Conversion Methods for Large Scale SDPs and Their Applications to Polynomial Optimization Problems

Workshop: Advances in Mathematical Modeling and Computational Algorithms in Information Processing The Institute of Statistical Mathematics, Tokyo November 1, 2008

> Masakazu Kojima Tokyo Institute of Technology

1. Introduction

- 2. Conversion methods
 - 2-1. Aggregated sparsity and positive semidefinite matrix completion
 - 2-2. Conversion to a Primal form SDP with small mat. variables
 - 2-3. Conversion to an LMI form SDP with small mat. variables
- 3. Applications to SDP relaxation
 - 3-1. Sensor network localization problems
 - 3-2. Polynomial optimization problems
 - 3-3. Polynomial SDPs
- 4. Concluding remarks

1. Introduction

- 2. Conversion methods
 - 2-1. Aggregated sparsity and positive semidefinite matrix completion
 - 2-2. Conversion to a Primal form SDP with small mat. variables
 - 2-3. Conversion to an LMI form SDP with small mat. variables
- 3. Correlative sparsity and sparsity of the Schur complement matrix in SDP with small mat. variables
- 3. Applications to SDP relaxation
 - 3-1. Sensor network localization problems
 - 3-2. Polynomial optimization problems
 - 3-3. Polynomial SDPs

min $A_0 \bullet X$ sub.to $A_p \bullet X = b_p \ (p = 1, \dots, m), \ S^n \ni X \succeq O$

 $\boldsymbol{A}_p \in \mathcal{S}^n$ the linear space of $n \times n$ symmetric matrices

with the inner product $A_p \bullet X = \sum_{i, j} [A_p]_{ij} X_{ij}$.

 $b_p \in \mathbb{R}, \ \boldsymbol{X} \succeq \boldsymbol{O} \ \Leftrightarrow \ \boldsymbol{X} \in \mathcal{S}^n$ is positive semidefinite.

Lots of Applications to Various Problems

- Systems and control theory Linear Matrix Inequality
- SDP relaxations of combinatorial and nonconvex problems
 - Max cut and max clique problems
 - Quadratic assignment problems
 - Polynomial optimization problems later
 - Polýnomial semidefinite programs later
- Robust optimization
- Quantum chemistry
- Moment problems (applied probability)
- Sensor network localization problem later

min $A_0 \bullet X$ sub.to $A_p \bullet X = b_p \ (p = 1, \dots, m), \ S^n \ni X \succeq O$

SDP can be large-scale easily

• $n \times n$ mat. variable X involves n(n+1)/2 real variables;

$$n = 2000 \Rightarrow n(n+1)/2 \approx 2$$
 million

• *m* linear equality constraints or $m \ A_p$'s $\in S^n$

 \Diamond How can we solve a larger scale SDP?

- (a) Use more powerful computer system such as clusters and grids of computers parallel computation.
- (b) Develop new numerical methods for SDPs.
- (c) Improve primal-dual interior-point methods.
- (d) Convert a large sparse SDP to an SDP which existing pdipms can solve efficiently:
 - multiple but small size mat. variables.
 - a sparse Schur complement mat. (a coef. mat. of a sys. of equations solved at ∀ iteration of the pdipm).

Outline of conversion methods

structured sparsity used	a large scale and structured sparse SDP	technique
aggregated sparsity	\downarrow	positive semidefinite mat. completion
	an SDP with small SDP cones and shared variables among SDP cones	
	$\downarrow \qquad \qquad \downarrow$	conversion to Equality form SDP or conversion to LMI form SDP
	an SDP with small mat. variables (<i>i.e.,</i> small SDP cones)	

- 1. Introduction
 - Semidefinite Programs (SDPs) and their conversion -
- 2. Conversion methods
 - 2-1. Aggregated sparsity and positive semidefinite matrix completion (Fukuda et al. '01, Nakata et al. '03)
 - 2-2. Conversion to a Primal form SDP with small mat. variables (Fukuda et al. '01, Nakata et al. '03)
 - 2-3. Conversion to an LMI form SDP with small mat. variables
- 3. Applications to SDP relaxation
 - 3-1. Sensor network localization problems
 - 3-2. Polynomial optimization problems
 - 3-3. Polynomial SDPs
- 4. Concluding remarks

min $A_0 \bullet X$ sub.to $A_p \bullet X = b_p \ (p = 1, \dots, m), \ S^n \ni X \succeq O$

$$E_* = \{(i,j) : i = j \text{ or } [A_p]_{ij} \neq 0 \text{ for } \exists p = 0, \dots, m\}$$

 A_* : $n \times n$ aggregated sparsity pattern mat. $[A_*]_{ij} = \star \text{ if } (i, j) \in E_* \text{ and } 0 \text{ oterrwise}$ SDP: a-sparse if A_* allows a sparse Cholesky factorization

Two typical cases: 1. bandwidth along diagonal

$$\boldsymbol{A}_{*} = \begin{pmatrix} * & * & 0 & 0 & 0 \\ * & * & * & 0 & 0 \\ 0 & * & * & * & 0 \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix} \quad \text{min} \quad \sum_{\substack{(i,j) \in \boldsymbol{E}_{*} \\ (i,j) \in \boldsymbol{E}_{*} \\ \begin{pmatrix} X_{qq} & X_{q,q+1} \\ X_{q+1,q} & X_{q+q,q+1} \end{pmatrix}} \succeq \boldsymbol{O}$$

SDP = SDP with shared variables among small SDP cones Each \star can be a block matrix.

min $A_0 \bullet X$ sub.to $A_p \bullet X = b_p \ (p = 1, \dots, m), \ S^n \ni X \succeq O$

$$E_* = \{(i,j) : i = j \text{ or } [A_p]_{ij} \neq 0 \text{ for } \exists p = 0, \dots, m\}$$

 A_* : $n \times n$ aggregated sparsity pattern mat. $[A_*]_{ij} = \star \text{ if } (i, j) \in E_* \text{ and } 0 \text{ oterrwise}$ SDP: a-sparse if A_* allows a sparse Cholesky factorization

Two typical cases: 2. arrow \searrow

$$\boldsymbol{A}_{*} = \begin{pmatrix} * & 0 & 0 & 0 & * \\ 0 & * & 0 & 0 & * \\ 0 & 0 & * & 0 & * \\ 0 & 0 & 0 & * & * \\ * & * & * & * & * \end{pmatrix} \quad \begin{array}{l} \min & \sum_{(i,j)\in \boldsymbol{E}_{*}} [A_{0}]_{ij}X_{ij} \\ \text{sub.to} & \sum_{(i,j)\in \boldsymbol{E}_{*}} [A_{p}]_{ij}X_{ij} = b_{p} \ (\forall p) \\ & \left(\begin{array}{c} X_{qq} & X_{qn} \\ X_{nq} & X_{nn} \end{array} \right) \succeq \boldsymbol{O} \\ & (q = 1, \dots, n-1). \end{cases}$$

SDP = SDP with shared variables among small SDP cones Each \star can be a block matrix.

min $A_0 \bullet X$ sub.to $A_p \bullet X = b_p \ (p = 1, \dots, m), \ S^n \ni X \succeq O$

$$E_* = \{(i,j) : i = j \text{ or } [A_p]_{ij} \neq 0 \text{ for } \exists p = 0, \dots, m\}$$

 A_* : $n \times n$ aggregated sparsity pattern mat.

 $[A_*]_{ij} = \star \text{ if } (i, j) \in E_* \text{ and } 0 \text{ oterrwise}$ SDP : a-sparse if A_* allows a sparse Cholesky factorization

positive semidefinite matrix completion

$$\exists C_1, \ldots, C_\ell \subset N = \{1, 2, \ldots, n\}, \ \ell \le n;$$

 $SDP \equiv$ an SDP with shared variables among small SDP cones:

 $\min \sum_{(i,j)\in E_*} [A_0]_{ij} X_{ij}$ s.t. $\sum_{(i,j)\in E_*} [A_p]_{ij} X_{ij} = b_p \ (\forall p), \ \boldsymbol{X}(C_r) \succeq \boldsymbol{O} \ (r = 1, \dots, \ell),$

where $X(C_r)$: the submatrix of X consisting of X_{ij} $(i, j \in C_r)$.

To solve SDP, we need to convert it into a standard form SDP \Rightarrow next subject.

1. Introduction

- 2. Conversion methods
 - 2-1. Aggregated sparsity and positive semidefinite matrix completion (Fukuda et al. '01, Nakata et al. '03)
 - 2-2. Conversion to a Primal form SDP with small mat. variables(Fukuda et al. '01, Nakata et al. '03)
 - 2-3. Conversion to an LMI form SDP with small mat. variables
- 3. Applications to SDP relaxation
 - 3-1. Sensor network localization problems
 - 3-2. Polynomial optimization problems
 - 3-3. Polynomial SDPs
- 4. Concluding remarks

Equality standard form SDP: min $A_0 \bullet X$ sub.to $A_p \bullet X = b_p \ (p = 1, \dots, m), \ S^n \ni X \succeq O$ As an example: \Downarrow aggregated sparsity $\begin{array}{c} \min \sum_{(i,j) \in E_*} [A_0]_{ij} X_{ij} \text{ sub.to } \sum_{(i,j) \in E_*} [A_p]_{ij} X_{ij} = b_p \text{ and} \\ \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}, \begin{pmatrix} X_{22} & X_{23} & X_{24} \\ X_{32} & X_{33} & X_{34} \\ X_{42} & X_{43} & X_{44} \end{pmatrix}, \begin{pmatrix} X_{33} & X_{34} & X_{35} \\ X_{43} & X_{44} & X_{45} \\ X_{53} & X_{54} & X_{55} \end{pmatrix} \succeq \mathbf{O} \end{array}$ (an SDP with smaller SDP cones and shared variables) \implies Conversion into a standard form SDP to apply IPM — 2 ways Primal form SDP with small mat, variables: min "linear obi. in Y_{i}^{r} s" sub.to "linear eq. in Y_{i}^{r} s" and

$$\begin{pmatrix} Y_{11}^1 & Y_{12}^1 \\ Y_{21}^1 & Y_{22}^1 \end{pmatrix}, \begin{pmatrix} Y_{11}^2 & Y_{12}^2 & Y_{13}^2 \\ Y_{21}^2 & Y_{22}^2 & Y_{22}^2 & Y_{23}^2 \\ Y_{31}^2 & Y_{32}^2 & Y_{33}^2 \end{pmatrix}, \begin{pmatrix} Y_{11}^3 & Y_{12}^3 & Y_{13}^3 \\ Y_{31}^3 & Y_{32}^3 & Y_{33}^3 \\ Y_{31}^3 & Y_{32}^3 & Y_{33}^3 \end{pmatrix} \succeq \boldsymbol{O},$$

$$Y_{22}^1 = Y_{11}^2, \ Y_{22}^2 = Y_{11}^3, \ Y_{23}^2 = Y_{12}^3, \ Y_{33}^2 = Y_{23}^3.$$

Equality standard form SDP: min $A_0 \bullet X$ sub.to $A_p \bullet X = b_p \ (p = 1, \dots, m), \ S^n \ni X \succeq O$ As an example: \Downarrow aggregated sparsity (an SDP with smaller SDP cones and shared variables) \implies Conversion into a standard form SDP to apply IPM — 2 ways LMI form SDP with small mat. variables — next Section \downarrow

SDP with small (independent) matrix variables:
min
$$\sum_{r=1}^{\ell} A_{0r} \bullet X_r$$

sub.to $\sum_{r=1}^{\ell} A_{pr} \bullet X_r = b_p \ (p = 1, ..., m), \ X_r \succeq O \ (\forall r)$

• Further sparsity " $A_{pr} \equiv O$ for many pairs of p and r" is often satisfied \Rightarrow correlative sparsity

1. Introduction

- 2. Conversion methods
 - 2-1. Aggregated sparsity and positive semidefinite matrix completion
 - 2-2. Conversion to a Primal form SDP with small mat. variables
 - 2-3. Conversion to an LMI form SDP with small mat. variables
- 3. Applications to SDP relaxation
 - 3-1. Sensor network localization problems
 - 3-2. Polynomial optimization problems
 - 3-3. Polynomial SDPs
- 4. Concluding remarks

min $\sum_{(i,j)\in E_*} [A_0]_{ij} X_{ij}$

s.t. $\sum_{(i,j)\in E_*} [A_p]_{ij}X_{ij} = b_p \ (\forall p), \ \boldsymbol{X}(C_r) \succeq \boldsymbol{O} \ (r = 1, \dots, \ell),$ where $\boldsymbol{X}(C_r)$: the submatrix of \boldsymbol{X} consisting of $X_{ij} \ (i, j \in C_r).$

 $i.i \in C_r.i \leq j$

Represent each $\boldsymbol{X}(C_r)$ as $\boldsymbol{X}(C_r) = \sum \boldsymbol{E}_{ij}(C_r)X_{ij},$

where $E_{ij}(C_r)$: a sym. mat. with 1 at some one or two elements and 0 elsewhere. For example,

$$\begin{pmatrix} X_{11} & X_{13} \\ X_{31} & X_{33} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} X_{11} + \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} X_{12} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} X_{33}$$

Then, an LMI form SDP having eq. const.

$$\min \sum_{(i,j)\in \boldsymbol{E}_{*}} [A_{0}]_{ij}X_{ij} \text{ sub.to } \sum_{\substack{(i,j)\in \boldsymbol{E}_{*}\\\sum_{i,j\in C_{r},i\leq j}} [A_{p}]_{ij}X_{ij} = b_{p} \ (\forall p),$$

Review of conversion methods

structured sparsity used	a large scale and structured sparse SDP	technique
aggregated sparsity	\downarrow	positive semidefinite mat. completion
	an SDP with small SDP cones and shared variables among SDP cones	
	$\downarrow \qquad \qquad$	conversion to Equality form SDP or conversion to LMI form SDP
	an SDP with small mat. variables (<i>i.e.,</i> small SDP cones)	

1. Introduction

- 2. Conversion methods
 - 2-1. Aggregated sparsity and positive semidefinite matrix completion
 - 2-2. Conversion to a Primal form SDP with small mat. variables
 - 2-3. Conversion to an LMI form SDP with small mat. variables
- 3. Applications to SDP relaxation
 - **3-1. Sensor network localization problems** (Kim,Kojima,Waki)
 - 3-2. Polynomial optimization problems
 - 3-3. Polynomial SDPs
- 4. Concluding remarks

Sensor network localization problem: Let s = 2 or 3.

$$\begin{split} \boldsymbol{x}^{p} \in \mathbb{R}^{s} &: \text{ unknown location of sensors } (p = 1, 2, \dots, m), \\ \boldsymbol{x}^{r} = \boldsymbol{a}^{r} \in \mathbb{R}^{s} &: \text{ known location of anchors } (r = m + 1, \dots, n), \\ d_{pq} &= \|\boldsymbol{x}^{p} - \boldsymbol{x}^{q}\| + \epsilon_{pq} - \text{given for } (p, q) \in \mathcal{N}, \\ \mathcal{N} &= \{(p, q) : \|\boldsymbol{x}^{p} - \boldsymbol{x}^{q}\| \leq \rho = \text{a given radio range}\} \\ \text{Here } \epsilon_{pq} \text{ denotes a noise.} \end{split}$$

m = 5, n = 9.1,...,5: sensors 6,7,8,9: anchors

 $\begin{array}{c} & d_{18} \\ 2 \\ 1 \\ 3 \\ 4 \end{array} \\ 5 \\ 9 \end{array}$

Anchors' positions are known. A distance is given for \forall edge. Compute locations of sensors.

 \Rightarrow Some nonconvex QOPs

- SDP relaxation FSDP by Biswas-Ye '06, ESDP by Wang et al '07, ... for s = 2.
- SOCP relaxation Tseng '07 for s = 2.

Numerical results on 4 methods (a), (b), (c) and (d) applied to a sensor network localization problem with

m = the number of sensors dist. randomly in $[0, 1]^2$,

4 anchors located at the corner of $[0, 1]^2$,

 $\rho = radio distance = 0.1$, no noise.

(a) FSDP (b) FSDP + Conv. to LMI form SDP, as strong as (a) (c) FSDP + Conv. to Equality form SDP as strong as (a)

> cpu time for solving SDP by SeDuMi in second (b) (a) m 500 389.1 35.0 69.5 1000 3345.2 60.4 178.8 2000 111.1 326.0 4000 182.1 761.0

Cholesky factor of aggregated sparsity pattern \Rightarrow next slide

(C)

(a) FSDP — cpu time 3345.2 sec Cholesky Factor of Aggregated sparsity pattern

This aggregated sparsity pattern is exploited in
(b) FSDP + Conv. to LMI form SDP — cpu time 60.4 sec
(c) FSDP + Conv. to Equality form SDP — cpu time 178.8 sec

(b) FSDP + Conv. to LMI form SDP — cpu time 60.4 sec
(c) FSDP + Conv. to Equality form SDP — cpu time 178.8 sec

anchor : true : computed : * deviation : — 3 dim, 500 sensors, 27 anchors, r.range = 0.3, noise \leftarrow N(0,0.1); (estimated dist.) $\hat{d}_{pq} = (1 + \epsilon_{pq})d_{pq}$ (true unknown dist.), $\epsilon_{pq} \leftarrow N(0, 0.1)$

(b) FSDP + Conv. to LMI form SDP

3 dim, 500 sensors, 27 anchors, r.range = 0.3, noise \leftarrow N(0,0.1); (estimated dist.) $\hat{d}_{pq} = (1 + \epsilon_{pq})d_{pq}$ (true unknown dist.), $\epsilon_{pq} \leftarrow N(0, 0.1)$

(b) FSDP + Conv. to LMI form SDP + Gradient method

1. Introduction

- 2. Conversion methods
 - 2-1. Aggregated sparsity and positive semidefinite matrix completion
 - 2-2. Conversion to a Primal form SDP with small mat. variables
 - 2-3. Conversion to an LMI form SDP with small mat. variables
- 3. Applications to SDP relaxation
 - 3-1. Sensor network localization problems
 - 3-2. Polynomial optimization problems (Kim, Kojima, Muramatsu, Waki)3-3. Polynomial SDPs
- 4. Concluding remarks

POP (Polynomial Optimization Problem)

min
$$f_0(x)$$
 sub.to $f_i(x) \ge 0$ $(i = 1, 2, ..., m)$.

Here $f_p(\boldsymbol{x})$ denotes a polynomial in $\boldsymbol{x} = (x_1, \dots, x_n)$.

(a) Apply SDP relaxation to $POP \Rightarrow SDP$

— SparsePOP(MATLAB)

- (b) Converet SDP into LMI form SDP with small mat.
 variables SparsePOP(MATLAB)
- (c) Solve LMI form SDP by the primal-dual interior-point method
 SeDuMi(MATLAB)
- SDP could become large-scale even when POP is small (say n = 20, m = 20).
- Sparsity is exploited in (a) too.
- Both lower and upper bounds for the optimal value are obtained.

A POP alkyl from globalib

$$\begin{array}{ll} \min & -6.3x_5x_8+5.04x_2+0.35x_3+x_4+3.36x_6\\ \text{sub.to} & -0.820x_2+x_5-0.820x_6=0,\\ 0.98x_4-x_7(0.01x_5x_{10}+x_4)=0, \ -x_2x_9+10x_3+x_6=0,\\ x_5x_{12}-x_2(1.12+0.132x_9-0.0067x_9^2)=0,\\ x_8x_{13}-0.01x_9(1.098-0.038x_9)-0.325x_7=0.574,\\ x_{10}x_{14}+22.2x_{11}=35.82, \ x_1x_{11}-3x_8=-1.33,\\ \textbf{lbd}_i\leq x_i\leq \textbf{ubd}_i \ (i=1,2,\ldots,14). \end{array}$$

14 variables, 7 poly. equality constraints with deg. 3.

Sparse+Conversion			Dense (Lasserre)		
ϵ obj	ϵ feas	cpu	ϵ obj	ϵ feas	cpu
5.6e-10	2.0e-08	23.0	out of	memory	

 $\epsilon_{obj} = approx.opt.val. - lower bound for opt.val.$ $<math>\epsilon_{feas} = the maximum error in the equality constraints$

Global optimality is guaranteed with high accuracy.

A POP ex2_1_8 from globalib

nonconvex diag. quad. funct. + linear funct. min

sub.to 10 sparse linear equalities

 $\mathsf{Ibd}_i \le x_i \le \mathsf{ubd}_i \ (i = 1, 2, \dots, 24).$

Sparse+Conversion			Dense (Lasserre)		
ϵ obj	ϵ feas	cpu	ϵ obj	ϵ feas	cpu
5.0e-9	1.3e-11	20.0	5.8e-10	3.0e-12	288.8

 $\epsilon_{obj} = approx.opt.val. - lower bound for opt.val.$ $<math>\epsilon_{feas} = the maximum error in the equality constraints$

Global optimality is guaranteed with high accuracy.

1. Introduction

- Semidefinite Programs (SDPs) and their conversion -

- 2. Conversion methods
 - 2-1. Aggregated sparsity and positive semidefinite matrix completion
 - 2-2. Conversion to a Primal form SDP with small mat. variables
 - 2-3. Conversion to an LMI form SDP with small mat. variables
- 3. Applications to SDP relaxation
 - 3-1 Sensor network localization problems
 - 3-2. Polynomial optimization problems

3-3. Polynomial SDPs

4. Concluding remarks

SDP O (polynomial SDP): min $f_0(\boldsymbol{x})$ sub.to $\boldsymbol{F}(\boldsymbol{x}) \succeq \boldsymbol{O}$.

- $f_0(\boldsymbol{x})$: a polynomial in $\boldsymbol{x} \in \mathbb{R}^m$
 - \boldsymbol{F} : $\mathbb{R}^m \to \mathcal{S}^n, \ F_{ij}(\boldsymbol{x})$: a polynomial in $\boldsymbol{x} \in \mathbb{R}^m$
 - A_* : the sparsity pattern matrix;

 $[A_*]_{ii} = 0$ if $F_{ii}(\boldsymbol{x}) \equiv 0, [A_*]_{ii} = *$ otherwise

Assumption. A_* allows a sparse Cholesky factorization. positive semidefinite matrix completion technique

SDP C (poly. SDP with multiple but smaller SDP cones: min $f_0(\boldsymbol{x})$ sub.to $\boldsymbol{F}_p(\boldsymbol{x}) + \sum \boldsymbol{B}_{pk} z_k \succeq \boldsymbol{O} \ (p = 1, \dots, \ell).$

 $\boldsymbol{F}_p : \mathbb{R}^m \to \mathcal{S}^{n_p}, \ \boldsymbol{B}_{pk} \in \mathcal{S}^{n_p}.$

 $n_p << n$ under Assumption.

 \downarrow

SDP O (tridiag. quad. SDP): min $\sum_{i=1}^{n} c_i x_i$ sub.to $F(x) \succeq O$.

 $F : \mathbb{R}^n \to S^n$, each element F_{ij} is quadratic or linear; $F_{ij}(\boldsymbol{x}) = \begin{cases} d_i - x_i^2 & \text{if } i = j, \\ (a_i - 0.5)x_i + (b_i - 0.5)x_{i+1} & \text{if } i \le n - 1, \ j = i + 1, \\ (a_j - 0.5)x_j + (b_j - 0.5)x_{j+1} & \text{if } j \le n - 1, \ i = j + 1, \\ 0 & \text{otherwise.} \end{cases}$ All a_i, b_i, c_i, d_i are chosen randomly from [0, 1]. the sparsity p. mat. A_* — tridiagonal \Rightarrow sparse Cholesky fact. SDP C (quad. SDP with multiple but smaller SDP cones): min $\sum_{i=1}^{n} c_i x_i$ sub.to $\boldsymbol{F}_p(\boldsymbol{x}) + \sum_{k=1}^{n-1} \boldsymbol{B}_{pk} z_k \succeq \boldsymbol{O} \ (p = 1, \dots, n-1).$

 F_p : $\mathbb{R}^m \to S^2$, $B_{pk} \in S^2$ ● We will apply a (linear) SDP relaxation for poly. SDP to SDP O and SDP C, and compare their numerical results.

SDP O (tridiag. quad. SDP): min $\sum_{i=1}^{n} c_i x_i$ sub.to $F(x) \succeq O$.

 $F : \mathbb{R}^{n} \to S^{n}, \text{ each element } F_{ij} \text{ is quadratic or linear;} \\ F_{ij}(\boldsymbol{x}) = \begin{cases} d_{i} - x_{i}^{2} & \text{if } i = j, \\ (a_{i} - 0.5)x_{i} + (b_{i} - 0.5)x_{i+1} & \text{if } i \leq n-1, \ j = i+1, \\ (a_{j} - 0.5)x_{j} + (b_{j} - 0.5)x_{j+1} & \text{if } j \leq n-1, \ i = j+1, \\ 0 & \text{otherwise.} \end{cases}$

All a_i , b_i , c_i , d_i are chosen randomly from [0, 1].

	SDP O, no co	onversion	SDP C, conversion	
n	sizeA	сри	sizeA	cpu
50	1325×5101	28.74	197×637	0.36
100	5150×20201	2874.45	397×1287	0.62
200			797×2587	1.38
400			1597×5187	2.70
800			3197×10387	6.29

1. Introduction

- 2. Conversion methods
 - 2-1. Aggregated sparsity and positive semidefinite matrix completion
 - 2-2. Conversion to a Primal form SDP with small mat. variables
 - 2-3. Conversion to an LMI form SDP with small mat. variables
- 3. Applications to SDP relaxation
 - 3-1. Polynomial optimization problems
 - 3-2. Sensor network localization problems
 - 3-3. Polynomial SDPs
- 4. Concluding remarks

- Conversion of a large scale SDP into an SDP having small matrix variables
- 2. Two different methods:
 - Conversion to Equality form SDP
 - Conversion to LMI form SDP
- 3. Some applications to SDP relaxation and successful numerical results
- In general, it is often difficult to solve SDPs arising from SDP relaxation of POPs and polynomial SDPs; too large to solve, numerical difficulty.

