
A General Framework for Convex Relaxation of Polynomial
Optimization Problems over Cones

Masakazu Kojima, Sunyoung Kim and Hayato Waki

September 2002

1

Contents

1. Convex relaxation of global optimization problems

2. Existing convex relaxation methods

3. Polynomial optimization problems over cones and their linearization

4. General framework for convex relaxation

5. Basic theory
— Relation to Lagrangian dual relaxation

2

1. Convex relaxation of global optimization problems

(1) max. f(x) sub.to x ∈ S, where f : Rn → R and S ⊂ Rn.

f(x*):unknown

x

^

^

opt. valuef(x)

�

x*
S

To solve (1) approximately, we need

(a) a feasible solution x̂ ∈ S with a larger objective value f(x̂)

(b) a smaller upper bound ζ for the unknown optimal value f(x∗)
=⇒ a main role of convex relaxation

If ζ − f(x̂) is smaller, we can accept x̂ as a higher quality approximate
optimal solution.

5

1. Convex relaxation of global optimization problems

(1) max. f(x) sub.to x ∈ S, where f : Rn → R and S ⊂ Rn.

f(x*):unknown

x

^

^

opt. valuef(x)

�

x*
S

x-

g(x)-

Ŝ

The common basic idea behind convex relaxation methods is:

(i) Replace S by a convex set Ŝ which includes S.

(ii) Replace f by a linear function g such that f(x) ≤ g(x) for ∀x ∈ S.

(iii) Solve the resulting convex optimization problem

max. g(x) sub.to x ∈ Ŝ

to compute an optimal solution x̄ whose objective value ζ = g(x̄)
serves as an upper bound for f(x∗).

6

2. Existing convex relaxation methods

• One-step methods for 0-1 IPs, nonconvex QPs and polynomial programs

(a) SDP-based, e.g., Grötschel-Lovász-Schrijver’88, Shor’90, Goemans-
Willianson’95.

(b) LP-based, e.g., Reformulation-Linearization-Technique (Sherali et.al’92).

• Successive applications of convex relaxation

(c) Lovász-Schrijver’91 for 0-1 IPs, the lift-and-project procedure for
0-1 IPs by Balas-Ceria-Cornuéjols’93.

(d) SCRM (Successive Convex Relaxation Method) for QOPs by Kojima-
Tunçel’00.

(e) Hierarchical SDP relaxation by Lasserre’01 for polynomial program-
ming.

• Theoretically very powerful: the optimal value can be approximated
in arbitrary accuracy by solving a finite number of SDP relaxations
under a moderate condition.

• Practically very expensive: we need to solve a sequence of large
scale SDPs.

9

The purpose of this talk is to present

a general framework for convex relaxation methods

which includes most of the existing methods.

The main ingredients are:

(a) Polynomial Optimization Problems ⊃ QOPs and 0-1 IPs

⇓(b) Add valid constraints and reformulate

(c) Polynomial Optimization Problems over Cones

⇓ (d) Linearization

(e) Linear Optimization Problems over Cones

I will talk about

• An illustrative example

• (c) ⇒ (d) ⇒ (e)

• (b)

16

An illustrative example

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)

���

���

�

�

�

Feasible
region

�

18

An illustrative example

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)

⇓ Valid constraints and/or reformulation

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 ≥ 0, x1x2 ≥ 0, x2

2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

x2
1 + x1

x1x2

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

x1x2 + x2

x2
2

)∥∥∥∥ ≤ 2x2.

⇓ Linearization: Keep the linear terms,
but replace each nonlinear term by a single independent variable

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, X11 ≥ 0, X12 ≥ 0, X22 ≥ 0,
X11 + X22−2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

X11 + x1

X12

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

X12 + x2

X22

)∥∥∥∥ ≤ 2x2.

20

An illustrative example

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)

⇓ Valid constraints and/or reformulation

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 ≥ 0, x1x2 ≥ 0, x2

2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

x2
1 + x1

x1x2

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

x1x2 + x2

x2
2

)∥∥∥∥ ≤ 2x2.

⇑ X11 = x1x1, X12 = x1x2, X22 = x2x2

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, X11 ≥ 0, X12 ≥ 0, X22 ≥ 0,
X11 + X22−2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

X11 + x1

X12

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

X12 + x2

X22

)∥∥∥∥ ≤ 2x2.

21

3. Polynomial optimization problems over cones and their linearization

max. f0(x) sub.to f(x) ∈ K, where

K : a closed convex cone in Rm,

x = (x1, . . . , xn) : a variable vector, f(x) ≡ (f1(x), . . . , fm(x)),

fj(x) : a polynomial in x1, . . . , xn (j = 0, 1, . . . , m).

Typical examples of K: Rm
+ : the nonnegative orthant of Rm.

S`
+ : the cone of ` × ` psd symmetric matrices, where we

identify each ` × ` matrix as an ` × ` dim vector.

N1+`
p ≡

{
v = (v0, v1, . . . , v`) ∈ R1+` :

∑̀

i=1

|vi|p ≤ vp
0

}

: the pth order cone (p ≥ 1).

N1+`
2 : the second order cone.

When fj(x) (j = 0, 1, 2, . . . , m) are linear,

K = S`
+ ⇒ SDP (Semidefinite Program),

K = N1+`
2 ⇒ SOCP (Second-Order Cone Program)

24

3. Polynomial optimization problems over cones and their linearization

max. f0(x) sub.to f(x) ∈ K, where

K : a closed convex cone in Rm,

x = (x1, . . . , xn) : a variable vector, f(x) ≡ (f1(x), . . . , fm(x)),

fj(x) : a polynomial in x1, . . . , xn (j = 0, 1, . . . , m).

Linearization — Keep the linear terms, but replace each
nonlinear term by a single independent variable.

Example 1:

f(x1, x2) =

(
1 − 2x1 + 3x2 + 4x2

1 + 5x1x2 + 6x2
2

9 + 8x1 + 7x2 + 6x2
1 − 5x1x2 − 4x2

2

)
∈ K

⇓ Linearization

F (x1, x2, X11, X12, X22)

=

(
1 − 2x1 + 3x2 + 4X11 + 5X12 + 6X22

9 + 8x1 + 7x2 + 6X11 − 5X12 − 4X22

)
∈ K

Here the three new variables X11, X12 and X22 are introduced.

26

3. Polynomial optimization problems over cones and their linearization

max. f0(x) sub.to f(x) ∈ K, where

K : a closed convex cone in Rm,

x = (x1, . . . , xn) : a variable vector, f(x) ≡ (f1(x), . . . , fm(x)),

fj(x) : a polynomial in x1, . . . , xn (j = 0, 1, . . . , m).

Linearization — Keep the linear terms, but replace each
nonlinear term by a single independent variable.

Example 2:

f(x1, x2, x3) =

(
1 − 2x1 + 3x2 + 4x2

1x3 + 5x1x2x3 + 6x4
3

9 + 8x1 + 7x2 + 6x2
1x3 − 5x1x2x3 − 4x4

3

)
∈ K

⇓ Linearization

F (x1, x2, U, V, W)

=

(
1 − 2x1 + 3x2 + 4U + 5V + 6W
9 + 8x1 + 7x2 + 6U − 5V − 4W

)
∈ K

Here the new variables U , V and W are introduced. In general, we need
a systematic method of assigning a new variable to each nonlinear term.

27

3. Polynomial optimization problems over cones and their linearization

max. f0(x) sub.to f(x) ∈ K, where

K : a closed convex cone in Rm,

x = (x1, . . . , xn) : a variable vector, f(x) ≡ (f1(x), . . . , fm(x)),

fj(x) : a polynomial in x1, . . . , xn (j = 0, 1, . . . , m).

Linearization — Keep the linear terms, but replace each
nonlinear term by a single independent variable.

Systematic method of assigning a new variable to each nonlinear term:

a nonlinear term xα
1 xβ

2 · · · xζ
n ⇒ y(α,β,...,ζ) ∈ R a new variable

For example,

n = 5, x2
1x2x

3
3x

4
5 = x2

1x
1
2x

3
3x

0
4x

4
5 ⇒ y(2,1,3,0,4).

In theory, any method of assigning a new variable to each nonlinear term
works. ⇒ This method is not essential.

28

4. General framework for convex relaxation

Original QOP, 0-1 IP, Polynomial programs to be solved

⇓ Valid constraints and/or reformulate

POP: max. f0(x) sub.to f(x) ∈ K, where

K : a closed convex cone in Rm,

x = (x1, . . . , xn) : a variable vector, f(x) ≡ (f1(x), . . . , fm(x)),

fj(x) : a polynomial in x1, . . . , xn (j = 0, 1, . . . , m).

⇓ Linearization — Keep the linear terms, but replace each
⇓ nonlinear term by a single independent variable.

LOP: max. F0(x, y) sub.to F (x, y) ∈ K, where

y denotes a new variable vector whose elements correspond to nonlin-
ear terms appeared in the polynomials fj(x) (j = 0, 1, . . . , m).

31

An illustrative example

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)

⇓ Valid constraints and/or reformulation

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 ≥ 0, x1x2 ≥ 0, x2

2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

x2
1 + x1

x1x2

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

x1x2 + x2

x2
2

)∥∥∥∥ ≤ 2x2.

⇓ Linearization: Keep the linear terms,
but replace each nonlinear term by a single independent variable

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, X11 ≥ 0, X12 ≥ 0, X22 ≥ 0,
X11 + X22−2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

X11 + x1

X12

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

X12 + x2

X22

)∥∥∥∥ ≤ 2x2.

34

An illustrative example

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)

⇓ Valid constraints and/or reformulation

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,
∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

1
x1

x2

 (

1 x1 x2

) ≡

1 x1 x2

x1 x2
1 x1x2

x2 x1x2 x2
2

 º O.

⇓ Linearization

max. −2x1 + x2 — SDP
sub.to x1 ≥ 0, x2 ≥ 0, X11 + X22−2x2 ≥ 0,

∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

1 x1 x2

x1 X11 X12

x2 X12 X22

 º O.

36

Given a problem, there are various ways of adding valid con-
straints and reformulating the problem. They usually yield
different convex relaxations.

37

In the previous illustrative example:

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)
,

we obtained two distinct convex relaxations.

max. −2x1 + x2 — SOCP
sub.to x1 ≥ 0, x2 ≥ 0, X11 ≥ 0, X12 ≥ 0, X22 ≥ 0,

X11 + X22−2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

X11 + x1

X12

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

X12 + x2

X22

)∥∥∥∥ ≤ 2x2.

max. −2x1 + x2 — SDP
sub.to x1 ≥ 0, x2 ≥ 0,X11 + X22−2x2 ≥ 0,

∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

1 x1 x2

x1 X11 X12

x2 X12 X22)

 º O.

38

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)
,

���

���

�

�

�

Feasible
region

�

����	�
����������� ��� � � ��	 � ���

����	�
��������� ��� � � ��	 � ���

39

Some examples of valid constraints — 1

• Universally valid constraints.

(a) SDP type:

u(x)u(x)T =

1 x1 x2 x2
1 x1x2 x2

2

x1 x2
1 x1x2 x3

1 x2
1x2 x1x

2
2

x2 x1x2 x2
2 x2

1x2 x1x
2
2 x3

2

x2
1 x3

1 x2
1x2 x4

1 x3
1x2 x2

1x
2
2

x1x2 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 x4

2

º O,

where u(x) =
(
1 x1 x2 x2

1 x1x2 x2
2

)T

More generally, take a row vector consisting of a basis of the polyno-
mials in x1, . . . , xn with degree ` for u(x) . [Lasserre’01].

(b) SOCP (Second-Order Cone Programming) type:

∀ f1, f2 : Rn → R,

∥∥∥∥
(

f1(x)2 − f2(x)2

2f1(x)f2(x)

)∥∥∥∥ ≤ f1(x)2 + f2(x)2

41

Some examples of valid constraints — 2

• Deriving valid constraints, “multiplication” of valid constraints:

original constraints new constraints

R 3 f(x) ≥ 0, R 3 g(x) ≥ 0 ⇒ f(x)g(x) ≥ 0 [Sherali et.al’92]

f(x) ≥ 0, G(x) º O ⇒ f(x)G(x) º 0 [Lasserre’01]

F (x) º O, G(x) º O ⇒ F (x) ⊗ G(x) º 0 (Kronecker product)

‖f(x)‖ ≤ f0(x), f(x) ∈ R`

‖g(x)‖ ≤ g0(x), g(x) ∈ R`

}
⇒ ‖f(x) ◦ g(x)‖ ≤ f0(x)g0(x)

(SOCP constraints) (component-wise product)

43

5. Basic theory

POP: max. f0(x) sub.to f(x) ∈ K, where

K : a closed convex cone in Rm, f(x) ≡ (f1(x), . . . , fm(x)).

⇓ Linearization — Keep the linear terms, but replace each
⇓ nonlinear term by a single independent variable.

LOP: max. F0(x, y) sub.to F (x, y) ∈ K, where

y denotes a new variable vector whose elements correspond to nonlin-
ear terms appeared in the polynomials fj(x) (j = 0, 1, . . . , m).

Lagrangian funct: L(x, v) ≡ f0(x) +
∑m

j=1 vjfj(x) for ∀x ∈ Rn, v ∈ K∗

Under the Slater condition (∃x; f(x) ∈ int K), if ζ̄ is the optimal
value of LOP then there exists v̄ ∈ K∗ satisfying

L(x, v̄) = ζ̄ for ∀x ∈ Rn

Hence ζ̄ = max{L(x, v̄) : x ∈ Rn} (a Lagrangian relaxation)

≥ min
v∈K∗ max{L(x, v) : x ∈ Rn} (Lagrangian dual relaxation)

45

6. Concluding remarks

The framework proposed in this talk for convex relaxation is quite general.

But we need to investigate various issues.

• Effectiveness — How do we generate better bounds?

• Low cost — Resulting relaxed problems need to be solved cheaply

• How to combine this framework with other methods like the branch-
and-bound method

• Parallel computation?

46

