Sum of Squares and SemiDefinite Programmming Relaxations of Polynomial Optimization Problems

The 2006 IEICE Society Conference
Kanazawa, September 21, 2006
Masakazu Kojima
Tokyo Institute of Technology
This presentation PowerPoint file is available at http://www.is.titech.ac.jp/~kojima/talk.html

An introduction to the recent development of SOS and SDP relaxations for computing global optimal solutions of POPs
Exploiting sparsity in SOS and SDP relaxations to solve large scale POPs

Outline

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. SOS relaxation of unconstrained POPs
4. Conversion of SOS relaxation into an SDP (Semidefinite

Program)
5. Exploiting structured sparsity
6. SOS relaxation of constrained POPs --- very briefly
7. Numerical results
8. Polynomial SDPs
9. Concluding remarks

Outline

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. SOS relaxation of unconstrained POPs
4. Conversion of SOS relaxation into an SDP (Semidefinite

Program)
5. Exploiting structured sparsity
6. SOS relaxation of constrained POPs --- very briefly
7. Numerical results
8. Polynomial SDPs
9. Concluding remarks

$$
\text { POP: } \min f_{0}(x) \text { sub.to } f_{j}(x) \geq 0(j=1, \ldots, m)
$$

\mathbb{R}^{n} : the n-dim Euclidean space.
$x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$: a vector variable.
$f_{j}(x)$: a multivariate polynomial in $x \in \mathbb{R}^{n}(j=0,1, \ldots, m)$.
Example: $n=3$

$$
\begin{aligned}
\min & f_{0}(x) \equiv x_{1}^{3}-2 x_{1} x_{2}^{2}+x_{1}^{2} x_{2} x_{3}-4 x_{3}^{2} \\
\text { sub.to } & f_{1}(x) \equiv-x_{1}^{2}+5 x_{2} x_{3}+1 \geq 0 \\
& f_{2}(x) \equiv x_{1}^{2}-3 x_{1} x_{2} x_{3}+2 x_{3}+2 \geq 0 \\
& f_{3}(x) \equiv-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}+1 \geq 0 \\
& x_{1}\left(x_{1}-1\right)=0(0-1 \text { integer }) \\
& x_{2} \geq 0, x_{3} \geq 0, x_{2} x_{3}=0 \text { (complementarity) }
\end{aligned}
$$

$$
\text { POP: } \min f_{0}(x) \text { sub.to } f_{j}(x) \geq 0(j=1, \ldots, m)
$$

[1] J.B.Lasserre, "Global optimization with polynomials and the problems of moments", SIAM J. on Optim. (2001).
[2] P.A.Parrilo, "Semidefinite programming relaxations for semialgebraic problems", Math. Prog. (2003).
[3] D.Henrion and J.B.Lasserre, GloptiPoly.
[4] S.Prajna, A.Parachristodoulou and P.A.Parrilo, SOSTOOLS.
$\bullet[1,3] \Rightarrow$ "a sequence of SDP relaxations" - primal approach.
$\bullet[2,4] \Rightarrow$ "a sequence of SOS relaxations" - dual approach.
(b) Lower bounds for the optimal value.
(c) Convergence to global optimal solutions in theory.
(a) Each relaxed problem can be solved as an SDP; its size gets larger rapidly along "the sequence" as we require a higher accuracy.
(d) Expensive to solve large scale POPs in practice. \Rightarrow Exploiting Sparsity.

$$
\text { POP: } \min f_{0}(x) \text { sub.to } f_{j}(x) \geq 0(j=1, \ldots, m)
$$

[1] J.B.Lasserre, "Global optimization with polynomials and the problems of moments", SIAM J. on Optim. (2001).
[2] P.A.Parrilo, "Semidefinite programming relaxations for semialgebraic problems", Math. Prog. (2003).
[3] D.Henrion and J.B.Lasserre, GloptiPoly.
[4] S.Prajna, A.Parachristodoulou and P.A.Parrilo, SOSTOOLS.
Exploiting sparsity to solve larger scale problem in practice
[5] M. Kojima, S. Kim and H. Waki, "Sparsity in SOS Polynomials", Math. Prog. (2005).
[6] H. Waki, S. Kim, M. Kojima and M. Muramatsu, "SOS and SDP Relaxations for POPs with Structured Sparsity", SIAM J. on Optim (2006).
[7] H. Waki, S. Kim, M. Kojima and M. Muramatsu, SparsePOP (2005).

$$
\text { POP: } \min f_{0}(x) \text { sub.to } f_{j}(x) \geq 0(j=1, \ldots, m)
$$

[1] J.B.Lasserre, "Global optimization with polynomials and the problems of moments", SIAM J. on Optim. (2001).
[2] P.A.Parrilo, "Semidefinite programming relaxations for semialgebraic problems", Math. Prog. (2003).
[3] D.Henrion and J.B.Lasserre, GloptiPoly.
[4] S.Prajna, A.Parachristodoulou and P.A.Parrilo, SOSTOOLS.

Extension to polynomial SDP and SOCP

[8] M. Kojima, "SOS relaxations of polynomial SDPs" (2003).
[9] C.W.Hol and C.W.Schere, "SOS relaxations of polynomial SDPs" (2004).
[10] D. Henrion and J. B. Lasserre, "Convergent relaxations of polynomial matrix inequalities and static output feedback " , IEEE Transactions on Automatic Conrol (2006).
[11] M. Kojima and M. Muramatsu, "An Extension of SOS Relaxations to POPs over Symmetric Cones ", to applear in Math. Prog.

$$
\begin{aligned}
& \text { A sparse numerical example with poly. SDP and SOCP constraints } \\
& \text { min } \sum_{i=1}^{n} a_{i} x_{i} \\
& \text { s.t. }\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
b_{j} & c_{j} \\
c_{j} & d_{j}
\end{array}\right) x_{j}+\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) x_{j} x_{j+1}+\left(\begin{array}{cc}
-2 & 1 \\
1 & -1
\end{array}\right) x_{j+1} \succeq O \\
& \\
& \quad \text { (polynomial matrix inequality constraints) } \\
& \\
& \left(0.3\left(x_{k}^{3}+x_{n}\right)+1\right)-\left\|\left(x_{k}+\beta_{i}, x_{n}\right)\right\| \geq 0(j, k=1, \ldots, n-1) \\
& \quad(\text { polynomial second-order inequality constraints) } \\
& \\
& \\
& 1-x_{p}^{2}-x_{p+1}^{2}-x_{n}^{2} \geq 0(p=1, \ldots, n-2)
\end{aligned}
$$

Here $a_{i}, b_{j}, d_{j} \in(-1,0), c_{j}, \beta_{j} \in(0,1)$ are random numbers.

Outline

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. SOS relaxation of unconstrained POPs
4. Conversion of SOS relaxation into an SDP (Semidefinite

Program)
5. Exploiting structured sparsity
6. SOS relaxation of constrained POPs --- very briefly
7. Numerical results
8. Polynomial SDPs
9. Concluding remarks

Nonnegative polynomials and SOS polynomials

$$
\begin{aligned}
& f(x) \text { : a nonnegative polynomial } \Leftrightarrow f(x) \geq 0\left(\forall x \in \mathbb{R}^{n}\right) . \\
& \mathcal{N}: \text { the set of nonnegative polynomials in } x \in \mathbb{R}^{n} .
\end{aligned}
$$

$$
f(x): \text { an SOS (Sum of Squares) polynomial }
$$

\exists polynomials $g_{1}(x), \ldots, g_{k}(x) ; f(x)=\sum_{i=1}^{k} g_{i}(x)^{2}$.
SOS_{*} : the set of SOS. Obviously, $\mathrm{SOS}_{*} \subset \mathcal{N}$. SOS $_{2 r}=\left\{f \in \operatorname{SOS}_{*}: \operatorname{deg} f \leq 2 r\right\}:$ SOSs with degree ar most $2 r$.
$n=2 . f\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}-2 x_{2}+1\right)^{2}+\left(3 x_{1} x_{2}+x_{2}-4\right)^{2} \in \mathrm{SOS}_{4}$.

- In theory, SOS $_{*}(\mathrm{SOS}) \subset \mathcal{N} . \mathrm{SOS}_{*} \neq \mathcal{N}$ in general.
- In practice, $f(x) \in \mathcal{N} \backslash \mathrm{SOS}_{*}$ is rare.
- So we replace \mathcal{N} by $\mathrm{SOS}_{*} \Longrightarrow$ SOS Relaxations.

Outline

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. SOS relaxation of unconstrained POPs
4. Conversion of SOS relaxation into an SDP (Semidefinite

Program)
5. Exploiting structured sparsity
6. SOS relaxation of constrained POPs --- very briefly
7. Numerical results
8. Polynomial SDPs
9. Concluding remarks

$$
\mathcal{P}: \min _{x \in \mathbb{R}^{n}} f(x), \text { where } f \text { is a polynomial with } \operatorname{deg} f=2 r
$$ 1

$$
\begin{aligned}
\mathcal{P}^{\prime}: \max \zeta \text { s.t } & f(x)-\zeta \geq 0\left(\forall x \in \mathbb{R}^{n}\right) \\
& \hat{\Downarrow} \\
& f(x)-\zeta \in \mathcal{N} \text { (the nonnegative polynomials) }
\end{aligned}
$$

Here x is a parameter (index) describing inequality constraints.

$$
\mathcal{P}: \min _{x \in \mathbb{R}^{n}} f(x), \text { where } f \text { is a polynomial with } \operatorname{deg} f=2 r
$$

亿

$$
\begin{aligned}
\mathcal{P}^{\prime}: \max \zeta \text { s.t } & f(x)-\zeta \geq 0\left(\forall x \in \mathbb{R}^{n}\right) \\
& \hat{\Downarrow} \\
& f(x)-\zeta \in \mathcal{N} \text { (the nonnegative polynomials) }
\end{aligned}
$$

Here x is a parameter (index) describing inequality constraints.

$$
\Sigma \subset \operatorname{SOS}_{2 r} \subset \operatorname{SOS}_{*} \subset \mathcal{N} \Downarrow \text { a subproblem of } \mathcal{P}^{\prime}=\text { a relaxation of } \mathcal{P}
$$

$$
\mathcal{P} ": \max \zeta \text { sub.to } f(x)-\zeta \in \Sigma
$$

$\mathrm{SOS}_{*}\left(\mathrm{SOS}_{2 r}=\right)$ the set of SOS polynomials (with degree $\leq 2 r$).

- the min.val of $\mathcal{P}=$ the max.val of $\mathcal{P}^{\prime} \geq$ the max.val of $\mathcal{P} "$.
- \mathcal{P} " can be solved as an SDP (Semidefinite Program) - next.
- In practice, we can exploit structured sparsity of the Hessian matrix of f to reduce the size of Σ - later.

Outline

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. SOS relaxation of unconstrained POPs
4. Conversion of SOS relaxation into an SDP (Semidefinite

Program)
5. Exploiting structured sparsity
6. SOS relaxation of constrained POPs --- very briefly
7. Numerical results
8. Polynomial SDPs
9. Concluding remarks

Conversion of SOS relaxation into an SDP --- 1

What is an SDP (Semidefinite Program)?

- An extension of LP (Linear Program) in \mathbb{R}^{n} to the space \mathcal{S}^{n} of symmetric matrices.
variable a vector $x \in \mathbb{R}^{n} \Longrightarrow X \in \mathcal{S}^{n}$. inequality $\quad \mathbb{R}^{n} \ni x \geq 0 \Longrightarrow \mathcal{S}^{n} \ni X \succeq O$ (positive semidefinite).
- Can be solved by the interior-point method.
- Lots of applications.

Conversion of SOS relaxation into an SDP --- 2
$a_{p} \in \mathbb{R}^{n}(p=0,1,2, \ldots, m), b_{p} \in \mathbb{R}(p=1,2, \ldots, m)$: data.
$x \in \mathbb{R}^{n}:$ variable.
$a_{p} \cdot x=\sum_{j=1}^{n}\left[a_{p}\right]_{j} x_{j}$ (the inner product).
LP (Linear Program):

$$
\begin{array}{ll}
\max & a_{0} \cdot x \\
\text { s.t. } & a_{p} \cdot x=b_{p}(p=1, \ldots, m), x \geq 0 .
\end{array}
$$

SDP (Semidefinite Program):

$$
\begin{array}{ll}
\max & A_{0} \bullet X \\
\text { s.t. } & A_{p} \bullet X=b_{p}(p=1, \ldots, m), X \succeq O .
\end{array}
$$

$A_{p} \in \mathcal{S}^{n}(p=0,1,2, \ldots, m), b_{p} \in \mathbb{R}(p=1,2, \ldots, m):$ data $X \in \mathcal{S}^{n}$: variable.
$A_{p} \bullet X=\sum_{i=1}^{n} \sum_{j=1}^{n}\left[A_{p}\right]_{i j} X_{i j}$ (the inner product).
\mathcal{S}^{n} : the set of $n \times n$ real symmetric matrices.
$X \succeq O: X \in \mathcal{S}^{n}$ is positive semidefinite.

Conversion of SOS relaxation into an SDP --- 3

Representation of
$\operatorname{SOS}_{2 r} \equiv\left\{\sum_{j=1}^{k} g_{j}(x)^{2}: \exists k \geq 1, g_{j}(x):\right.$ degree at most $\left.r\right\} \subset \operatorname{SOS}_{*}$.
$\forall r$-degree poly. $g(x) \exists a \in \mathbb{R}^{d(r)} ; g(x)=a^{T} u_{r}(x)$, where

$$
\begin{aligned}
u_{r}(x)= & \left(1, x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, \ldots, x_{n}^{2}, \ldots, x_{1}^{r}, \ldots, x_{n}^{r}\right)^{T}, \\
& (\text { a column vector of a basis of } r \text {-degree polynomial }), \\
d(r)= & \binom{n+r}{r}: \text { the dimension of } u_{r}(x) .
\end{aligned}
$$

Example: $n=2$ and $r=2$

$$
\begin{aligned}
g\left(x_{1}, x_{2}\right) & =1-2 x_{1}-4 x_{1}^{2}+5 x_{1} x_{2}-6 x_{2}^{2} \\
& =(1,-2,0,-4,5,-6)\left(1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right)^{T} \\
& =a^{T} u_{2}(x)
\end{aligned}
$$

where

$$
\begin{aligned}
a^{T} & =(1,-2,0,-4,5,-6), \\
u_{2}(x)^{T} & =\left(1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right)^{T} .
\end{aligned}
$$

Conversion of SOS relaxation into an SDP --- 3

Representation of

$\operatorname{SOS}_{2 r} \equiv\left\{\sum_{j=1}^{k} g_{j}(x)^{2}: \exists k \geq 1, g_{j}(x):\right.$ degree at most $\left.r\right\} \subset \operatorname{SOS}_{*}$.
$\forall r$-degree poly. $g(x) \exists a \in \mathbb{R}^{d(r)} ; g(x)=a^{T} u_{r}(x)$, where

$$
\begin{aligned}
u_{r}(x)= & \left(1, x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, \ldots, x_{n}^{2}, \ldots, x_{1}^{r}, \ldots, x_{n}^{r}\right)^{T}, \\
& (\text { a column vector of a basis of } r \text {-degree polynomial }) \\
d(r)= & \binom{n+r}{r}: \text { the dimension of } u_{r}(x) .
\end{aligned}
$$

\Downarrow

$$
\begin{aligned}
\operatorname{SOS}_{2 r} & =\left\{\sum_{j=1}^{k}\left(a_{j}^{T} u_{r}(x)\right)^{2}: k \geq 1, a_{j} \in \mathbb{R}^{d(r)}\right\} \\
& =\left\{u_{r}(x)^{T}\left(\sum_{j=1}^{k} a_{j} a_{j}^{T}\right) u_{r}(x): k \geq 1, a_{j} \in \mathbb{R}^{d(r)}\right\} \\
& =\left\{u_{r}(x)^{T} V u_{r}(x): V \text { is a positive semidefinite matrix }\right\} .
\end{aligned}
$$

Conversion of SOS relaxation into an SDP --- 4

Example. $n=2$, SOS of at most deg. 2 polynomials in $x=\left(x_{1}, x_{2}\right)$.

$$
\begin{aligned}
\operatorname{SOS}_{4} & \equiv\left\{\sum_{i=1}^{k} g_{i}(x)^{2}: k \geq 1, g_{i}(x) \text { is at most deg.2 polynomial }\right\} \\
& =\left\{\left(\begin{array}{c}
1 \\
x_{1} \\
x_{2} \\
x_{1}^{2} \\
x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right)^{T}\left(\begin{array}{c}
1 \\
x_{1} \\
x_{2} \\
x_{1}^{2} \\
x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right): V \text { is a } 6 \times 6 \text { psd matrix }\right\}
\end{aligned}
$$

Conversion of SOS relaxation into an SDP --- 5

Example : $f(x)=-x_{1}+2 x_{2}+3 x_{1}^{2}-5 x_{1}^{2} x_{2}^{2}+7 x_{2}^{4}$
$\max \zeta$ sub.to $f(x)-\zeta \in \mathrm{SOS}_{4}$ (SOS of at most deg. 2 polynomials)
I

$$
\begin{aligned}
& \max \zeta \\
& \text { s.t. } \quad f(x)-\zeta=\left(\begin{array}{l}
1 \\
x_{1} \\
x_{2} \\
x_{1}^{2} \\
x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right)^{T}\left(\begin{array}{llllll}
V_{11} & V_{12} & V_{13} & V_{14} & V_{15} & V_{16} \\
V_{12} & V_{22} & V_{23} & V_{24} & V_{25} & V_{26} \\
V_{13} & V_{23} & V_{33} & V_{34} & V_{35} & V_{36} \\
V_{14} & V_{24} & V_{34} & V_{44} & V_{45} & V_{46} \\
V_{15} & V_{25} & V_{35} & V_{45} & V_{55} & V_{56} \\
V_{16} & V_{26} & V_{36} & V_{46} & V_{56} & V_{66}
\end{array}\right)\left(\begin{array}{l}
1 \\
x_{1} \\
x_{2} \\
x_{1}^{2} \\
x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right) \\
& \left(\forall\left(x_{1}, x_{2}\right)^{T} \in \mathbb{R}^{n}\right), \quad 6 \times 6 V \succeq O
\end{aligned}
$$

§ Compare the coef. of $1, x_{1}, x_{2}, x_{1}^{2}, \ldots, x_{2}^{4}$ on both side of $=$ SDP (Semidefinite Program)
$\max \zeta$ s.t. $\quad-\zeta=V_{11},-1=2 V_{12}, 2=2 V_{13}, 3=2 V_{14}+V_{22}$,

$$
-5=2 V_{46}+V_{55}, 7=V_{66}, \text { all others } 0=\cdots, V \succeq O
$$

In general, each equality constraint is a linear equation in ζ and V.

Outline

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. SOS relaxation of unconstrained POPs
4. Conversion of SOS relaxation into an SDP (Semidefinite

Program)
5. Exploiting structured sparsity
6. SOS relaxation of constrained POPs --- very briefly
7. Numerical results
8. Polynomial SDPs
9. Concluding remarks
$\mathcal{P}: \min _{x \in \mathbb{R}^{n}} f(x)$, where f is a polynomial with $\operatorname{deg} f=2 r$
$H:$ the sparsity pattern of the Hessian matrix of $f(x)$

$$
H_{i j}=\left\{\begin{array}{l}
\star \text { if } i=j \text { or } \partial^{2} f(x) / \partial x_{i} \partial x_{j} \not \equiv 0 \\
0 \text { otherwise }
\end{array}\right.
$$

$f(x)$: correlatively sparse $\Leftrightarrow \exists$ a sparse Cholesky fact. of H.
(a) A sparse Chol. fact. is characterized as a sparse (chordal) $\operatorname{graph} G(N, E) ; N=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): H_{i j}=\star\right\}+\text { "fill-in". }
$$

(b) Let $C_{1}, C_{2}, \ldots, C_{q} \subset N$ be the maximal cliques of $G(N, E)$.

Sparse SOS relaxation
 $\max \zeta$
 s.t. $\quad f(x)-\zeta \in \sum_{k=1}^{q}\left(\right.$ SOS of polynomials in $\left.x_{i}\left(i \in C_{k}\right)\right)$

Dense SOS relaxation $\max \zeta$ s.t. $\quad f(x)-\zeta \in\left(\right.$ SOS of polynomials in $\left.x_{i}(i \in N)\right)$

- Sparse relaxation is weaker but less expensive in practice.

Example: Generalized Rosenbrock function.

$$
f(x)=\sum_{i=2}^{n}\left(100\left(x_{i}-x_{i-1}^{2}\right)^{2}+\left(1-x_{i}\right)^{2}\right)
$$

Dense SOS relaxation
$\max \zeta$
s.t. $f(x)-\zeta \in\left(\right.$ SOS of deg-2. poly. in $\left.x_{1}, x_{2}, \ldots, x_{n}\right)$

- The size of Dense grows very rapidly, so we can't apply Dense to the case $n \geq 20$ in practice.
- The Hessian matrix is sparse (tridiagonal).
- No fill-in in the Cholesky factorization.
- $C_{i}=\{i-1, i\}(i=2, \ldots, n-1):$ the max. cliques.

$$
\begin{aligned}
& \text { Sparse SOS relaxation } \\
& \quad \max \zeta \\
& \text { s.t. } \left.f(x)-\zeta \in \sum_{i=2}^{n} \text { (SOS of deg-2. poly. in } x_{i-1}, x_{i}\right)
\end{aligned}
$$

- The size of Sparse grows linearly in n, and Sparse can process the case $n=800$ in less than 10 sec .

Outline

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. SOS relaxation of unconstrained POPs
4. Conversion of SOS relaxation into an SDP (Semidefinite

Program)
5. Exploiting structured sparsity
6. SOS relaxation of constrained POPs --- very briefly
7. Numerical results
8. Polynomial SDPs
9. Concluding remarks

POP: $\min f_{0}(x)$ sub.to $f_{j}(x) \geq 0(j=1, \ldots, m)$.

- Rough sketch of SOS relaxation of POP

- Exploiting sparsity in SOS relaxation of POP

$$
\text { POP: } \min f_{0}(x) \text { sub.to } f_{j}(x) \geq 0(j=1, \ldots, m) \text {. }
$$

Sparsity : $f_{j}(x)$ involves only $x_{i}\left(i \in C_{j} \subset N\right)(j=1, \ldots, n)$.
Generalized Lagrangian function

$$
L\left(x, \lambda_{1}, \ldots, \lambda_{m}\right)=f_{0}(x)-\sum_{j=1}^{m} \lambda_{j}(x) f_{j}(x)
$$

for $\forall x \in \mathbb{R}^{n}, \forall \lambda_{j} \in \operatorname{SOS}_{*}$
If $\mathbb{R} \ni \lambda_{j} \geq 0$ then L is the standard Lagrangian function.
Generalized Lagrangian Dual

$$
\max _{\lambda_{1} \in \operatorname{SOS}_{*}, \ldots, \lambda_{m} \in \operatorname{SOS}_{*}} \min _{x \in \mathbb{R}^{n}} L\left(x, \lambda_{1}, \ldots, \lambda_{m}\right)
$$

§
Generalized Lagrangian Dual

$$
\begin{array}{cl}
\max \zeta \text { s.t. } & L\left(x, \lambda_{1}, \ldots, \lambda_{m}\right)-\zeta \geq 0\left(\forall x \in \mathbb{R}^{n}\right), \\
& \lambda_{1} \in \operatorname{SOS}_{*}, \ldots, \lambda_{m} \in \operatorname{SOS}_{*}
\end{array}
$$

$$
\text { POP: } \min f_{0}(x) \text { sub.to } f_{j}(x) \geq 0(j=1, \ldots, m) \text {. }
$$

Sparsity : $f_{j}(x)$ involves only $x_{i}\left(i \in C_{j} \subset N\right)(j=1, \ldots, n)$.
Generalized Lagrangian function

$$
L\left(x, \lambda_{1}, \ldots, \lambda_{m}\right)=f_{0}(x)-\sum_{j=1}^{m} \lambda_{j}(x) f_{j}(x)
$$

for $\forall x \in \mathbb{R}^{n}, \forall \lambda_{j} \in \operatorname{SOS}_{*}$
If $\mathbb{R} \ni \lambda_{j} \geq 0$ then L is the standard Lagrangian function.
Generalized Lagrangian Dual

$$
\begin{array}{cl}
\max \zeta \text { s.t. } & L\left(x, \lambda_{1}, \ldots, \lambda_{m}\right)-\zeta \geq 0\left(\forall x \in \mathbb{R}^{n}\right) \\
& \lambda_{1} \in \operatorname{SOS}_{*}, \ldots, \lambda_{m} \in \operatorname{SOS}_{*}
\end{array}
$$

\Downarrow sparse SOS relaxation

$$
\begin{aligned}
\max \zeta \text { s.t. } & L\left(x, \lambda_{1}, \ldots, \lambda_{m}\right)-\zeta \in \Sigma \\
& \lambda_{1} \in \Sigma_{1}, \ldots, \lambda_{m} \in \Sigma_{m} .
\end{aligned}
$$

- Here $\Sigma_{j} \subset \operatorname{SOS}_{*}(j=1, \ldots, m)$: a set of SOS poly. in x_{i} $\left(i \in C_{j}\right) . \Rightarrow L\left(x, \lambda_{1}, \ldots, \lambda_{m}\right)-\zeta:$ correlatively sparse.
- SOS relaxation of unconstrained POPs to choose $\Sigma \subset \operatorname{SOS}_{*}$.

Example

$$
\begin{aligned}
\min & f_{0}(x)=-x_{1}-x_{2}-x_{3}-x_{4}-x_{5} \\
\mathrm{s.t} & f_{1}\left(x_{1}, x_{2}\right)=-x_{1}^{4}-2 x_{2}^{2}+1 \geq 0, f_{2}\left(x_{2}, x_{3}\right)=-3 x_{2}^{4}-4 x_{3}^{2}+1 \geq 0 \\
& f_{3}\left(x_{3}, x_{4}\right)=-x_{3}^{4}-3 x_{4}^{2}-1 \geq 0, f_{4}\left(x_{4}, x_{5}\right)=-2 x_{4}^{4}-x_{5}^{2}-1 \geq 0
\end{aligned}
$$

Generalized Lagrangian function

$$
\begin{aligned}
& L\left(x, \lambda_{1}, \ldots, \lambda_{m}\right) \\
& =f_{0}(x)-\lambda_{1}\left(x_{1}, x_{2}\right) f_{1}\left(x_{1}, x_{2}\right)-\lambda_{2}\left(x_{2}, x_{3}\right) f_{2}\left(x_{3}, x_{4}\right) \\
& \quad-\lambda_{3}\left(x_{3}, x_{4}\right) f_{3}\left(x_{3}, x_{4}\right)-\lambda_{4}\left(x_{4}, x_{5}\right) f_{4}\left(x_{4}, x_{5}\right)
\end{aligned}
$$

Here $\lambda_{j} \in$ SOS $_{*}$.
Then the sparsity pattern of the Hessian matrix of $L\left(x, \lambda_{1}, \ldots, \lambda_{m}\right)$ becomes

$$
H=\left(\begin{array}{ccccc}
\star & \star & 0 & 0 & 0 \\
\star & \star & \star & 0 & 0 \\
0 & \star & \star & \star & 0 \\
0 & 0 & \star & \star & \star \\
0 & 0 & 0 & \star & \star
\end{array}\right) .
$$

Thus $L\left(x, \lambda_{1}, \ldots, \lambda_{m}\right)-\zeta$: correlatively sparse.

Outline

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. SOS relaxation of unconstrained POPs
4. Conversion of SOS relaxation into an SDP (Semidefinite

Program)
5. Exploiting structured sparsity
6. SOS relaxation of constrained POPs --- very briefly
7. Numerical results
8. Polynomial SDPs
9. Concluding remarks

Numerical results
Software

- SparsePOP (Waki-Kim-Kojima-Muramatsu, 2005)
- MATLAB program for constructing sparse and dense SDP relaxation problems.
- SeDuMi to solve SDPs.

Hardware

- 2.4 GHz Xeon cpu with 6.0 GB memory.
G.Rosenbrock function:

$$
f(x)=\sum_{i=2}^{n}\left(100\left(x_{i}-x_{i-1}^{2}\right)^{2}+\left(1-x_{i}\right)^{2}\right)
$$

- Two minimizers on $\mathbb{R}^{n}: x_{1}= \pm 1, x_{i}=1(i \geq 2)$.
- Add $x_{1} \geq 0 \Rightarrow$ a single minimizer.

		cpu in sec.	
n	$\epsilon_{\text {Obj }}$	Sparse	Dense
10	$2.5 \mathrm{e}-08$	0.2	10.6
15	$6.5 \mathrm{e}-08$	0.2	756.6
200	$5.2 \mathrm{e}-07$	2.2	-
400	$2.5 \mathrm{e}-06$	3.7	-
800	$5.5 \mathrm{e}-06$	6.8	-

$\epsilon_{\mathrm{obj}}=\frac{\mid \text { the lower bound for opt. value }- \text { the approx. opt. value } \mid}{\max \{1, \mid \text { the lower bound for opt. value } \mid\}}$.

An optimal control problem from Coleman et al. 1995

$$
\left.\begin{array}{ll}
\min & \frac{1}{M} \sum_{i=1}^{M-1}\left(y_{i}^{2}+x_{i}^{2}\right) \\
\text { s.t. } & y_{i+1}=y_{i}+\frac{1}{M}\left(y_{i}^{2}-x_{i}\right), \quad(i=1, \ldots, M-1), \quad y_{1}=1 .
\end{array}\right\}
$$

Numerical results on sparse relaxation

M	\# of variables	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	cpu
600	1198	$3.4 \mathrm{e}-08$	$2.2 \mathrm{e}-10$	3.4
700	1398	$2.5 \mathrm{e}-08$	$8.1 \mathrm{e}-10$	3.3
800	1598	$5.9 \mathrm{e}-08$	$1.6 \mathrm{e}-10$	3.8
900	1798	$1.4 \mathrm{e}-07$	$6.8 \mathrm{e}-10$	4.5
1000	1998	$6.3 \mathrm{e}-08$	$2.7 \mathrm{e}-10$	5.0

$\epsilon_{\mathrm{obj}}=\frac{\mid \text { the lower bound for opt. value - the approx. opt. value } \mid}{\max \{1, \mid \text { the lower bound for opt. value } \mid\}}$,
$\epsilon_{\text {feas }}=$ the maximum error in the equality constraints, cpu : cpu time in sec. to solve an SDP relaxation problem.
alkyl.gms : a benchmark problem from globallib

$$
\begin{array}{ll}
\min & -6.3 x_{5} x_{8}+5.04 x_{2}+0.35 x_{3}+x_{4}+3.36 x_{6} \\
\text { sub.to } & -0.820 x_{2}+x_{5}-0.820 x_{6}=0 \\
& 0.98 x_{4}-x_{7}\left(0.01 x_{5} x_{10}+x_{4}\right)=0, \\
& -x_{2} x_{9}+10 x_{3}+x_{6}=0 \\
& x_{5} x_{12}-x_{2}\left(1.12+0.132 x_{9}-0.0067 x_{9}^{2}\right)=0, \\
& x_{8} x_{13}-0.01 x_{9}\left(1.098-0.038 x_{9}\right)-0.325 x_{7}=0.574, \\
& x_{10} x_{14}+22.2 x_{11}=35.82, \\
& x_{1} x_{11}-3 x_{8}=-1.33, \\
& \operatorname{lbd}_{i} \leq x_{i} \leq \operatorname{ubd}_{i}(i=1,2, \ldots, 14) .
\end{array}
$$

		Sparse		Dense (Lasserre)	
problem	n	$\epsilon_{\text {Obj }}$	$\epsilon_{\text {feas }} \quad$ cpu	$\epsilon_{\text {Obj }} \quad \epsilon_{\text {feas }}$ cpu	
alkyl	14	$5.6 \mathrm{e}-10$	$2.0 \mathrm{e}-08$	23.0	out of memory

$\epsilon_{\mathrm{obj}}=\frac{\mid \text { the lower bound for opt. value }- \text { the approx. opt. value } \mid}{\max \{1, \mid \text { the lower bound for opt. value } \mid\}}$,
$\epsilon_{\text {feas }}=$ the maximum error in the equality constraints, cpu : cpu time in sec. to solve an SDP relaxation problem.

Some other benchmark problems from globallib

		Sparse			Dense (Lasserre)		
problem	n	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	cpu	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	cpu
ex3_1_1	8	$6.3 \mathrm{e}-09$	$4.7 \mathrm{e}-04$	5.5	$0.7 \mathrm{e}-08$	$2.5 \mathrm{e}-03$	597.8
st_bpaf1b	10	$3.8 \mathrm{e}-08$	$2.8 \mathrm{e}-08$	1.0	$4.6 \mathrm{e}-09$	$7.2 \mathrm{e}-10$	1.7
st_e07	10	$0.0 \mathrm{e}+00$	$8.1 \mathrm{e}-05$	0.4	$0.0 \mathrm{e}+00$	$8.8 \mathrm{e}-06$	3.0
st_jcbpaf2	10	$1.1 \mathrm{e}-07$	$0.0 \mathrm{e}+00$	2.1	$1.1 \mathrm{e}-07$	$0.0 \mathrm{e}+00$	2.0
ex2_1_3	13	$5.1 \mathrm{e}-09$	$3.5 \mathrm{e}-09$	0.5	$1.6 \mathrm{e}-09$	$1.5 \mathrm{e}-09$	7.7
ex9_1_1	13	0.0	$4.5 \mathrm{e}-06$	1.5	0.0	$9.2 \mathrm{e}-07$	7.7
ex9_2_3	16	$0.0 \mathrm{e}+00$	$5.7 \mathrm{e}-06$	2.3	$0.0 \mathrm{e}+00$	$7.5 \mathrm{e}-06$	49.7
ex2_1_8	24	$1.0 \mathrm{e}-05$	$0.0 \mathrm{e}+00$	304.6	$3.4 \mathrm{e}-06$	$0.0 \mathrm{e}+00$	1946.6
ex5_2_2_c1	9	$1.0 \mathrm{e}-2$	$3.2 \mathrm{e}+01$	1.8	$1.6 \mathrm{e}-05$	$2.1 \mathrm{e}-01$	2.6
ex5_2_2_c2	9	$1.0 \mathrm{e}-02$	$7.2 \mathrm{e}+01$	2.1	$1.3 \mathrm{e}-04$	$2.7 \mathrm{e}-01$	3.5

- ex5_2_2_c1 and ex5_2_2_c2 - Dense is better.
- Sparse attains approx. opt. solutions with the same quality as Dense except ex5_2_2_c1 and ex5_2_2_c2.
- Sparse is much faster than Dense in large dim. cases.

Outline

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. SOS relaxation of unconstrained POPs
4. Conversion of SOS relaxation into an SDP (Semidefinite

Program)
5. Exploiting structured sparsity
6. SOS relaxation of constrained POPs --- very briefly
7. Numerical results
8. Polynomial SDPs
9. Concluding remarks
(Sparse) SOS and SDP relaxations have been extended to

$$
\begin{array}{ll}
\hline \text { PSDP (Polynomial Semidefinite Program) } \\
\qquad \begin{array}{ll}
\max & \sum_{i=1}^{n} c_{i} x_{i} \\
\text { sub.to } & \text { polynomial matrix inequalities. }
\end{array}
\end{array}
$$

Example:

$$
\min 1.1 x_{1}+1.2 x_{2}-x_{1}^{2}-x_{2}^{2} \text { sub.to }\left(\begin{array}{cc}
1-4 x_{1} x_{2} & x_{1}^{3} \\
x_{1}^{3} & 4-x_{1}^{2}-x_{2}^{2}
\end{array}\right) \succeq O .
$$

- Can be solved in 0.4 second with relative accuracy $3.9 \mathrm{e}-10$.
[A] M.Kojima, "SOS relaxations of POPs", 2003.
[B] C.W.Hol and C.W.Scherer, "Sum of squares relaxations for polynomial semidefinite programming", 2004.
[C] M.Kojima and M.Muramatsu, "An extension of SOS relaxations to POPs over symmetric cones", To appear in Math. Prog.
- Powerful in theory, but not practical yet.
(Sparse) SOS and SDP relaxations have been extended to

$$
\begin{array}{ll}
\hline \text { PSDP (Polynomial Semidefinite Program) } \\
\qquad \begin{array}{ll}
\text { max } & \sum_{i=1}^{n} c_{i} x_{i} \\
\text { sub.to } & \text { polynomial matrix inequalities. }
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \text { Example: } \\
& \text { min } 1.1 x_{1}+1.2 x_{2}-x_{1}^{2}-x_{2}^{2} \text { sub.to }\left(\begin{array}{cc}
1-4 x_{1} x_{2} & x_{1}^{3} \\
x_{1}^{3} & 4-x_{1}^{2}-x_{2}^{2}
\end{array}\right) \succeq O . \\
& \text { - Can be solved in } 0.4 \text { second with relative accuracy } 3.9 \mathrm{e}-10 \text {. }
\end{aligned}
$$

In theory:

- Convergence to a global optimal solution.
- Exploiting sparsity.

In practice:

- SDP relaxation problems become too large to solve as PSDP gets larger.
- Numerical difficulty to solve SDP relaxation problems

An example of polynomial SDPs

$$
\min \sum_{j=1}^{n} a_{i} x_{i}
$$

s.t. $\quad I$ - "deg 3 poly. with $k \times k$ sym. dense matrix coefficients" $\succeq O$, $0 \leq x_{j} \leq 1(j=1, \ldots, n)$.
Here I denotes the $k \times k$ identity matrix.

		cpu sec.	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	SDP size size of $\mathrm{A}, \mathrm{SeDuMi}$	\# of nonzeros
7	5	19.6	$2.0-09$	$6.9-10$	$791 \times 22,608$	41,587
8	5	103.3	$2.4 \mathrm{e}-09$	$4.0 \mathrm{e}-10$	$1,286 \times 39,006$	69,772
9	5	212.7	$6.4 \mathrm{e}-10$	$1.2 \mathrm{e}-10$	$2,001 \times 63,959$	109,169
10	5	828.9	$6.8 \mathrm{e}-10$	$1.8 \mathrm{e}-10$	$3002 \times 100,385$	171,895
7	10	23.4	$2.8 \mathrm{e}-10$	$3.0 \mathrm{e}-10$	$791 \times 27,408$	75,502
7	20	38.2	$3.3 \mathrm{e}-10$	$6.0 \mathrm{e}-09$	$791 \times 46,608$	210,532
7	40	123.0	$2.6 \mathrm{e}-09$	$4.1 \mathrm{e}-08$	$791 \times 123,408$	749,392

A sparse numerical example with poly. SDP and SOCP constraints

$$
\begin{array}{ll}
\min & \sum_{i=1}^{n} a_{i} x_{i} \\
\text { s.t. } & \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
b_{j} & c_{j} \\
c_{j} & d_{j}
\end{array}\right) x_{j}+\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) x_{j} x_{j+1}+\left(\begin{array}{cc}
-2 & 1 \\
1 & -1
\end{array}\right) x_{j+1} \succeq O,
\end{array}
$$

(polynomial matrix inequality constraints)
$\left(0.3\left(x_{k}^{3}+x_{n}\right)+1\right)-\left\|\left(x_{k}+\beta_{i}, x_{n}\right)\right\| \geq 0(j, k=1, \ldots, n-1)$, (polynomial second-order inequality constraints)

$$
1-x_{p}^{2}-x_{p+1}^{2}-x_{n}^{2} \geq 0(p=1, \ldots, n-2) .
$$

Here $a_{i}, b_{j}, d_{j} \in(-1,0), c_{j}, \beta_{j} \in(0,1)$ are random numbers.

n	cpu sec.	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	SDP size size of A, SeDuMi	\# of nonzeros
600	25.7	$4.0 \mathrm{e}-12$	0.0	$11,974 \times 113,022$	235,612
800	34.8	$3.2 \mathrm{e}-12$	0.0	$15,974 \times 150,822$	314,412
1000	44.5	$1.6 \mathrm{e}-12$	0.0	$19,974 \times 188,622$	393,212

Outline

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. SOS relaxation of unconstrained POPs
4. Conversion of SOS relaxation into an SDP (Semidefinite

Program)
5. Exploiting structured sparsity
6. SOS relaxation of constrained POPs --- very briefly
7. Numerical results
8. Polynomial SDPs
9. Concluding remarks

- Lasserre's (dense) relaxation - Theoretical convergence but expensive in practice.
- Sparse relaxation
$=$ Lasserre's (dense) relaxation + sparsity
- Theoretical convergence and very powerful in practice.
- There remain many issues to be studied further.
- Exploiting sparsity.
- Large-scale SDPs.
- Numerical difficulty in solving SDP relaxations of POPs.
- Polynomial SDPs.

This presentation material is available at
http://www.is.titech.ac.jp/~kojima/talk.html
Thank you!

