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1. Convex relaxation of global optimization problems — 2

(1) max. f(x) sub.to x ∈ S, where f : R
n → R and S ⊂ R

n.

(a) a feasible solution x̂ ∈ S with a larger objective value f(x̂)

(b) a smaller upper bound ζ for the unknown optimal value f(x∗)
=⇒ a main role of convex relaxation

If ζ − f(x̂) is smaller, we can accept x̂ as a higher quality approximate
optimal solution.

f(x*):unknown

x

^

^

opt. valuef(x)

ζ

x*
S

3



1. Convex relaxation of global optimization problems — 3

(1) max. f(x) sub.to x ∈ S, where f : R
n → R and S ⊂ R

n.

(a) a feasible solution x̂ ∈ S with a larger objective value f(x̂)

(b) a smaller upper bound ζ for the unknown optimal value f(x∗)
=⇒ a main role of convex relaxation

• SDP relaxation is very powerful in theory.

(a) Lovász-Schrijver’91 for 0-1 IPs

(b) Goemans-Willianson’95 for max-cut problems

(c) Some special QOPs can be solved approximately or exactly by
SDP relaxation, Nesterov’88, Ye’99, Zhang’00, Ye-Zhang’01

(d) Successive convex relaxation of nonconvex set, Kojima-Tuncel’00
— Extension of (a) to QOPs.

(e) Hierarchical SDP relaxation by Lasserre’01, Parrilo for polynomial
programs — theoretically powerful: optimal values and solutions
can be computed by solving a finite number of SDP relaxations.

(f) . . .
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1. Convex relaxation of global optimization problems — 6

(1) max. f(x) sub.to x ∈ S, where f : R
n → R and S ⊂ R

n.

(a) a feasible solution x̂ ∈ S with a larger objective value f(x̂)

(b) a smaller upper bound ζ for the unknown optimal value f(x∗)
=⇒ a main role of convex relaxation

• Can SDP (or convex) relaxation, without combining any technique on
(a), be powerful enough to solve practical large scale problems?

???, mainly because solving large scale SDPs accurately is expensive .

• Incorporate convex relaxation into traditional opt. methods.

• How to combine them effectively.

• Exploration of effective and inexpensive convex relaxations.

Besides SDP and LP relaxation, we explore various convex relaxations
towards practically effective and efficient methods.
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The purpose of this talk is to present

a general and flexible framework for convex relaxation methods

The main ingredients are:

(a) Polynomial Optimization Problems ⊃ QOPs and 0-1 IPs

⇓(b) Add valid constraints and reformulate

(c) Polynomial Optimization Problems over Cones

⇓ (d) Linearization (Lifting)

(e) Linear Optimization Problems over Cones

I will talk about

• An illustrative example

• (c) ⇒ (d) ⇒ (e)

• (b)
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2. An illustrative example — 1

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)

x1

x2

1

1

2

Feasible
region

0
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2. An illustrative example — 4

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)

⇓ Valid constraints and/or reformulation

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 ≥ 0, x1x2 ≥ 0, x2

2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

x2
1 + x1

x1x2

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

x1x2 + x2

x2
2

)∥∥∥∥ ≤ 2x2.

⇓
Linearization: Keep the linear terms,
but replace each nonlinear term by a single independent variable

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, X11 ≥ 0, X12 ≥ 0, X22 ≥ 0,
X11 + X22−2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

X11 + x1

X12

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

X12 + x2

X22

)∥∥∥∥ ≤ 2x2.
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2. An illustrative example — 5

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)

⇓ Valid constraints and/or reformulation

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 ≥ 0, x1x2 ≥ 0, x2

2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

x2
1 + x1

x1x2

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

x1x2 + x2

x2
2

)∥∥∥∥ ≤ 2x2.

⇑ X11 = x1x1, X12 = x1x2, X22 = x2x2

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, X11 ≥ 0, X12 ≥ 0, X22 ≥ 0,
X11 + X22−2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

X11 + x1

X12

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

X12 + x2

X22

)∥∥∥∥ ≤ 2x2.

9



3. Polynomial opt. problems over cones and their linearization — 3

max. f0(x) sub.to f(x) ∈ K, where

K : a closed convex cone in R
m,

x = (x1, . . . , xn) : a variable vector, f(x) ≡ (f1(x), . . . , fm(x)),

fj(x) : a polynomial in x1, . . . , xn (j = 0, 1, . . . , m).

Typical examples of K: R
m
+ : the nonnegative orthant of R

m.

S
`
+ : the cone of ` × ` psd symmetric matrices, where we

identify each ` × ` matrix as an ` × ` dim vector.

N
1+`
p ≡



v = (v0, v1, . . . , v`) ∈ R

1+` :

(
∑̀

i=1

|vi|
p

)1/p

≤ v0





: the pth order cone (p ≥ 1).

N
1+`
2 : the second order cone.

When fj(x) (j = 0, 1, 2, . . . , m) are linear,

K = S
`
+ ⇒ SDP (Semidefinite Program),

K = N
1+`
2 ⇒ SOCP (Second-Order Cone Program)
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3. Polynomial opt. problems over cones and their linearization — 5

max. f0(x) sub.to f(x) ∈ K, where

K : a closed convex cone in R
m,

x = (x1, . . . , xn) : a variable vector, f(x) ≡ (f1(x), . . . , fm(x)),

fj(x) : a polynomial in x1, . . . , xn (j = 0, 1, . . . , m).

Linearization — Keep the linear terms, but replace each
nonlinear term by a single independent variable.

Example 1: n = 2, m = 2.

f(x1, x2) =

(
1 − 2x1 + 3x2 + 4x2

1 + 5x1x2 + 6x2
2

9 + 8x1 + 7x2 + 6x2
1 − 5x1x2 − 4x2

2

)
∈ K

⇓ Linearization

F (x1, x2, X11, X12, X22)

=

(
1 − 2x1 + 3x2 + 4X11 + 5X12 + 6X22

9 + 8x1 + 7x2 + 6X11 − 5X12 − 4X22

)
∈ K

Here the three new variables X11, X12 and X22 are introduced.

11



3. Polynomial opt. problems over cones and their linearization — 6

max. f0(x) sub.to f(x) ∈ K, where

K : a closed convex cone in R
m,

x = (x1, . . . , xn) : a variable vector, f(x) ≡ (f1(x), . . . , fm(x)),

fj(x) : a polynomial in x1, . . . , xn (j = 0, 1, . . . , m).

Linearization — Keep the linear terms, but replace each
nonlinear term by a single independent variable.

Example 2: n = 3, m = 2.

f(x1, x2, x3) =

(
1 − 2x1 + 3x2 + 4x2

1x3 + 5x1x2x3 + 6x4
3

9 + 8x1 + 7x2 + 6x2
1x3 − 5x1x2x3 − 4x4

3

)
∈ K

⇓ Linearization

F (x1, x2, U, V , W )

=

(
1 − 2x1 + 3x2 + 4U + 5V + 6W
9 + 8x1 + 7x2 + 6U − 5V − 4W

)
∈ K

Here the new variables U , V and W are introduced. In general, we need
a systematic method of assigning a new variable to each nonlinear term.
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3. Polynomial opt. problems over cones and their linearization — 7

max. f0(x) sub.to f(x) ∈ K, where

K : a closed convex cone in R
m,

x = (x1, . . . , xn) : a variable vector, f(x) ≡ (f1(x), . . . , fm(x)),

fj(x) : a polynomial in x1, . . . , xn (j = 0, 1, . . . , m).

Linearization — Keep the linear terms, but replace each
nonlinear term by a single independent variable.

Systematic method of assigning a new variable to each nonlinear term:

a nonlinear term xα
1 xβ

2 · · · xζ
n ⇒ y(α,β,...,ζ) ∈ R a new variable

(Sherali et.al, Lasserre’01, ... ). For example,

n = 5, x2
1x2x

3
3x

4
5 = x2

1x
1
2x

3
3x

0
4x

4
5 ⇒ y(2,1,3,0,4).

In theory, any method of assigning a new variable to each nonlinear term
works. ⇒ This method is not essential.
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4. General framework for convex relaxation — 3

Original QOP, 0-1 IP, Polynomial programs to be solved

⇓ Valid constraints and/or reformulate

POP: max. f0(x) sub.to f(x) ∈ K, where

K : a closed convex cone in R
m,

x = (x1, . . . , xn) : a variable vector, f(x) ≡ (f1(x), . . . , fm(x)),

fj(x) : a polynomial in x1, . . . , xn (j = 0, 1, . . . , m).

⇓ Linearization — Keep the linear terms, but replace each
⇓ nonlinear term by a single independent variable.

LOP: max. F0(x, y) sub.to F (x, y) ∈ K, where

y denotes a new variable vector whose elements correspond to nonlin-
ear terms appeared in the polynomials fj(x) (j = 0, 1, . . . , m).
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Illustrative example again — 2

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)

⇓ Valid constraints and/or reformulation

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 ≥ 0, x1x2 ≥ 0, x2

2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

x2
1 + x1

x1x2

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

x1x2 + x2

x2
2

)∥∥∥∥ ≤ 2x2.

⇓
Linearization: Keep the linear terms,
but replace each nonlinear term by a single independent variable

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, y20 ≥ 0, y11 ≥ 0, y02 ≥ 0,
y20 + y02−2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

y20 + x1

y11

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

y11 + x2

y02

)∥∥∥∥ ≤ 2x2.
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Illustrative example again — 4

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)

⇓ Valid constraints and/or reformulation

max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,
∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,




1
x1

x2


( 1 x1 x2

)
≡




1 x1 x2

x1 x2
1 x1x2

x2 x1x2 x2
2


 � O.

⇓ Linearization

max. −2x1 + x2 — SDP
sub.to x1 ≥ 0, x2 ≥ 0, y20 + y02−2x2 ≥ 0,

∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,




1 x1 x2

x1 y20 y11

x2 y11 y02


 � O.
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Given a problem, there are various ways of adding valid con-
straints and reformulating the problem. They usually yield
different convex relaxations.
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Illustrative example again — 5

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)
,

we obtained two distinct convex relaxations.

max. −2x1 + x2 — SOCP
sub.to x1 ≥ 0, x2 ≥ 0, y20 ≥ 0, y11 ≥ 0, y02 ≥ 0,

y20 + y02−2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,

∥∥∥∥
(

y20 + x1

y11

)∥∥∥∥ ≤ 2x1,

∥∥∥∥
(

y11 + x2

y02

)∥∥∥∥ ≤ 2x2.

max. −2x1 + x2 — SDP
sub.to x1 ≥ 0, x2 ≥ 0, y20 + y02−2x2 ≥ 0,

∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2,




1 x1 x2

x1 y20 y11

x2 y11 y02


 � O.
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Illustrative example again — 6

Original problem: max. −2x1 + x2

sub.to x1 ≥ 0, x2 ≥ 0, x2
1 + x2

2 − 2x2 ≥ 0,∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2 (SOCP constraint)
,

x1

x2

1

1

2

Feasible
region

0

Cut by SOCP relaxation

Cut by SDP relaxation
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Some examples of valid constraints — 2

• Universally valid constraints.

(a) SDP type:

u(x)Tu(x) =




1 x1 x2 x2
1 x1x2 x2

2

x1 x2
1 x1x2 x3

1 x2
1x2 x1x

2
2

x2 x1x2 x2
2 x2

1x2 x1x
2
2 x3

2

x2
1 x3

1 x2
1x2 x4

1 x3
1x2 x2

1x
2
2

x1x2 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 x4

2




� O,

where u(x) =
(
1 x1 x2 x2

1 x1x2 x2
2

)

More generally, take a row vector consisting of a basis of the polyno-
mials in x1, . . . , xn with degree ` for u(x) . [Lasserre’01].

(b) SOCP (Second-Order Cone Programming) type:

∀ f1, f2 : R
n → R,

∥∥∥∥
(

f1(x)2 − f2(x)2

2f1(x)f2(x)

)∥∥∥∥ ≤ f1(x)2 + f2(x)2
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Some examples of valid constraints — 4

• Deriving valid constraints, “multiplication” of valid constraints:

original constraints new constraints

R 3 f(x) ≥ 0, R 3 g(x) ≥ 0 ⇒ f(x)g(x) ≥ 0 [Sherali et.al’92]

f(x) ≥ 0, G(x) � O ⇒ f(x)G(x) � 0 [Lasserre’01]

F (x) � O, G(x) � O ⇒ F (x) ⊗ G(x) � 0 (Kronecker product)

‖f(x)‖ ≤ f0(x), f(x) ∈ R
`

‖g(x)‖ ≤ g0(x), g(x) ∈ R
`

}
⇒ ‖f(x) ◦ g(x)‖ ≤ f0(x)g0(x)

(SOCP constraints) (component-wise product)
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5. Basic theory — 3

POP: max. f0(x) sub.to f(x) ∈ K, where

K : a closed convex cone in R
m, f(x) ≡ (f1(x), . . . , fm(x)).

⇓ Linearization

LOP: max. F0(x, y) sub.to F (x, y) ∈ K, where y denotes a new vari-
able vector corresponding to nonlinear terms of fj(x) (j = 0, . . . , m).

Lagrangian funct: L(x, v) ≡ f0(x) + 〈v, f(x)〉 for ∀x ∈ R
n, v ∈ K∗

Under the Slater condition (∃x; f(x) ∈ int K), if ζ̄ is the opt. value
of LOP then there exists v̄ ∈ K∗ satisfying L(x, v̄) = ζ̄ for ∀x ∈ R

n.

Hence ζ̄ = max{L(x, v̄) : x ∈ R
n} (a Lagrangian relaxation)

≥ min
v∈K∗

max{L(x, v) : x ∈ R
n} (Lagrangian dual relaxation)

• Lagrangian dual relaxation is stronger

• Given v ∈ K∗, L(x, v) is not concave in general.

• In the standard SDP relaxation to QOP, LOP ≈ Lagrangian dual.
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5. Basic theory — 5

POP: max. cTx sub.to f(x) ∈ K, where

K : a closed convex cone in R
m, f(x) ≡ (f1(x), . . . , fm(x)).

⇓ Linearization

LOP: max. cTx sub.to F (x, y) ∈ K, where y denotes a new variable
vector corresponding to nonlinear terms of fj(x) (j = 0, . . . , m).

m

LOP’: max. cTx sub.to x ∈ F̂ ≡ {x ∈ R
n : F (x, y) ∈ K for some y} ,

where F̂ denotes the projected feasible region of LOP onto R
n:

Define L ≡ {v ∈ K∗ : 〈v, f(x)〉 is linear in x ∈ R
n} and

F̃ ≡ {x ∈ R
n : 〈v, f(x)〉 ≥ 0 for every v ∈ L}

“the set of linear consequences of f(x) ∈ K” .

Then F̂ ⊆ F̃ , and (the closure of F̂) = F̃ under ∃x; f(x) ∈ int K.
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6. Concluding remarks

The framework proposed in this talk for convex relaxation is quite general.

But we need to investigate various issues to deal with large scale problems.

• Effectiveness — How do we generate better bounds?

• Low cost — Resulting relaxed problems need to be solved cheaply.

• How to combine this framework with other methods like the branch-
and-bound method.

• Exploiting structure; sparsity, separability, (partial) linearlity, (par-
tial) convexity — Intuitively, we only have to take account of noncon-
vex variables (or directions).

• Parallel computation.
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