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Equality standard form SDP:
min A0 •X sub.to Ap •X = bp (p = 1, . . . ,m), Sn ∋X � O

Ap ∈ S
n the linear space of n× n symmetric matrices

with the inner product Ap •X =
∑

i, j

[Ap]ijXij.

bp ∈ R, X � O ⇔ X ∈ Sn is positive semidefinite.

Lots of Applications to Various Problems
Systems and control theory — Linear Matrix Inequality
SDP relaxations of combinatorial and nonconvex problems

Max cut and max clique problems
Quadratic assignment problems
Polynomial optimization problems — later
Polynomial semidefinite programs — later

Robust optimization
Quantum chemistry
Moment problems (applied probability)
Sensor network localization problem — later
. . .
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Equality standard form SDP:
min A0 •X sub.to Ap •X = bp (p = 1, . . . ,m), Sn ∋X � O

SDP can be large-scale easily
n× n mat. variable X involves n(n + 1)/2 real variables;
n = 2000⇒ n(n + 1)/2 ≈ 2 million
m linear equality constraints or m Ap’s ∈ Sn

♦ How can we solve a larger scale SDP?

(a) Use more powerful computer system such as clusters
and grids of computers — parallel computation.

(b) Develop new numerical methods for SDPs.
(c) Improve primal-dual interior-point methods.
(d) Convert a large sparse SDP to an SDP which existing

pdipms can solve efficiently:
multiple but small size mat. variables.
a sparse Schur complement mat. (a coef. mat. of a
sys. of equations solved at ∀ iteration of the pdipm).
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Outline of conversion methods

structured
sparsity a large scale and

used structured sparse SDP technique

aggregated ⇓ positive semidefinite
sparsity mat. completion

an SDP with small
SDP cones and
shared variables

among SDP cones

⇓ conversion to
Equality form SDP or

⇓ conversion to
LMI form SDP

correlative an SDP with
sparsity small mat. variables

(i.e., small SDP cones)
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Equality standard form SDP:
min A0 •X sub.to Ap •X = bp (p = 1, . . . ,m), Sn ∋X � O

E∗ = {(i, j) : i = j or [Ap]ij 6= 0 for ∃p = 0, . . . ,m}

A∗ : n× n aggregated sparsity pattern mat.
[A∗]ij = ⋆ if (i, j) ∈ E∗ and 0 oterrwise

SDP : a-sparse if A∗ allows a sparse Cholesky factorization

Two typical cases: 1. bandwidth along diagonal

A∗ =

















⋆ ⋆ 0 0 0

⋆ ⋆ ⋆ 0 0

0 ⋆ ⋆ ⋆ 0

0 0 ⋆ ⋆ ⋆

0 0 0 ⋆ ⋆

















min
∑

(i,j)∈E∗

[A0]ijXij

sub.to
∑

(i,j)∈E∗

[Ap]ijXij = bp (∀p)

(

Xqq Xq,q+1

Xq+1,q Xq+q,q+1

)

� O

(q = 1, . . . , n− 1).

SDP = SDP with shared variables among small SDP cones
Each ⋆ can be a block matrix.
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Equality standard form SDP:
min A0 •X sub.to Ap •X = bp (p = 1, . . . ,m), Sn ∋X � O

E∗ = {(i, j) : i = j or [Ap]ij 6= 0 for ∃p = 0, . . . ,m}

A∗ : n× n aggregated sparsity pattern mat.
[A∗]ij = ⋆ if (i, j) ∈ E∗ and 0 oterrwise

SDP : a-sparse if A∗ allows a sparse Cholesky factorization

Two typical cases: 2. arrowց

A∗ =

















⋆ 0 0 0 ⋆

0 ⋆ 0 0 ⋆

0 0 ⋆ 0 ⋆

0 0 0 ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆

















min
∑

(i,j)∈E∗

[A0]ijXij

sub.to
∑

(i,j)∈E∗

[Ap]ijXij = bp (∀p)

(

Xqq Xqn

Xnq Xnn

)

� O

(q = 1, . . . , n− 1).

SDP = SDP with shared variables among small SDP cones
Each ⋆ can be a block matrix.
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Equality standard form SDP:
min A0 •X sub.to Ap •X = bp (p = 1, . . . ,m), Sn ∋X � O

E∗ = {(i, j) : i = j or [Ap]ij 6= 0 for ∃p = 0, . . . ,m}

A∗ : n× n aggregated sparsity pattern mat.
[A∗]ij = ⋆ if (i, j) ∈ E∗ and 0 oterrwise

SDP : a-sparse if A∗ allows a sparse Cholesky factorization

⇓ positive semidefinite matrix completion
∃C1, . . . , Cℓ ⊂ N = {1, 2, . . . , n}, ℓ ≤ n;
SDP ≡ an SDP with shared variables among small SDP cones:

min
∑

(i,j)∈E∗

[A0]ijXij

s.t.
∑

(i,j)∈E∗

[Ap]ijXij = bp (∀p), X(Cr) � O (r = 1, . . . , ℓ),

where X(Cr) : the submatrix of X consisting of Xij (i, j ∈ Cr).

To solve SDP, we need to convert it into a standard form
SDP⇒ next subject.
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Equality standard form SDP:
min A0 •X sub.to Ap •X = bp (p = 1, . . . ,m), Sn ∋X � O

As an example: ⇓ aggregated sparsity

min
∑

(i,j)∈E∗

[A0]ijXij sub.to
∑

(i,j)∈E∗

[Ap]ijXij = bp and
(

X11 X12

X21 X22

)

,







X22 X23 X24

X32 X33 X34

X42 X43 X44






,







X33 X34 X35

X43 X44 X45

X53 X54 X55






� O

(an SDP with smaller SDP cones and shared variables) =⇒
Conversion into a standard form SDP to apply IPM — 2 ways

Primal form SDP with small mat. variables:
min “linear obj. in Y r

ijs” sub.to “linear eq. in Y r
ijs” and

(

Y 1
11 Y 1

12

Y 1
21 Y 1

22

)

,







Y 2
11 Y 2

12 Y 2
13

Y 2
21 Y 2

22 Y 2
23

Y 2
31 Y 2

32 Y 2
33






,







Y 3
11 Y 3

12 Y 3
13

Y 3
21 Y 3

22 Y 3
23

Y 3
31 Y 3

32 Y 3
33






� O,

Y 1
22 = Y 2

11, Y 2
22 = Y 3

11, Y 2
23 = Y 3

12, Y 2
33 = Y 3

22.
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Equality standard form SDP:
min A0 •X sub.to Ap •X = bp (p = 1, . . . ,m), Sn ∋X � O

As an example: ⇓ aggregated sparsity

min
∑

(i,j)∈E∗

[A0]ijXij sub.to
∑

(i,j)∈E∗

[Ap]ijXij = bp and
(

X11 X12

X21 X22

)

,







X22 X23 X24

X32 X33 X34

X42 X43 X44






,







X33 X34 X35

X43 X44 X45

X53 X54 X55






� O

(an SDP with smaller SDP cones and shared variables) =⇒
Conversion into a standard form SDP to apply IPM — 2 ways

LMI form SDP with small mat. variables — next Section⇓

SDP with small (independent) matrix variables:
min

∑ℓ

r=1 A0r •Xr

sub.to
∑ℓ

r=1 Apr •Xr = bp (p = 1, . . . ,m), Xr � O (∀r)

Further sparsity “Apr ≡ O for many pairs of p and r” is
often satisfied⇒ correlative sparsity . – p.13/33
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min
∑

(i,j)∈E∗

[A0]ijXij

s.t.
∑

(i,j)∈E∗

[Ap]ijXij = bp (∀p), X(Cr) � O (r = 1, . . . , ℓ),

where X(Cr) : the submatrix of X consisting of Xij (i, j ∈ Cr).

Represent each X(Cr) as
X(Cr) =

∑

i,j∈Cr,i≤j

Eij(Cr)Xij,

where Eij(Cr) : a sym. mat. with 1 at some one or two
elements and 0 elsewhere. For example,
(

X11 X13

X31 X33

)

=

(

1 0

0 0

)

X11 +

(

0 1

1 0

)

X12 +

(

0 0

0 1

)

X33

Then, an LMI form SDP having eq. const.

min
∑

(i,j)∈E∗

[A0]ijXij sub.to
∑

(i,j)∈E∗

[Ap]ijXij = bp (∀p),

∑

i,j∈Cr,i≤j Eij(Cr)Xij � O (∀r).
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Review of conversion methods

structured
sparsity a large scale and

used structured sparse SDP technique

aggregated ⇓ positive semidefinite
sparsity mat. completion

an SDP with small
SDP cones and
shared variables

among SDP cones

⇓ conversion to
Equality form SDP or

⇓ conversion to
LMI form SDP

correlative an SDP with
sparsity small mat. variables

(i.e., small SDP cones)
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Sensor network localization problem: Let s = 2 or 3.
x

p ∈ R
s : unknown location of sensors (p = 1, 2, . . . ,m),

x
r = a

r ∈ R
s : known location of anchors (r = m + 1, . . . , n),

dpq = ‖xp − x
q‖+ǫpq — given for (p, q) ∈ N ,

N = {(p, q) : ‖xp − x
q‖ ≤ ρ = a given radio range}

Here ǫpq denotes a noise.

m = 5, n = 9.
1, . . . , 5: sensors
6, 7, 8, 9: anchors

1
2

34 5

6

7

8

9

d18

Anchors’ positions are known.
A distance is given for ∀ edge.
Compute locations of sensors.

⇒ Some nonconvex QOPs

SDP relaxation — FSDP by
Biswas-Ye ’06, ESDP by
Wang et al ’07, ... for s = 2.
SOCP relaxation — Tseng ’07
for s = 2.
...
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Numerical results on 4 methods (a), (b), (c) and (d) applied to a
sensor network localization problem with

m = the number of sensors dist. randomly in [0, 1]2,
4 anchors located at the corner of [0, 1]2,
ρ = radio distance = 0.1, no noise.

(a) FSDP (b) FSDP + Conv. to LMI form SDP, as strong as (a)
(c) FSDP + Conv. to Equality form SDP as strong as (a)

Cholesky factor
of aggregated
sparsity pattern
⇒ next slide

cpu time for solving SDP
by SeDuMi in second

m (a) (b) (c)

500 389.1 35.0 69.5

1000 3345.2 60.4 178.8

2000 111.1 326.0

4000 182.1 761.0
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(a) FSDP — cpu time 3345.2 sec
Cholesky Factor of Aggregated sparsity pattern

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

nz = 7205

This aggregated sparsity pattern is exploited in
(b) FSDP + Conv. to LMI form SDP — cpu time 60.4 sec
(c) FSDP + Conv. to Equality form SDP — cpu time 178.8 sec
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(b) FSDP + Conv. to LMI form SDP — cpu time 60.4 sec
(c) FSDP + Conv. to Equality form SDP — cpu time 178.8 sec

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

anchor : ♦

true : ©
computed : ∗
deviation : —
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3 dim, 500 sensors, 27 anchors, r.range = 0.3, noise← N(0,0.1);

(estimated dist.) d̂pq = (1 + ǫpq)dpq (true unknown dist.),

ǫpq ← N(0, 0.1)

(b) FSDP + Conv. to LMI form SDP

0
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0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1 anchor : ♦

true : ©
computed : ∗
deviation : —

24.2 sec.
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3 dim, 500 sensors, 27 anchors, r.range = 0.3, noise← N(0,0.1);

(estimated dist.) d̂pq = (1 + ǫpq)dpq (true unknown dist.),

ǫpq ← N(0, 0.1)

(b) FSDP + Conv. to LMI form SDP + Gradient method

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

anchor : ♦

true : ©
computed : ∗
deviation : —

24.2 sec.
+ 8.4 sec.
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POP (Polynomial Optimization Problem)

min f0(x) sub.to fi(x) ≥ 0 (i = 1, 2, . . . ,m).

Here fp(x) denotes a polynomial in x = (x1, . . . , xn).

(a) Apply SDP relaxation to POP⇒ SDP
— SparsePOP(MATLAB)

(b) Converet SDP into LMI form SDP with small mat.
variables — SparsePOP(MATLAB)

(c) Solve LMI form SDP by the primal-dual interior-point
method — SeDuMi(MATLAB)

SDP could become large-scale even when POP is small
(say n = 20, m = 20).
Sparsity is exploited in (a) too.　
Both lower and upper bounds for the optimal value are
obtained.
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A POP alkyl from globalib
min − 6.3x5x8 + 5.04x2 + 0.35x3 + x4 + 3.36x6

sub.to − 0.820x2 + x5 − 0.820x6 = 0,

0.98x4 − x7(0.01x5x10 + x4) = 0, −x2x9 + 10x3 + x6 = 0,

x5x12 − x2(1.12 + 0.132x9 − 0.0067x2
9) = 0,

x8x13 − 0.01x9(1.098− 0.038x9)− 0.325x7 = 0.574,

x10x14 + 22.2x11 = 35.82, x1x11 − 3x8 = −1.33,

lbdi ≤ xi ≤ ubdi (i = 1, 2, . . . , 14).

14 variables, 7 poly. equality constraints with deg. 3.

Sparse+Conversion Dense (Lasserre)

ǫobj ǫfeas cpu ǫobj ǫfeas cpu

5.6e-10 2.0e-08 23.0 out of memory

ǫobj = approx.opt.val.− lower bound for opt.val.
ǫfeas = the maximum error in the equality constraints

Global optimality is guaranteed with high accuracy.
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A POP ex2_1_8 from globalib
min nonconvex diag. quad. funct. + linear funct.
sub.to 10 sparse linear equalities

lbdi ≤ xi ≤ ubdi (i = 1, 2, . . . , 24).

Sparse+Conversion Dense (Lasserre)

ǫobj ǫfeas cpu ǫobj ǫfeas cpu

5.0e-9 1.3e-11 20.0 5.8e-10 3.0e-12 288.8

ǫobj = approx.opt.val.− lower bound for opt.val.
ǫfeas = the maximum error in the equality constraints

Global optimality is guaranteed with high accuracy.
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SDP O (polynomial SDP): min f0(x) sub.to F (x) � O.

f0(x) : a polynomial in x ∈ R
m

F : R
m → Sn, Fij(x) : a polynomial in x ∈ R

m

A∗ : the sparsity pattern matrix;
[A∗]ij = 0 if Fij(x) ≡ 0, [A∗]ij = ∗ otherwise

⇓
Assumption. A∗ allows a sparse Cholesky factorization.

positive semidefinite matrix completion technique

SDP C (poly. SDP with multiple but smaller SDP cones:

min f0(x) sub.to F p(x) +
ℓ
∑

k=1

Bpkzk � O (p = 1, . . . , ℓ).

F p : R
m → Snp, Bpk ∈ S

np.

np<<n under Assumption.
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SDP O (tridiag. quad. SDP): min
∑n

i=1 cixi sub.to F (x) � O.

F : R
n → Sn, each element Fij is quadratic or linear;

Fij(x) =



















di − x2
i if i = j,

(ai − 0.5)xi + (bi − 0.5)xi+1 if i ≤ n− 1, j = i + 1,

(aj − 0.5)xj + (bj − 0.5)xj+1 if j ≤ n− 1, i = j + 1,

0 otherwise.

All ai, bi, ci, di are chosen randomly from [0, 1].
⇓

the sparsity p. mat. A∗ — tridiagonal⇒ sparse Cholesky fact.
SDP C (quad. SDP with multiple but smaller SDP cones):

min
n
∑

i=1

cixi sub.to F p(x) +

n−1
∑

k=1

Bpkzk � O (p = 1, . . . , n− 1).

F p : R
m → S2, Bpk ∈ S

2

We will apply a (linear) SDP relaxation for poly. SDP to
SDP O and SDP C, and compare their numerical results.
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SDP O (tridiag. quad. SDP): min
∑n

i=1 cixi sub.to F (x) � O.

F : R
n → Sn, each element Fij is quadratic or linear;

Fij(x) =



















di − x2
i if i = j,

(ai − 0.5)xi + (bi − 0.5)xi+1 if i ≤ n− 1, j = i + 1,

(aj − 0.5)xj + (bj − 0.5)xj+1 if j ≤ n− 1, i = j + 1,

0 otherwise.

All ai, bi, ci, di are chosen randomly from [0, 1].

SDP O, no conversion SDP C, conversion

n sizeA cpu sizeA cpu

50 1325× 5101 28.74 197× 637 0.36
100 5150× 20201 2874.45 397× 1287 0.62
200 797× 2587 1.38
400 1597× 5187 2.70
800 3197× 10387 6.29
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1. Conversion of a large scale SDP into an SDP having small
matrix variables

2. Two different methods:
Conversion to Equality form SDP
Conversion to LMI form SDP

3. Some applications to SDP relaxation and successful
numerical results

4. In general, it is often difficult to solve SDPs arising from
SDP relaxation of POPs and polynomial SDPs; too large to
solve, numerical difficulty.

Thank you!
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