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Equality standard form SDP:
min A0 • X sub.to Ap • X = bp (p = 1, . . . ,m), Sn ∋ X � O

Here
Ap ∈ Sn the linear space of n × n symmetric matrices

with the inner product Ap • X =
∑

i, j

[Ap]ijXij.

bp ∈ R, X � O ⇔ X ∈ Sn is positive semidefinite.

Lots of Applications to Various Problems
Systems and control theory — Linear Matrix Inequality
SDP relaxations of combinatorial and nonconvex problems

Max cut and max clique problems
Quadratic assignment problems
Polynomial optimization problems

Robust optimization
Quantum chemistry
Moment problems (applied probability)
Sensor network localization problem — later
. . .
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Equality standard form SDP:
min A0 • X sub.to Ap • X = bp (p = 1, . . . ,m), Sn ∋ X � O

SDP can be large-scale easily
n × n mat. variable X involves n(n + 1)/2 real variables;
n = 2000 ⇒ n(n + 1)/2 ≈ 2 million
m linear equality constraints or m Ap’s ∈ Sn

♦ How can we solve a larger scale SDP?

(a) Use more powerful computer system such as clusters
and grids of computers — parallel computation.

(b) Develop new numerical methods for SDPs.
(c) Improve primal-dual interior-point methods.
(d) Convert a large sparse SDP to an SDP which existing

pdipms can solve efficiently:
multiple but small size mat. variables.
a sparse Schur complement mat. (a coef. mat. of a
sys. of equations solved at ∀ iteration of the pdipm).
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Outline of the conversion

sparsity A large scale and
used structured sparse SDP technique

aggregated ⇓ positive definite
sparsity mat. completion

An SDP with small
SDP cones and
shared variables

among SDP cones

⇓ conversion to
correlative LMI form SDP or

sparsity ⇓ conversion to
Equality form SDP

A c-sparse SDP with
small matrix variables
(i.e., small SDP cones)
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An SDP example — Conversion makes a critical difference

min
∑m

p=1 xp + I • X

sub.to apxp + Ap • X = 2, xp ≥ 0 (p = 1, . . . ,m), X � O.

Here ap ∈ (0, 1) and Ap ∈ Sk are generated randomly.

SeDuMi conv.+SeDuMi
m k cpu time in sec. cpu time in sec.

1000 10 29.6 4.3
2000 10 360.4 10.3
4000 10 20.9

SeDuMi — one of the most popular software for SDPs

Low rank update? But the rank of dense column
= 10(10 + 1)/2 = 55.

Application to sensor network localization — later
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Equality standard form SDP:
min A0 • X sub.to Ap • X = bp (p = 1, . . . ,m), Sn ∋ X � O

A∗ : n × n aggregated sparsity pattern mat.

[A∗]ij =

{
⋆ if i = j or [Ap]ij 6= 0 for some p = 0, . . . ,m,

0 otherwise
SDP : a-sparse if A∗ allows a sparse Cholesky factorization

Two typical cases
1: bandwidth along diagonal 2 : arrow ց

A∗ =




⋆ ⋆ 0 0 0

⋆ ⋆ ⋆ 0 0

0 ⋆ ⋆ ⋆ 0

0 0 ⋆ ⋆ ⋆

0 0 0 ⋆ ⋆




A∗ =




⋆ 0 0 0 ⋆

0 ⋆ 0 0 ⋆

0 0 ⋆ 0 ⋆

0 0 0 ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆




X : fully dense, so standard pdipms can not effectively
utilize this type of sparsity ⇒ pos.def.mat.completion
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Equality standard form SDP:
min A0 • X sub.to Ap • X = bp (p = 1, . . . ,m), Sn ∋ X � O

A∗ : n × n aggregated sparsity pattern mat.

[A∗]ij =

{
⋆ if i = j or [Ap]ij 6= 0 for some p = 0, . . . ,m,

0 otherwise
SDP : a-sparse if A∗ allows a sparse Cholesky factorization

⇓

G(N,E) : the asp graph, an undirected graph with
N = {1, . . . , n}, E = {(i, j) : [A∗]ij = ⋆ and i < j}.

G(N,E) : a chordal extension of G(N,E).

C1, . . . , Cℓ ⊂ N : the family of maximal cliques of G(N,E).

SDP ≡ an SDP with shared variables among small SDP cones:
min

∑
(i,j)∈ eE

[A0]ijXij

sub.to
∑

(i,j)∈ eE
[Ap]ijXij = bp (∀p), X(Cr) � O (r = 1, . . . , ℓ),

where X(Cr) : the submatrix of X consisting of Xij (i, j ∈ Cr).

Here Ẽ = {(i, j) : (i, j), (j, i) ∈ E or i = j} =⇒ Section 3.
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Equality standard form SDP:
min A0 • X sub.to Ap • X = bp (p = 1, . . . ,m), Sn ∋ X � O

A∗ : n × n aggregated sparsity pattern mat.

[A∗]ij =

{
⋆ if i = j or [Ap]ij 6= 0 for some p = 0, . . . ,m,

0 otherwise
SDP : a-sparse if A∗ allows a sparse Cholesky factorization

A∗ =




⋆ ⋆ 0 0 0

⋆ ⋆ ⋆ ⋆ 0

0 ⋆ ⋆ 0 ⋆

0 ⋆ 0 ⋆ ⋆

0 0 ⋆ ⋆ ⋆




1

2

3

4

5

1

2

3

4

5

G(N,E)
⇓
G(N,E) chordal
max. cliques
{1, 2},{2, 3, 4},{3, 4, 5}

Ẽ = {⋆’s & 0’s }

min
∑

(i,j)∈ eE
[A0]ijXij sub.to

∑
(i,j)∈ eE

[Ap]ijXij = bp,
(

X11 X12

X21 X22

)
,




X22 X23 X24

X32 X33 X34

X42 X43 X44


 ,




X33 X34 X35

X43 X44 X45

X53 X54 X55


 � O
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SDP with small matrix variables:
min

∑ℓ

r=1 A0r • Xr

sub.to
∑ℓ

r=1 Apr • Xr = bp (p = 1, . . . ,m), Xr � O (∀r)

⇓
Ap⋄ = diag (Ap1, . . . ,Apℓ) , X⋄ = diag (X1, . . . ,Xℓ) ,

Ap⋄ • X⋄ =
∑ℓ

r=1 Apr • Xr.

SDP: min A0⋄ • X⋄ sub.to Ap⋄ • X⋄ = bp (∀p), X⋄ � O

m × m R∗ : correlative sparsity pattern (csp) mat.

[R∗]pq =

{
0 if Ap⋄ and Aq⋄ are bw-comp,

⋆ otherwise.

Ap⋄ and Aq⋄ : block-wise complementary
m

Apr = O or Aqr = O for every r = 1, . . . , ℓ;
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SDP with small matrix variables:
min

∑ℓ

r=1 A0r • Xr

sub.to
∑ℓ

r=1 Apr • Xr = bp (p = 1, . . . ,m), Xr � O (∀r)

⇓
Ap⋄ = diag (Ap1, . . . ,Apℓ) , X⋄ = diag (X1, . . . ,Xℓ) ,

Ap⋄ • X⋄ =
∑ℓ

r=1 Apr • Xr.

SDP: min A0⋄ • X⋄ sub.to Ap⋄ • X⋄ = bp (∀p), X⋄ � O

m × m R∗ : correlative sparsity pattern (csp) mat.

[R∗]pq =

{
0 if Ap⋄ and Aq⋄ are bw-comp,

⋆ otherwise.

A1⋄ = diag(A11, O, O, O )

A2⋄ = diag( O,A22, O, O )

A3⋄ = diag( O, O,A33, O )

A4⋄ = diag(A41,A42,A43,A44)

⇒ R∗ =




⋆ 0 0 ⋆

0 ⋆ 0 ⋆

0 0 ⋆ ⋆

⋆ ⋆ ⋆ ⋆




∃ sparse Cholesky factorization
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SDP with small matrix variables:
min

∑ℓ

r=1 A0r • Xr

sub.to
∑ℓ

r=1 Apr • Xr = bp (p = 1, . . . ,m), Xr � O (∀r)

⇓
Ap⋄ = diag (Ap1, . . . ,Apℓ) , X⋄ = diag (X1, . . . ,Xℓ) ,

Ap⋄ • X⋄ =
∑ℓ

r=1 Apr • Xr.

SDP: min A0⋄ • X⋄ sub.to Ap⋄ • X⋄ = bp (∀p), X⋄ � O

m × m R∗ : correlative sparsity pattern (csp) mat.

[R∗]pq =

{
0 if Ap⋄ and Aq⋄ are bw-comp,

⋆ otherwise.

A1⋄ = diag(A11, O, O,A14)

A2⋄ = diag( O,A22, O,A24)

A3⋄ = diag( O, O,A33,A34)

A4⋄ = diag( O, O, O, A44)

⇒ R∗ =




⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆




fully dense
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SDP with small matrix variables:
min

∑ℓ

r=1 A0r • Xr

sub.to
∑ℓ

r=1 Apr • Xr = bp (p = 1, . . . ,m), Xr � O (∀r)

⇓
Ap⋄ = diag (Ap1, . . . ,Apℓ) , X⋄ = diag (X1, . . . ,Xℓ) ,

Ap⋄ • X⋄ =
∑ℓ

r=1 Apr • Xr.

SDP: min A0⋄ • X⋄ sub.to Ap⋄ • X⋄ = bp (∀p), X⋄ � O

m × m R∗ : correlative sparsity pattern (csp) mat.

[R∗]pq =

{
0 if Ap⋄ and Aq⋄ are bw-comp,

⋆ otherwise.

R∗ = the sparsity pattern of the Schur complement mat. =
a coef. mat. of equations solved at ∀ iteration of the pdipm
by the Cholesky fact.

SDP : c-sparse if R∗ allows a sparse Cholesky factorization

c-sparse SDP with small mat. variables — target for conv.
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Outline of the conversion

sparsity A large scale and
used structured sparse SDP technique

aggregated ⇓ positive definite
sparsity mat. completion

An SDP with small
SDP cones and
shared variables

among SDP cones

⇓ conversion to
correlative LMI form SDP or

sparsity ⇓ conversion to
Equality form SDP

A c-sparse SDP with
small matrix variables
(i.e., small SDP cones)
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SDP with shared variables among SDP cones
min

∑

(i,j)∈ eE

[A0]ijXij sub.to
∑

(i,j)∈ eE

[Ap]ijXij = bp (p = 1, . . . ,m),

X(Cr) � O (r = 1, . . . , ℓ),
C1, . . . , Cr : the max. cliques of a chordal graph G(N,E)
Ẽ = {(i, j) : (i, j), (j, i) ∈ E or i = j}.

3-1. Conversion to a c-sparse LMI form SDP
Represent each X(Cr) as

X(Cr) =
∑

i,j∈Cr,i≤j

E
ij(Cr)Xij,

where E
ij(Cr) : a sym. mat. with 1 at the (i, j)th, (j, i)th

elements and 0 elsewhere. Then, a c-sparse LMI form SDP
having eq. const.

min
∑

(i,j)∈ eE

[A0]ijXij sub.to
∑

(i,j)∈ eE

[Ap]ijXij = bp (∀p),

∑
i,j∈Cr,i≤j E

ij(Cr)Xij � O (∀r).
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SDP with shared variables among SDP cones
min

∑

(i,j)∈ eE

[A0]ijXij sub.to
∑

(i,j)∈ eE

[Ap]ijXij = bp (p = 1, . . . ,m),

X(Cr) � O (r = 1, . . . , ℓ),
C1, . . . , Cr : the max. cliques of a chordal graph G(N,E)
Ẽ = {(i, j) : (i, j), (j, i) ∈ E or i = j}.

3-1. Conversion to a c-sparse LMI form SDP: Example
n = 100, m = 98, Cr = {r, 99, 100} (1 ≤ r ≤ 98).

Ar =

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 9

=

r 99 100

* *
* *

*

*
*

**

A∗ =

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 494

R∗ of LMI form SDP =

0 100 200 300 400 500 600

0

100

200

300

400

500

600

nz = 9018 . – p.20/32



SDP with shared variables among SDP cones
min

∑

(i,j)∈ eE

[A0]ijXij sub.to
∑

(i,j)∈ eE

[Ap]ijXij = bp (p = 1, . . . ,m),

X(Cr) � O (r = 1, . . . , ℓ),
C1, . . . , Cr : the max. cliques of a chordal graph G(N,E)
Ẽ = {(i, j) : (i, j), (j, i) ∈ E or i = j}.

3-2. Conversion to a c-sparse equality form SDP
We can rewite SDP as

Equality form SDP with indep. mat. var. X̃r (r = 1, . . . , ℓ)

min
∑ℓ

r=1 Ã0r • X̃r

sub.to
∑ℓ

r=1 Ãpr • X̃r = bp (p = 1, . . . ,m),

equalities to identify ∃ elements of X̃r (r = 1, . . . , ℓ),

X̃r � O (r = 1, . . . , ℓ).

Various choices for Ãpr and equalities.
How do we choose them for better c-sparsity?
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Various choices for equalities

SDP with shared variables ⇒ X(Cr) � O (r = 1, . . . , ℓ),
where C1, . . . , Cr : the max. cliques of G(N,E)

Equality form SDP ⇒ X̃r � O (r = 1, . . . , ℓ)

and equalities to identify ∃ elements of X̃r (r = 1, . . . , ℓ)

Example: n = 100, m = 98, Cr = {r, 99, 100} (1 ≤ r ≤ 98).

each X̃r =




⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆


 : 3 × 3

[X̃r]ij = [X̃1]ij
(2 ≤ i, j ≤ 3)
(r = 2, . . . , 98)

[X̃r]ij = [X̃r−1]ij
(2 ≤ i, j ≤ 3)
(r = 2, . . . , 98)

R∗ = 389 × 389, fully dense R
∗ =

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

nz = 3863
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Various choices for equalities

SDP with shared variables ⇒ X(Cr) � O (r = 1, . . . , ℓ),
where C1, . . . , Cr : the max. cliques of G(N,E)

Equality form SDP ⇒ X̃r � O (r = 1, . . . , ℓ)

and equalities to identify ∃ elements of X̃r (r = 1, . . . , ℓ)

It is often necessary to reduce the number of equalities by
combining some cliques.
Fujisawa, Fukuda, Kojima, Murota and Nakata 2001, 2003,
2006 proposed conversion to an equality form SDP, but
correlative sparsity was not exploited =⇒ further study.
∃ some cases where conversion to a c-sparse LMI form
SDP is better, and ∃ some cases where conversion to a
c-sparse equality form SDP is better.
Some method to judge which conversion is better for a
given problem needs to be studied.
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Sensor network localization problem: Let s = 2 or 3.
x

p ∈ R
s : unknown location of sensors (p = 1, 2, . . . ,m),

x
r = a

r ∈ R
s : known location of anchors (r = m + 1, . . . , n),

dpq = ‖xp − x
q‖+ǫpq — given for (p, q) ∈ N ,

N = {(p, q) : ‖xp − x
q‖ ≤ ρ = a given radio range}

Here ǫpq denotes a noise.

m = 5, n = 9.
1, . . . , 5: sensors
6, 7, 8, 9: anchors

1
2

3
4

5

6

7

8

9

d18

Anchors’ positions are fixed.
A distance is given for ∀ edge.
Compute locations of sensors.

⇒ Some nonconvex QOPs

SDP relaxation +? — FSDP
by Biswas-Ye ’06, ESDP by
Wang et al ’07, ... for s = 2.
SOCP relaxation — Tseng ’07
for s = 2.
...
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Numerical results on 4 methods (a), (b), (c) and (d) applied to a
sensor network localization problem with

m = the number of sensors dist. randomly in [0, 1]2,
4 anchors located at the corner of [0, 1]2,
ρ = radio distance = 0.1, no noise.

(a) FSDP (b) FSDP + Conv. to LMI form SDP, as strong as (a)
(c) FSDP + Conv. to equality form SDP (Fujisawa-F-K-M-N

’01, ’03, ’06), as strong as (a)
(d) ESDP — a further relaxation of FSDP, weaker than (a);

SeDuMi cpu time in second
m (a) (b) (c) (d)

500 389.1 35.0 405.2 62.5

1000 3345.2 60.4 1317.7 200.3

2000 111.1 1403.9

4000 182.1 11559.8

SeDuMi
parameters

pars.free=0;
.eps=1.0e-5

⇒ a-sparsity,
c-sparsity
in (a) and (b)
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m = 1000 sensors, (b) FSDP+Conversion to an LMI form SDP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

anchor : ♦

true : ©
computed : ∗
deviation : —
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m = 1000 sensors, (d) ESDP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

anchor : ♦

true : ©
computed : ∗
deviation : —
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A Cholesky fact. of the a-sparsity pattern matrix A∗

with the symm. min. deg. ordering

(a) FSDP (Biswas-Ye ’06)

1002 × 1002, nz = 7062
nz density = 0.014

(b) FSDP + Conversion
to an LMI form SDP

7381 × 7381, nz = 37,701
nz density = 0.0014
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A Cholesky fact. of the c-sparsity pattern matrix R∗ (= the
Schur comp. matrix) with the symm. min. deg. ordering

(a) FSDP (Biswas-Ye ’06)

3686 × 3686, nz = 6,795,141
nz density = 1.00
3345.2 second

(b) FSDP + Conversion
to an LMI form SDP

8916 × 8916, nz = 805,183
nz density = 0.020

60.4 second
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1. Large scale SDPs are difficult to solve.

2. Methods which convert a large scale SDP into an SDP
having small mat. variables and a sparse Schur
complement mat. by exploiting the structured sparsity,

aggregated sparsity,
correlative sparsity.

3. Two different methods:
Conversion to a c-sparse LMI form SDP.
Conversion to a c-sparse equality form SDP
— further study to exploit correlative sparsity.

4. An application to sensor network localization.
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