Sparsity in Polynomial Optimization

IMA Annual Program Year Workshop
"Optimization and Control" Minneapolis, January 16-20, 2007

Masakazu Kojima
Tokyo Institute of Technology

- Some joint works with S.Kim, K.Kobayashi, M.Muramatsu \& H.Waki
-Applications to nonlinear PDEs (partial differential equations)
--- Ongoing joint work with M.Mevissen, J.Nie \& N.Takayama

Contents

1. How do we formulate structured sparsity?

1-1. Unconstrained cases.
1-2. Constrained and linear objective function cases.
(Recent Joint work with S.Kim \& K.Kobayashi)
2. Sparse SDP relaxation of constrained POPs.
3. Applications to PDEs (partial differential equations).
4. Concluding remarks.

POP --- Polynomial Optimization Problem

Contents

1. How do we formulate structured sparsity?

1-1. Unconstrained cases.
1-2. Constrained and linear objective function cases.
(Recent Joint work with S.Kim \& K.Kobayashi)
2. Sparse SDP relaxation of constrained POPs.
3. Applications to PDEs (partial differential equations).
4. Concluding remarks.

POP --- Polynomial Optimization Problem

POP: $\min f_{0}(x)$ sub.to $f_{j}(x) \geq 0(j=1, \ldots, m)$.
$x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:$ a vector variable.
$f_{j}(x)$: a multivariate polynomial in $x \in \mathbb{R}^{n}(j=0,1, \ldots, m)$.
How do we exploit sparsity in POP?
\Downarrow
The answer depends on which methods we use to solve POP.
POP
\Downarrow SDP relaxation (Lasserre 2001)
SDP \Leftarrow Primal-Dual IPM (Interior-Point Method)
We will assume a structured sparsity (correlative sparsity):
(a) The size of SDP gets smaller.
(b) SDP satisfies "a similar structured sparsity" under which PrimalDual IPM works efficiently.

Contents

1. How do we formulate structured sparsity? 1-1. Unconstrained cases. 1-2. Constrained and linear objective function cases.
2. Sparse SDP relaxation of constrained POPs.
3. Applications to PDEs (partial differential equations).
4. Concluding remarks.

POP --- Polynomial Optimization Problem

$$
\text { Unconstrained POP: mininimize } f_{0}(x), x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} .
$$

Define $n \times n \operatorname{csp}$ (correlative sparsity pattern) matrix R

$$
R_{i j}= \begin{cases}\star(\text { nonzero symbol }) & \text { if } i=j \text { or if } \partial^{2} f(x) / \partial x_{i} \partial x_{j} \not \equiv 0 \\ 0 & \text { otherwise. }\end{cases}
$$

(The sparsity pattern of the Hessian matrix of $f_{0}(x)$ except the diagonal)
Unconstrained POP : c-sparse (correlatively sparse) \Leftrightarrow R allows a sparse (symbolic) Cholesky factorization (under an ordering like the min. degree ordering).

Example. $f(x)=x_{1}^{4}+2 x_{1}^{2} x_{2}+x_{2}^{4}-x_{2} x_{3}+x_{3}^{4}-3 x_{3} x_{4}^{2}+x_{4}^{4}-x_{4} x_{5}+x_{5}^{6}$.

$$
R=\left(\begin{array}{ccccc}
\star & \star & 0 & 0 & 0 \\
\star & \star & \star & 0 & 0 \\
0 & \star & \star & \star & 0 \\
0 & 0 & \star & \star & \star \\
0 & 0 & 0 & \star & \star
\end{array}\right)=L L^{T}, \text { where } L=\left(\begin{array}{ccccc}
\star & 0 & 0 & 0 & 0 \\
\star & \star & 0 & 0 & 0 \\
0 & \star & \star & 0 & 0 \\
0 & 0 & \star & \star & 0 \\
0 & 0 & 0 & \star & \star
\end{array}\right)
$$

No fill-in in the Cholesky factorization.

$$
\text { Unconstrained POP: mininimize } f_{0}(x), x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

Define $\boldsymbol{n} \times \boldsymbol{n} \operatorname{csp}$ (correlative sparsity pattern) matrix R

$$
R_{i j}= \begin{cases}\star(\text { nonzero symbol }) & \text { if } i=j \text { or if } \partial^{2} f(x) / \partial x_{i} \partial x_{j} \not \equiv 0 \\ 0 & \text { otherwise. }\end{cases}
$$

(The sparsity pattern of the Hessian matrix of $f_{0}(x)$ except the diagonal)
Unconstrained POP : c-sparse (correlatively sparse) \Leftrightarrow R allows a sparse (symbolic) Cholesky factorization (under an ordering like the min. degree ordering).

Numerical results on a sparse SDP relaxation applied to three nonconvex test problems with opt.values $=0$ from globalib

	B. tridiagonal		C. Wood		G. Rosenbrock	
n	approx.opt.val	cpu	apprx.opt.val	cpu	apprx.opt.val	cpu
600	$1.0 \mathrm{e}-7$	9.3	$1.4 \mathrm{e}-5$	0.9	$3.9 \mathrm{e}-7$	3.4
800	$2.2 \mathrm{e}-7$	12.6	$1.8 \mathrm{e}-5$	1.3	$2.1 \mathrm{e}-7$	5.1
1000	$2.6 \mathrm{e}-7$	16.0	$3.8 \mathrm{e}-5$	1.6	$4.5 \mathrm{e}-7$	5.9

Broyden tridiagonal function

$$
f(x)=\sum_{i=1}^{n}\left(\left(3-2 x_{i}\right) x_{i}-x_{i-1}-2 x_{i+1}+1\right)^{2}, \text { where } x_{0}=x_{n+1}=0
$$

Contents

1. How do we formulate structured sparsity?

1-1. Unconstrained cases.
1-2. Constrained and linear objective function cases.
2. Sparse SDP relaxation of constrained POPs.
3. Applications to PDEs (partial differential equations).
4. Concluding remarks.
-We consider cases where objective functions are linear.
\bullet LP, SOCP and SDP + Primal-Dual Interior-Point Method.

Opt.Problem: max. $\sum_{i \in N} a_{i} \boldsymbol{y}_{i}$ s.t. $\left(y_{i}: i \in I_{p}\right) \in C_{p}(p \in M)$
$M=\{1, \ldots, m\}, N=\{1, \ldots, n\}, I_{p} \subset N(p \in M)$
$\left(y_{i}: i \in I_{p}\right):$ a subvector of $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ consisting of elements $y_{i}\left(i \in I_{p}\right)$,
C_{p} : a nonempty subset of the set of all $\left(y_{i}: i \in I_{p}\right)$.
Define the $n \times n \operatorname{csp}$ (correlative sparsity pattern) matrix R by

$$
R_{i j}= \begin{cases}\star(\text { nonzero symbol }) & \text { if } i=j \text { or if } i, j \in I_{p} \text { for } \exists p \in M \\ 0 & \text { otherwise }\end{cases}
$$

Opt.Problem: c-sparse (correlatively sparse) \Leftrightarrow
R allows a sparse (symbolic) Cholesky factorization.

Example

$$
\begin{aligned}
C_{p}=\{ & \left(y_{p}, y_{p+1}, y_{n}\right) \in \mathbb{R}^{n}: 1-y_{p}^{2}-y_{p+1}^{2}-y_{n}^{2} \geq 0 \\
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
b_{p} & c_{p} \\
c_{p} & d_{p}
\end{array}\right) y_{p}+\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) y_{p} y_{p+1}+\left(\begin{array}{cc}
-2 & 1 \\
1 & -1
\end{array}\right) y_{p+1} \succeq O \\
& \left.\left(0.3\left(y_{p}^{3}+y_{n}\right)+1\right)-\left\|\left(y_{p}+\beta_{p} y_{n}\right)\right\| \geq 0\right\} \quad(p=1, \ldots, n-1) .
\end{aligned}
$$

Here $a_{i}, b_{p}, d_{p} \in(-1,0), c_{p}, \boldsymbol{\beta}_{p} \in(0,1)$ denote random numbers.

Opt.Problem: max. $\sum_{i \in N} a_{i} \boldsymbol{y}_{i}$ s.t. $\left(y_{i}: i \in I_{p}\right) \in C_{p}(p \in M)$

$$
M=\{1, \ldots, m\}, N=\{1, \ldots, n\}, I_{p} \subset N(p \in M)
$$

$\left(y_{i}: i \in I_{p}\right):$ a subvector of $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ consisting of elements $y_{i}\left(i \in I_{p}\right)$,
C_{p} : a nonempty subset of the set of all $\left(y_{i}: i \in I_{p}\right)$.
Define the $n \times n$ csp (correlative sparsity pattern) matrix R by

$$
R_{i j}= \begin{cases}\star(\text { nonzero symbol }) & \text { if } i=j \text { or if } i, j \in I_{p} \text { for } \exists p \in M \\ 0 & \text { otherwise }\end{cases}
$$

Opt.Problem: c-sparse (correlatively sparse) \Leftrightarrow R allows a sparse (symbolic) Cholesky factorization.

Example

csp matrix $\mathrm{R}=$ ($\mathrm{n}=20$)

Opt.Problem: max. $\sum_{i \in N} a_{i} \boldsymbol{y}_{i}$ s.t. $\left(y_{i}: i \in I_{p}\right) \in C_{p}(p \in M)$

$$
M=\{1, \ldots, m\}, N=\{1, \ldots, n\}, I_{p} \subset N(p \in M)
$$

$$
\left(y_{i}: i \in I_{p}\right): \text { a subvector of } y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}
$$ consisting of elements $y_{i}\left(i \in I_{p}\right)$,

$C_{p}:$ a nonempty subset of the set of all $\left(y_{i}: i \in I_{p}\right)$.
Define the $n \times n \operatorname{csp}$ (correlative sparsity pattern) matrix R by

$$
R_{i j}= \begin{cases}\star(\text { nonzero symbol }) & \text { if } i=j \text { or if } i, j \in I_{p} \text { for } \exists p \in M \\ 0 & \text { otherwise }\end{cases}
$$

Opt.Problem: c-sparse (correlatively sparse) \Leftrightarrow R allows a sparse (symbolic) Cholesky factorization.

Example

Numerical results on the sparse SDP relaxation

n	cpu				
sec.	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	size of A, SeDuMi	SDP size	\# of nonzeros in A
600	25.7	$4.0 \mathrm{e}-12$	0.0	$11,974 \times 113,022$	235,612
800	34.8	$3.2 \mathrm{e}-12$	0.0	$15,974 \times 150,822$	314,412
1000	44.5	$1.6 \mathrm{e}-12$	0.0	$19,974 \times 188,622$	393,212

Opt.Problem: max. $\sum_{i \in N} a_{i} \boldsymbol{y}_{i}$ s.t. $\left(y_{i}: i \in I_{p}\right) \in C_{p}(p \in M)$

$$
M=\{1, \ldots, m\}, N=\{1, \ldots, n\}, I_{p} \subset N(p \in M)
$$

$\left(y_{i}: i \in I_{p}\right):$ a subvector of $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$ consisting of elements $y_{i}\left(i \in I_{p}\right)$,
C_{p} : a nonempty subset of the set of all $\left(y_{i}: i \in I_{p}\right)$.
Define the $n \times n \operatorname{csp}$ (correlative sparsity pattern) matrix R by

$$
R_{i j}= \begin{cases}\star(\text { nonzero symbol }) & \text { if } i=j \text { or if } i, j \in I_{p} \text { for } \exists p \in M \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& \text { Opt.Problem: c-sparse (correlatively sparse) } \Leftrightarrow \\
& \qquad R \text { allows a sparse (symbolic) Cholesky factorization. }
\end{aligned}
$$

(a) $\forall C_{p}$ is described by poly. (matrix or second-order cone) inequalites. \Rightarrow A sparse SDP relaxation whose csp matrix R^{\prime} is of "a similar sparsity pattern" to R; the size of $R^{\prime} \geq$ the size of R.
(b) $\forall C_{p}$ is described by linear matrix inequalites (SDP)
\Rightarrow The coef. matrix B of the Schur complement eq. $B d y=r$, which is the most time consuming in Primal-dual IPMs, for a search direction $d y$ has the same pattern as the csp matrix R^{\prime} of SDP.

Contents

1. How do we formulate structured sparsity?

1-1. Unconstrained cases.
1-2. Constrained and linear objective function cases.
2. Sparse SDP relaxation of constrained POPs. (Joint work with S.Kim, M.Muramatsu \& H.Waki)
3. Applications to PDEs (partial differential equations).
4. Concluding remarks.

Sections 1-1 $+1-2==>$ Section 2
Sparse SDP relaxation = Modification of Lasserre's relaxation

$$
\begin{aligned}
\text { POP: max. } f_{0}(x) \text { s.t. }\left(x_{i}: i \in I_{p}\right) \in C_{p}(p \in M) \\
M=\{1, \ldots, m\}, N=\{1, \ldots, n\}, I_{p} \subset N(p \in M) \\
C_{p} \subset \text { the set of all }\left(x_{i}: i \in I_{p}\right), \text { described as poly. inequalites. } \\
R_{i j}= \begin{cases}\star(\text { nonzero symbol }) & \text { if } i=j, \partial^{2} f_{0}(x) / \partial x_{i} \partial x_{j} \not \equiv 0, \\
0 & \text { or } i, j \in I_{p} \text { for } \exists p \in M, \\
\text { otherwise. }\end{cases}
\end{aligned}
$$

POP : c-sparse (correlatively sparse) \Leftrightarrow
The $n \times n \mathrm{csp}$ matrix $R=\left(R_{i j}\right)$ allows a sparse Cholesky factorization.

$$
E=\left\{\{i, j\} \in N \times N: R_{i j}=\star, i \neq j\right\} \Uparrow
$$

```
POP : c-sparse (correlatively sparse) }
The csp graph G(N,E) has a sparse chordal extension G(N,\overline{E});E\subseteq\overline{E}.
```


- The added edge $\{3,6\}$ is corresponding to a fill-in.
- The maximal cliques $=\{1,2\},\{1,3,4\},\{3,4,6\},\{3,5,6\}$.

$$
\begin{aligned}
& \hline \text { POP: max. } f_{0}(x) \text { s.t. }\left(x_{i}: i \in I_{p}\right) \in C_{p}(p \in M) \\
& \qquad M=\{1, \ldots, m\}, N=\{1, \ldots, n\}, I_{p} \subset N(p \in M) \\
& \quad C_{p} \subset \text { the set of all }\left(x_{i}: i \in I_{p}\right) \text {, described as poly. inequalites. } \\
& \hline \text { POP : c-sparse (correlatively sparse) } \Leftrightarrow \\
& \text { The csp graph } G(N, E) \text { has a sparse chordal extension } G(N, \bar{E}) ; E \subseteq \bar{E} .
\end{aligned}
$$

Two steps to derive a sparse SDP relaxation of POP
(a) Using the max. cliques $J_{q}(q \in L)$ of $G(N, \bar{E})$, we convert POP into an equivalent poly.SDP with the csp graph $G(N, \bar{E})$.
(b) Linearize poly.SDP \Rightarrow SDP with a similar sparsity to poly.SDP.

- The added edge $\{3,6\}$ is corresponding to a fill-in.
- The maximal cliques $=\{1,2\},\{1,3,4\},\{3,4,6\},\{3,5,6\}$.

POP: max. $f_{0}(x)$ s.t. $\left(x_{i}: i \in I_{p}\right) \in C_{p}(p \in M)$
$M=\{1, \ldots, m\}, N=\{1, \ldots, n\}, I_{p} \subset N(p \in M)$
$C_{p} \subset$ the set of all $\left(x_{i}: i \in I_{p}\right)$, described as poly. inequalites.
POP : c-sparse (correlatively sparse) \Leftrightarrow
The csp graph $G(N, E)$ has a sparse chordal extension $G(N, \bar{E}) ; E \subseteq \bar{E}$.
Two steps to derive a sparse SDP relaxation of POP
(a) Using the max. cliques $J_{q}(q \in L)$ of $G(N, \bar{E})$, we convert POP into an equivalent poly.SDP with the csp graph $G(N, \bar{E})$.
(b) Linearize poly.SDP \Rightarrow SDP with a similar sparsity to poly.SDP.

Notation: For every nonnegative integer s, let $u_{s}\left(x_{i}: i \in J_{q}\right)$ denote the column vector of monomials with degree at most s in variables $x_{i}\left(i \in J_{q}\right)$. Example: Let $J_{q}=\{1,4\}$. Then

$$
\begin{aligned}
& s=0 \Rightarrow u_{0}\left(x_{i}: i \in J_{q}\right)=1 \\
& s=1 \Rightarrow u_{1}\left(x_{i}: i \in J_{q}\right)=\left(1, x_{1}, x_{4}\right)^{T} \\
& s=3 \Rightarrow u_{3}\left(x_{i}: i \in J_{q}\right)=\left(1, x_{1}, x_{4}, x_{1}^{2}, x_{1} x_{4}, x_{4}^{2}, x_{1}^{3}, x_{1}^{2} x_{4}, x_{1} x_{4}^{2}, x_{4}^{3}\right)^{T}, \\
& s=1 \Rightarrow u_{1}\left(x_{i}: i \in J_{q}\right) u_{1}\left(x_{i}: i \in J_{q}\right)^{T}=\left(\begin{array}{ccc}
1 & x_{1} & x_{4} \\
x_{1} & x_{1}^{2} & x_{1} x_{4} \\
x_{4} & x_{1} x_{4} & x_{4}^{2}
\end{array}\right)
\end{aligned}
$$

POP: max. $f_{0}(x)$ s.t. $\left(x_{i}: i \in I_{p}\right) \in C_{p}(p \in M)$
$M=\{1, \ldots, m\}, N=\{1, \ldots, n\}, I_{p} \subset N(p \in M)$
$C_{p} \subset$ the set of all $\left(x_{i}: i \in I_{p}\right)$, described as poly. inequalites.

POP : c-sparse (correlatively sparse) \Leftrightarrow

The csp graph $G(N, E)$ has a sparse chordal extension $G(N, \bar{E}) ; E \subseteq \bar{E}$.
Two steps to derive a sparse SDP relaxation of POP
(a) Using the max. cliques $J_{q}(q \in L)$ of $G(N, \bar{E})$, we convert POP into an equivalent poly.SDP with the csp graph $G(N, \bar{E})$.
(a-1) Let $r_{0}=\lceil\operatorname{deg}(\mathrm{POP}) / 2\rceil \equiv\lceil "$ the max.deg. of the poly. in POP" $/ 2\rceil$.
(a-2) Choose $r \geq r_{0}$; a sequence of poly.SDPs depending on $r \geq r_{0}$.

$$
r: \text { the relaxation order of the sparse SDP relaxation of POP; }
$$ $r=\lceil\operatorname{deg}($ poly.SDP $) / 2\rceil$

(a-3) Replace each $f\left(x_{i}: i \in I_{p}\right) \geq 0$ involved in C_{p} by an equivalent

$$
f\left(x_{i}: i \in I_{p}\right) u_{s}\left(x_{i}: i \in J_{q}\right) u_{s}\left(x_{i}: i \in J_{q}\right)^{T} \succeq O
$$

where $s=r-\left\lceil\right.$ "the degree of $f\left(x_{i}: i \in I_{p}\right)$ "/2ך and $I_{p} \subseteq J_{q}$. (a-4) Add (redundant) $u_{r}\left(x_{i}: i \in J_{q}\right) u_{r}\left(x_{i}: i \in J_{q}\right)^{T} \succeq O(q \in L)$ to POP.
An equiv.poly.SDP with the csp graph $G(N, \bar{E})$ of the form $\max . f_{0}(x)$ s.t. $P_{j}(x) \succeq O(j=1, \ldots, \ell)$.
Here $P_{j}(x)$: a poly. with sym. mat. coefficients.

POP: max. $f_{0}(x)$ s.t. $\left(x_{i}: i \in I_{p}\right) \in C_{p}(p \in M)$
$M=\{1, \ldots, m\}, N=\{1, \ldots, n\}, I_{p} \subset N(p \in M)$
$C_{p} \subset$ the set of all $\left(x_{i}: i \in I_{p}\right)$, described as poly. inequalites.

POP : c-sparse (correlatively sparse) \Leftrightarrow

The csp graph $G(N, E)$ has a sparse chordal extension $G(N, \bar{E}) ; E \subseteq \bar{E}$.
Two steps to derive a sparse SDP relaxation of POP
(a) Using the max. cliques $J_{q}(q \in L)$ of $G(N, \bar{E})$, we convert POP into an equivalent poly.SDP with the csp graph $G(N, \bar{E})$.
An equiv.poly.SDP with the csp graph $G(N, \bar{E})$ of the form $\max . f_{0}(x)$ s.t. $P_{j}(x) \succeq O(j=1, \ldots, \ell)$.
Here $P_{j}(x):$ a poly. with sym. mat. coefficients.
Represent poly.SDP as
$\max . \sum_{\alpha \in \mathcal{A}_{0}} g_{0}(\alpha) x^{\alpha}$ s.t. $\sum_{\alpha \in \mathcal{A}_{j}} G_{j}(\alpha) x^{\alpha} \succeq O(j=1, \ldots, \ell)$.
$\Downarrow\left(\right.$ b) Linearize by replacing each x^{α} by an indep. var. y_{α}
SDP: max. $\sum_{\alpha \in \mathcal{A}_{0}} g_{0}(\alpha) y_{\alpha}$ s.t. $\sum_{\alpha \in \mathcal{A}_{j}} G_{j}(\alpha) y_{\alpha} \succeq O(j=1, \ldots, \ell)$, which forms a sparse SDP relaxation of POP.
\bullet poly.SDP dep.on $r \geq r_{0}=\lceil\operatorname{deg}(\mathrm{POP}) / 2\rceil \Rightarrow$ a seq.of SDPs dep.on $r \geq r_{0}$.

- Under an assump., opt.val.SDP \rightarrow opt.val.POP as $r \rightarrow \infty$ (Lasserre '05).

Example

$$
\text { POP: min. } \sum_{i=1}^{3}\left(-x_{i}^{3}\right) \text { s.t. }-i \times x_{i}^{2}-x_{4}^{2}+1 \geq 0(i=1,2,3) .
$$

$$
\Uparrow\left(\text { a) with the relaxation order } r=2 \geq r_{0}=\lceil 3 / 2\rceil=2\right.
$$

poly.SDP

$$
\min . \quad \sum_{i=1}^{3}\left(-x_{i}^{3}\right)
$$

$$
\text { s.t. } \quad\left(-i \times x_{i}^{2}-x_{4}^{2}+1\right)\left(1, x_{i}, x_{4}\right)^{T}\left(1, x_{i}, x_{4}\right) \succeq O(i=1,2,3),
$$

$$
\left(1, x_{i}, x_{4}, x_{i}^{2}, x_{i} x_{4}, x_{4}^{2}\right)^{T}\left(1, x_{i}, x_{4}, x_{i}^{2}, x_{i} x_{4}, x_{4}^{2}\right) \succeq O(i=1,2,3)
$$

Represent poly.SDP as

$$
\min . \quad \sum_{\alpha \in \mathcal{A}_{0}} g_{0}(\alpha) x^{\alpha} \text { s.t. } \sum_{\alpha \in \mathcal{A}_{j}} G_{j}(\alpha) x^{\alpha} \succeq O(j=1, \ldots, 6),
$$

where $\mathcal{A}_{j} \subset \mathbb{Z}_{+}^{4}$ and $x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} x_{3}^{\alpha_{3}} x_{4}^{\alpha_{4}} ; x^{(1,2,1,0)}=x_{1} x_{2}^{2} x_{3}$.
$\Downarrow\left(\right.$ b) Linearize by replacing each x^{α} by an indep. var. $y_{\alpha} ; x^{0}$ by 1

$$
\text { SDP min. } \sum_{\alpha \in \mathcal{A}_{0}} g_{0}(\alpha) y_{\alpha} \text { s.t. } \sum_{\alpha \in \mathcal{A}_{j}} G_{j}(\alpha) y_{\alpha} \succeq O(j=1, \ldots, 6),
$$

which forms an SDP relaxation of POP.

Contents

1. How do we formulate structured sparsity?

1-1. Unconstrained cases.
1-2. Constrained and linear objective function cases.
2. Sparse SDP relaxation of constrained POPs.
3. Applications to PDEs (partial differential equations).
(Ongoing joint work with M.Mevissen, J.Nie \&
N.Takayama)
4. Concluding remarks.

- Various numerical methods have been developed for (nonlinear) PDEs.
- Is SDP relaxation of POPs useful in solving PDEs?
- We are not sure how far we can go; so far only small size PDEs with at most two independent variables and two unknown functions.
- Challenge to PDEs using SDP relaxation of POPs.

Basic idea of solving a PDE by using SDP relaxation of POPs.
PDE with some boundary conditions such as
Dirichlet, Neumann and periodic conditions
Assump. PDE is described as "a mult. poly. equation." in unknown functions and their derivatives for each fixed independent variables.

Example 1 (A nonlinear elliptic equation with an inhomogeneous term):

$$
\begin{aligned}
& u_{x x}(x, y)+u_{y y}(x, y)+22 u(x, y)\left(1-u(x, y)^{2}\right)+5 \sin (\pi x) \sin (2 \pi y)=0, \\
& u(0, y)=u(1, y)=u(x, 0)=u(x, 1)=0, \forall(x, y) \in[0,1] \times[0,1] .
\end{aligned}
$$

Example 2 - A nonlinear wave equation with a periodic condition.

Examples 3 \& 4

- 2 unknown cases with Dirichlet and Neumann conditions, respectively (modifications of the Ginzburg-Landau equation for superconductivity).

We will show some numerical results on these examples later.

Basic idea of solving a PDE by using SDP relaxation of POPs.
PDE with some boundary conditions such as
Dirichlet, Neumann and periodic conditions
discretize on finite grid points; approximate partial derivatives by finite differences

```
A system of polynomial equations
```

 add an objective function and/or
 \Downarrow polynomial inequality constraints

A POP (Polynomial Optimization Problem)

$\Downarrow \quad$ apply SDP relaxation with \exists relaxation order r
A discretized solution of PDE
Advantage
(a) We can add an objective function and/or polynomial inequality constraints to pick up a specific solution which we want to compute.
(b) The system of polynomial equations induced from PDE satisfies the correlative sparsity.

But (c) Expensive, depending on a relaxation order r unknown in advance.

Example 1 (A nonlinear elliptic equation with an inhomogeneous term):

$$
\begin{aligned}
& u_{x x}(x, y)+u_{y y}(x, y)+22 u(x, y)\left(1-u(x, y)^{2}\right)+5 \sin (\pi x) \sin (2 \pi y)=0, \\
& u(0, y)=u(1, y)=u(x, 0)=u(x, 1)=0, \forall(x, y) \in[0,1] \times[0,1] .
\end{aligned}
$$

grid size	\# of var.	cpu sec.	relax. order r	SDP size feas	\# of size of A, SeDuMi	
4×4	9	0.92	2	$8.4 \mathrm{e}-11$	$183 \times 1,506$	2013
8×4	21	1.7	2	$4.7 \mathrm{e}-10$	$544 \times 4,807$	6,380
8×8	49	33.1	2	$1.5 \mathrm{e}-10$	$3,642 \times 31,907$	42,425

Approx. sol.: 4×4

Example 1 (A nonlinear elliptic equation with an inhomogeneous term):

$$
\begin{aligned}
& u_{x x}(x, y)+u_{y y}(x, y)+22 u(x, y)\left(1-u(x, y)^{2}\right)+5 \sin (\pi x) \sin (2 \pi y)=0 \\
& u(0, y)=u(1, y)=u(x, 0)=u(x, 1)=0, \forall(x, y) \in[0,1] \times[0,1] .
\end{aligned}
$$

grid size	\# of var.	cpu sec.	relax. order r	$\epsilon_{\text {feas }}$	SDP size size of A, SeDuMi	\# of nonzeros in A
4×4	9	0.92	2	$8.4 \mathrm{e}-11$	$183 \times 1,506$	2013
8×4	21	1.7	2	$4.7 \mathrm{e}-10$	$544 \times 4,807$	6,380
8×8	49	33.1	2	$1.5 \mathrm{e}-10$	$3,642 \times 31,907$	42,425

A sparse Cholesky factorization of the CSP matrix under a symmetic minimum degree ordering:

Example 2 (A nonlinear wave equation on $[0, \pi] \times[0,2 \pi])$:

$$
\begin{aligned}
& -u_{x x}(x, t)+u_{t t}(x, t)+u(x, t)(1-u(x, t))+0.2 \sin (x)=0 \\
& u(0, t)=u(\pi, t)=0, \forall t \in[0,2 \pi], u(x, 0)=u(x, 2 \pi), \forall x \in[0, \pi]
\end{aligned}
$$

grid size	\# of var.	cpu sec.	relax. order r	$\epsilon_{\text {feas }}$	SDP size size of $A, S e D u M i ~$	\# of nonzeros in A
4×5	15	159.5	2	$9.4 \mathrm{e}-10$	$2,616 \times 36,029$	43,689

"Multigrid technique"
Approx. sol.: $4 \times 5 \Longrightarrow 32 \times 40$

Example 2 (A nonlinear wave equation on $[0, \pi] \times[0,2 \pi]$):

$$
\begin{aligned}
& -u_{x x}(x, t)+u_{t t}(x, t)+u(x, t)(1-u(x, t))+0.2 \sin (x)=0 \\
& u(0, t)=u(\pi, t)=0, \forall t \in[0,2 \pi], u(x, 0)=u(x, 2 \pi), \forall x \in[0, \pi]
\end{aligned}
$$

grid size	\# of var.	cpu sec.	relax. order r	$\epsilon_{\text {feas }}$	SDP size size of $A, S e D u M i$	\# of nonzeros in A
4×5	15	159.5	2	$9.4 \mathrm{e}-10$	$2,616 \times 36,029$	43,689

"Multigrid technique"

$$
\Longrightarrow \quad 32 \times 40
$$

1. A rough approx. sol. u^{0} for 8×5 case by interpolation to the solution of 4×5 case.
2-a. Sparse SDP relax. to 8×5 case with obj.funct. $\left\|u-u^{0}\right\|^{2} \downarrow$, $u_{k}^{0}-\epsilon \leq u_{k} \leq u^{0}+\epsilon, \forall k$ $(\epsilon=0.5)$, and $r=1$, or
2-b. Newton meth. to 8×5 case with the init. pt. u^{0}.
(2-a is more expensive, but robust(?))

- $4 \times 5 \Rightarrow 8 \times 5 \Rightarrow 8 \times 10 \cdots 32 \times 40$

Example 3 (2 unknown case on $[0,1] \times[0,1]$, Dirichlet condition):

$$
\begin{aligned}
& u_{x x}(x, y)+u_{y y}(x, y)+u(x, y)\left(1-u(x, y)^{\rho}-v(x, y)^{\rho}\right)=0 \\
& v_{x x}(x, y)+v_{y y}(x, y)+v(x, y)\left(1-u(x, y)^{\rho}-v(x, y)^{\rho}\right)=0 \\
& u(0, y)=0.5 y+0.3 \sin (2 \pi y), u(1, y)=0.4-0.4 y, \forall y \in[0,1] \\
& u(x, 0)=0.4 x+0.2 \sin (2 \pi x), u(x, 1)=0.5-0.5 x, \forall x \in[0,1] \\
& v(x, 0)=v(x, 1)=v(0, y)=v(1, y)=0, \forall x \in[0,1], \forall y \in[0,1] .
\end{aligned}
$$

ρ	$\begin{gathered} \hline \hline \text { grid } \\ \text { size } \end{gathered}$	$\begin{gathered} \text { \# of } \\ \text { var. } \end{gathered}$	$\begin{aligned} & \text { cpu } \\ & \text { sec. } \end{aligned}$	$\begin{aligned} & \text { relax. } \\ & \text { order } r \end{aligned}$	$\epsilon_{\text {feas }}$	SDP size size of $A, S e D u M i$	\# of nonzeros in A
1	8×8	98	19.0	1	$6.2 \mathrm{e}-07$	$1,999 \times 21,377$	21,865
2	8×8	98	10,959	2	$9.4 \mathrm{e}-07$	$25,699 \times 235,471$	319,306

$\rho=2$ case, Sparse SDP relaxation $+2 . b$ (Newton Method)
Approx. sol. $u,(v \equiv 0): 8 \times 8 \quad u,(v \equiv 0): 32 \times 32$

0

0

Example 4 (2 unknown case on $[0,1] \times[0,1]$, Neumann condition):

$$
\begin{aligned}
& u_{x x}(x, y)+u_{y y}(x, y)+u(x, y)\left(1-u(x, y)^{2}-v(x, y)^{2}\right)=0 \\
& v_{x x}(x, y)+v_{y y}(x, y)+v(x, y)\left(1-u(x, y)^{2}-v(x, y)^{2}\right)=0 \\
& u_{x}(0, y)=-1, u_{x}(1, y)=1, \forall y \in[0,1], \\
& u_{y}(x, 0)=2 x, u_{y}(x, 1)=x+5 \sin (\pi x / 2), \forall x \in[0,1], \\
& v_{x}(0, y)=0, v_{x}(1, y)=0, \forall y \in[0,1], \\
& v_{y}(x, 0)=-1, v_{y}(x, 1)=1, \forall x \in[0,1] .
\end{aligned}
$$

grid size	\# of var.	cpu sec.	relax. order r	$\epsilon_{\text {feas }}$	SDP size size of $A, S e D u M i ~$	\# of nonzeros in A
4×4	18	6.9	2	$1.7 \mathrm{e}-10$	$979 \times 9,165$	12,598

Approx. sol. $u: 4 \times 4$

Approx. sol. v: 4×4

$$
\begin{aligned}
& \text { Example } 4(2 \text { unknown case on }[0,1] \times[0,1], \text { Neumann condition): } \\
& \quad u_{x x}(x, y)+u_{y y}(x, y)+\boldsymbol{u}(x, y)\left(1-\boldsymbol{u}(x, y)^{2}-\boldsymbol{v}(x, y)^{2}\right)=0, \\
& \left.v_{x x}(x, y)+v_{y y}(x, y)+\boldsymbol{v}(\boldsymbol{x}, \boldsymbol{y})(1-\boldsymbol{(x , y})^{2}-\boldsymbol{v}(x, y)^{2}\right)=0 \\
& u_{x}(0, y)=-1, u_{x}(1, y)=1, \forall y \in[0,1] \\
& u_{y}(x, 0)=2 x, u_{y}(x, 1)=x+5 \sin (\pi x / 2), \forall x \in[0,1], \\
& \\
& v_{x}(0, y)=0, v_{x}(1, y)=0, \forall y \in[0,1] \\
& v_{y}(x, 0)=-1, v_{y}(x, 1)=1, \forall x \in[0,1] .
\end{aligned}
$$

(Sparse SDP relaxation $+2 . b$ (Newton Method))

Contents

1. How do we formulate structured sparsity? 1-1. Unconstrained cases. 1-2. Constrained and linear objective function cases.
2. Sparse SDP relaxation of constrained POPs.
3. Applications to PDEs (partial differential equations).
4. Concluding remarks.

Some difficulties in SDP relaxation of POPs
(a) Sparse SDP relaxation problems of a POP are sometimes difficult to solve accurately (by the primal-dual interior-point method).
(b) The efficiency of the (sparse) SDP relaxation of a POP depends on the relaxation order r which is required to get an accurate optimal solution but is unknown in advance.

A difficulty in application of the sparse SDP relaxation to PDEs
(c) A polynomial system induced from a PDE is not c-sparse enough to process finer grid discretization.

\Downarrow

- More powerful and stable software to solve SDPs.
- Some additional techniques.

Thank you!

