsity.
- 3. Two different methods:
 - Conversion to a c-sparse LMI form SDP.
 - Conversion to a c-sparse equality form SDP
 further study to exploit correlative sparsity.
- 4. An application to sensor network localization.