Parallel implementation of polyhedral continuation methods for systems of polynomial equations

Masakazu Kojima
Tokyo Institute of Technology, Tokyo 152-8552, Japan

Yang Dai
The University of Illinois at Chicago
Chicago, Illinois 60607-7052, USA
Katsuki Fujisawa
Kyoto University, Kyoto 606-8501, Japan
Sunyoung Kim
Ewha Women's University, Seoul 120-750, Korea,
Akiko Takeda
Toshiba Corporation, Kawasaki, Kanagawa 212-8582, Japan,

Contents

1. A system of polynomial equations
2. Typical benchmark polynomial systems
3. Rough sketch of the polyhedral homotopy method
4. Basic idea of Phases 1 and 2 of the polyhedral homotopy method
5. Phase 1 - Construction of a family of homotopy functions
6. Phase 2 - Tracing homotopy paths
7. Numerical results on parallel implementation of the polyhedral homotopy method
8. A system of polynomial equations $f(x)=0$, where

$$
\begin{aligned}
x & =\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{C}^{n} \\
f(x) & =\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right) \\
f_{j}(x) & =\text { a polynomial in } n \text { complex variables } x_{1}, x_{2}, \ldots, x_{n}
\end{aligned}
$$

1. A system of polynomial equations $f(x)=0$, where

$$
\begin{aligned}
x & =\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{C}^{n} \\
f(x) & =\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right) \\
f_{j}(x) & =\text { a polynomial in } n \text { complex variables } x_{1}, x_{2}, \ldots, x_{n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example } \\
& \qquad \begin{array}{l}
n=3, x=\left(x_{1}, x_{2}, x_{3}\right), f(x)=\left(f_{1}(x), f_{2}(x), f_{3}(x)\right) \\
\\
f_{1}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}-(2.1+i) x_{1} x_{2} x_{3}^{2}+8.5 \\
\\
f_{2}\left(x_{1}, x_{2}, x_{3}\right)=1.5 x_{1}^{2} x_{2}-x_{1}^{2} x_{2}^{2} x_{3}-1.6 \\
\\
f_{3}\left(x_{1}, x_{2}, x_{3}\right)=(3.6+i) x_{1} x_{2}^{3}+4.3 x_{1} x_{2}^{2} x_{3}^{2}
\end{array}
\end{aligned}
$$

Find all isolated solutions in \mathbb{C}^{n}.

1. A system of polynomial equations $f(x)=0$, where

$$
\begin{aligned}
x & =\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{C}^{n}, \\
f(x) & =\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right), \\
f_{j}(x) & =\text { a polynomial in } n \text { complex variables } x_{1}, x_{2}, \ldots, x_{n} .
\end{aligned}
$$

Example

$$
\begin{aligned}
& n=3, x=\left(x_{1}, x_{2}, x_{3}\right), f(x)=\left(f_{1}(x), f_{2}(x), f_{3}(x)\right), \\
& f_{1}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}-(2.1+i) x_{1} x_{2} x_{3}^{2}+8.5 \\
& f_{2}\left(x_{1}, x_{2}, x_{3}\right)=1.5 x_{1}^{2} x_{2}-x_{1}^{2} x_{2}^{2} x_{3}-1.6, \\
& f_{3}\left(x_{1}, x_{2}, x_{3}\right)=(3.6+i) x_{1} x_{2}^{3}+4.3 x_{1} x_{2}^{2} x_{3}^{2}
\end{aligned}
$$

Find all isolated solutions in \mathbb{C}^{n}.

- A Fundamental problem in numerical mathematics.
- Various engineering applications.
- Global optimization.

2. Typical benchmark test problem - 1: Economic-n polynomial:

$$
\begin{aligned}
& \left(x_{1}+x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{n-2} x_{n-1}\right) x_{n}-1=0 \\
& \left(x_{2}+x_{1} x_{3}+\cdots+x_{n-3} x_{n-1}\right) x_{n}-2=0 \\
& \cdots \\
& \left(x_{n-2}+x_{1} x_{n-1}\right) x_{n}-(n-2)=0 \\
& x_{n-1} x_{n}-(n-1)=0 \\
& x_{1}+x_{2}+\cdots+x_{n-1}+1=0 .
\end{aligned}
$$

n	\sharp of isolated solutions
10	256
11	512
12	1,024
13	2,048
	\cdots
20	262,144
	\cdots
n	2^{n-2}

Typical benchmark test problem - 2: Cyclic-n polynomial

$$
\begin{aligned}
f_{1}(x)= & x_{1}+x_{2}+\cdots+x_{n} \\
f_{2}(x)= & x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{n} x_{1} \\
& \cdots \\
f_{n-1}(x)= & x_{1} x_{2} \ldots x_{n-1}+x_{2} x_{3} \ldots x_{n}+\cdots+x_{n} x_{1} \cdots x_{n-1} \\
f_{n}(x)= & x_{1} x_{2} \ldots x_{n-1} x_{n}-1
\end{aligned}
$$

(i) Symmetric structur - invariance under the cyclic permutation.
(ii) \sharp of sol? $\& \uparrow \uparrow$. (iii) \exists singular sol and sol comp with $\operatorname{dim}>0$.
$n \quad \sharp$ of nonsingular isolated solutions $\quad \sharp / n \quad \sharp /(2 n)$

10	34,940	3,494	1,747
11	184,756	16,796	8,398
12	367,488	30,624	15,312
13	$2,696,044$	207,288	103,694

(i) \Rightarrow We can reduce the solutions to be computed to $1 / n$ (or $1 /(2 n)$).

Enormous computational power for solving large scale problems
\Rightarrow Parallel computation
3. Rough sketch of the polyhedral homotopy method

- Based on Bernshtein's theory on bounding the number of solutions of a polynomail system in terms of its mixed volume. [Bernshtein '75]
- Currently the most powerful and practical method for computing all solutions of a system of polynomial equations.

PHCpack [Verschelde '96], [Li '99], [Dai-Kim-Kojima '01], etc.

- Suitable for parallel computation;
all solutions can be computed independently in parallel.

3. Rough sketch of the polyhedral homotopy method

- Based on Bernshtein's theory on bounding the number of solutions of a polynomail system in terms of its mixed volume. [Bernshtein '75]
- Currently the most powerful and practical method for computing all solutions of a system of polynomial equations.

PHCpack [Verschelde '96], [Li '99], [Dai-Kim-Kojima '01], etc.

- Suitable for parallel computation;
all solutions can be computed independently in parallel.

3. Rough sketch of the polyhedral homotopy method - 2

Phase 1. Construct a family of homotopy functions.

- Branch-and-bound methods.
- Large scale linear programs.

Phase 2. Trace homotopy paths by predictor-corrector methods.

- Highly nonlinear homotopy paths that require complicated techniques for step length control.

Phase 3. Verify that all isolated solutions are computed.

- The number of solutions is unknown in general.
- Approximate solutions are computed but exact solutions are never computed.

3. Rough sketch of the polyhedral homotopy method - 2

Phase 1. Construct a family of homotopy functions.

- Branch-and-bound methods.
- Large scale linear programs.

Phase 2.

- Highly nonlinear homotopy paths that require complicated techniques for step length control.

Phase 3. Verify that all isolated solutions are computed.

- The number of solutions is unknown in general.
- Approximate solutions are computed but exact solutions are never computed.

3. Rough sketch of the polyhedral homotopy method - 2

Phase 1. Construct a family of homotopy functions.

- Branch-and-bound methods.
- Large scale linear programs.

Phase 2. Trace homotopy paths by predictor-corrector methods.

- Highly nonlinear homotopy paths that require complicated techniques for step length control.

Phase 3. Verify that all isolated solutions are computed.

- The number of solutions is unknown in general.
- Approximate solutions are computed but exact solutions are never computed.

3. Rough sketch of the polyhedral homotopy method - 2

Phase 1. Construct a family of homotopy functions.

- Branch-and-bound methods.
- Large scale linear programs.

Phase 2. Trace homotopy paths by predictor-corrector methods.

- Highly nonlinear homotopy paths that require complicated techniques for step length control.

Phase 3. Verify that all isolated solutions are computed.

- The number of solutions is unknown in general.
- Approximate solutions are computed but exact solutions are never computed.

4. Basic ideas of Phases 1 and Phase 2.

Phase 1. Construct a homotopy system $h(x, t)=0$ such that
(i) all solutions of the initial sys $h(x, 0)=0$ are known,
(ii) $h(x, 1)=f(x)$ for $\forall x \in \mathbb{C}^{n}$; if $h(x, 1)=0, x$ is a sol of $f(x)=0$,
(iii) each solution x^{*} of $f(x)=0$ is connected to a solution x^{1} of $h(x, 0)=0$ through a solution path of $h(x, t)=0$.

4. Basic ideas of Phases 1 and Phase 2.

Phase 1. Construct a homotopy system $h(x, t)=0$ such that
(i) all solutions of the initial sys $h(x, 0)=0$ are known,
(ii) $h(x, 1)=f(x)$ for $\forall x \in \mathbb{C}^{n}$; if $h(x, 1)=0, x$ is a sol of $f(x)=0$,
(iii) each solution x^{*} of $f(x)=0$ is connected to a solution x^{1} of $h(x, 0)=0$ through a solution path of $h(x, t)=0$.

Phase 2. Starting from each known sol of the initial sys $h(x, 0)=0$, we trace the solution paths of $h(x, t)=0$ till t reaches 1 by a predictorcorrector method to obtain a solution of $f(x)=0$.

- This idea is common for the traditional linear homotopy method and the polyhedral homotopy method.
- This idea is common for the traditional linear homotopy method and the polyhedral homotopy method.
- Some solution paths diverge as $t \rightarrow 1$; tracing such paths are useless.
- The number of useless divergent paths is much less in the polyhedral homotopy method than in the traditional homotopy method.

- This idea is common for the traditional linear homotopy method and the polyhedral homotopy method.
- Some solution paths diverge as $t \rightarrow 1$; tracing such paths are useless.
- The number of useless divergent paths is much less in the polyhedral homotopy method than in the traditional homotopy method.

Multiple homotopy functions are employed in polyhedral homotopy

- methods while a common single homotopy function is employed for all solutions of $f(x)=0$ in the traditional linear homotopy method.

Notation

For $\forall a \in \mathbb{Z}_{+}^{n} \equiv\left\{\left(a_{1}, \ldots, a_{n}\right) \geq 0: a_{j}\right.$ is integer $\}, \forall x \in \mathbb{C}^{n}$, let

$$
x^{a}=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}
$$

Write $\forall f_{j}(x)$ of a poly. system $f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right)$ as

$$
f_{j}(x)=\sum_{a \in \mathcal{A}_{j}} c_{j}(a) x^{a},
$$

where $c_{j}(a) \in \mathbb{C}\left(a \in \mathcal{A}_{j}\right)$ and \mathcal{A}_{j} a finite subset of $\mathbb{Z}_{+}^{n}(j=1, \ldots, n)$. We call \mathcal{A}_{j} the support of $f_{j}(x)$.

Notation

For $\forall a \in \mathbb{Z}_{+}^{n} \equiv\left\{\left(a_{1}, \ldots, a_{n}\right) \geq 0: a_{j}\right.$ is integer $\}, \forall x \in \mathbb{C}^{n}$, let

$$
x^{a}=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}
$$

Write $\forall f_{j}(x)$ of a poly. system $f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right)$ as

$$
f_{j}(x)=\sum_{a \in \mathcal{A}_{j}} c_{j}(a) x^{a},
$$

where $c_{j}(a) \in \mathbb{C}\left(a \in \mathcal{A}_{j}\right)$ and \mathcal{A}_{j} a finite subset of $\mathbb{Z}_{+}^{n}(j=1, \ldots, n)$. We call \mathcal{A}_{j} the support of $f_{j}(x)$.

For example, $n=3$,

$$
\begin{aligned}
f_{3}\left(x_{1}, x_{2}, x_{3}\right) & =(3.6+i) x_{1} x_{2}^{3}+4.3 x_{1} x_{2}^{2} x_{3}^{2} \\
& =c_{3}((1,3,0)) x^{(1,3,0)}+c_{3}((1,2,2)) x^{(1,2,2)} \\
& =\sum_{a \in \mathcal{A}_{3}} c_{3}(a) x^{a}
\end{aligned}
$$

where $\mathcal{A}_{3}=\{(1,3,0),(1,2,2)\}$,

$$
c_{3}((1,3,0))=3.6+i, c_{3}((1,2,2))=4.3
$$

Notation

For $\forall a \in \mathbb{Z}_{+}^{n} \equiv\left\{\left(a_{1}, \ldots, a_{n}\right) \geq 0: a_{j}\right.$ is integer $\}, \forall x \in \mathbb{C}^{n}$, let

$$
x^{a}=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}} .
$$

Write $\forall f_{j}(x)$ of a poly. system $f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right)$ as

$$
f_{j}(x)=\sum_{a \in \mathcal{A}_{j}} c_{j}(a) x^{a},
$$

where $c_{j}(a) \in \mathbb{C}\left(a \in \mathcal{A}_{j}\right)$ and \mathcal{A}_{j} a finite subset of $\mathbb{Z}_{+}^{n}(j=1, \ldots, n)$. We call \mathcal{A}_{j} the support of $f_{j}(x)$.

The main part (construction of a family of polyhedral homotopy functions) of Phase 1 is reduced to the following combinatorial problem.

Choose $\omega_{j}(a) \in \mathbb{R}$ (randomly) $\left(a \in \mathcal{A}_{j}, j=1,2, \ldots, n\right)$.
Find all $(\alpha, \beta) \in \mathbb{R}^{2 n}$ satisfying
(1) $\langle a, \alpha\rangle+\omega_{j}(a)-\beta_{j} \geq 0\left(a \in \mathcal{A}_{j}, j=1, \ldots, n\right)$,
(2) for $\forall j$, exactly 2 of $\left\{\langle a, \alpha\rangle+\omega_{j}(a)-\beta_{j}: a \in \mathcal{A}_{j}\right\}$ are 0 .

Notation
For $\forall a \in \mathbb{Z}_{+}^{n} \equiv\left\{\left(a_{1}, \ldots, a_{n}\right) \geq 0: a_{j}\right.$ is integer $\}, \forall x \in \mathbb{C}^{n}$, let

Write $\forall f_{j}(x)$ of a poly. system $f(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right)$ as $f_{j}(x)=\sum_{a \in \mathcal{A}_{j}} c_{j}(a)_{x} a$
where $c_{j}(a) \in \mathbb{C}\left(a \in \mathcal{A}_{j}\right)$ and \mathcal{A}_{j} a finite subset of $\mathbb{Z}_{+}^{n}(j=1, \ldots, n)$. We call \mathcal{A}_{j} the support of $f_{j}(x)$.

The main part (construction of a family of polyhedral homotopy functions) of Phase 1 is reduced to the following combinatorial problem.

Choose $\omega_{j}(a) \in \mathbb{R}$ (randomly) $\left(a \in \mathcal{A}_{j}, j=1,2, \ldots, n\right)$.
Find all $(\alpha, \beta) \in \mathbb{R}^{2 n}$ satisfying
(1) $\langle a, \alpha\rangle+\omega_{j}(a)-\beta_{j} \geq 0\left(a \in \mathcal{A}_{j}, j=1, \ldots, n\right)$,
(2) for $\forall j$, exactly 2 of $\left\{\langle a, \alpha\rangle+\omega_{j}(a)-\beta_{j}: a \in \mathcal{A}_{j}\right\}$ are 0 .

Illustration of (1) and (2): $n=4$, a variable vector $(\alpha, \beta) \in \mathbb{R}^{8}$

$$
\left\{\begin{array}{l}
\langle a, \alpha\rangle+\omega_{1}(a)-\beta_{1} \geq 0\left(a \in \mathcal{A}_{1}\right), \tag{1}\\
\langle a, \alpha\rangle+\omega_{2}(a)-\beta_{2} \geq 0\left(a \in \mathcal{A}_{2}\right), \\
\langle a, \alpha\rangle+\omega_{3}(a)-\beta_{3} \geq 0\left(a \in \mathcal{A}_{3}\right), \\
\langle a, \alpha\rangle+\omega_{4}(a)-\beta_{4} \geq 0\left(a \in \mathcal{A}_{4}\right) .
\end{array}\right.
$$

(2) requires that exactly two equalities hold in each group $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}, \mathcal{A}_{4}$.

Choose $\omega_{j}(a) \in \mathbb{R}$ (randomly) $\left(a \in \mathcal{A}_{j}, j=1,2, \ldots, n\right)$. Find all $(\alpha, \beta) \in \mathbb{R}^{2 n}$ satisfying
(1) $\langle a, \alpha\rangle+\omega_{j}(a)-\beta_{j} \geq 0\left(a \in \mathcal{A}_{j}, j=1, \ldots, n\right)$,
(2) for $\forall j$, exactly 2 of $\left\{\langle a, \alpha\rangle+\omega_{j}(a)-\beta_{j}: a \in \mathcal{A}_{j}\right\}$ are 0 .

- Parallel computation.
- The simplex method for linear programs.
- Implicit enum. tech. (or b-and-b. methods) used in optimization.

介

This problem forms an important subprob. in Phase 1.

Choose $\omega_{j}(a) \in \mathbb{R}$ (randomly) $\left(a \in \mathcal{A}_{j}, j=1,2, \ldots, n\right)$. Find all $(\alpha, \beta) \in \mathbb{R}^{2 n}$ satisfying
(1) $\langle a, \alpha\rangle+\omega_{j}(a)-\beta_{j} \geq 0\left(a \in \mathcal{A}_{j}, j=1, \ldots, n\right)$,
(2) for $\forall j$, exactly 2 of $\left\{\langle a, \alpha\rangle+\omega_{j}(a)-\beta_{j}: a \in \mathcal{A}_{j}\right\}$ are 0 .

Polyhedral homotopy system
(3) $h_{j}(x, t) \equiv \sum_{a \in \mathcal{A}_{j}} c_{j}(a) x^{a_{t}} t^{\rho_{j}(a)}=0,(x, t) \in \mathbb{C}^{n} \times[0,1](j=1, \ldots, n)$

$$
h(x, 1) \equiv f(x), h(x, 0)=0: \text { a binomial system }
$$

Each solution (α, β) induces a homotopy function.

$$
\rho_{j}(a ; \alpha, \beta, \omega) \equiv\langle a, \alpha\rangle+\omega_{j}(a)-\beta_{j} \geq 0\left(a \in \mathcal{A}_{j}, j=1, \ldots, n\right)
$$

\Uparrow
Choose $\omega_{j}(a) \in \mathbb{R}$ (randomly) $\left(a \in \mathcal{A}_{j}, j=1,2, \ldots, n\right)$. Find all $(\alpha, \beta) \in \mathbb{R}^{2 n}$ satisfying
(1) $\langle a, \alpha\rangle+\omega_{j}(a)-\beta_{j} \geq 0\left(a \in \mathcal{A}_{j}, j=1, \ldots, n\right)$,
(2) for $\forall j$, exactly 2 of $\left\{\langle a, \alpha\rangle+\omega_{j}(a)-\beta_{j}: a \in \mathcal{A}_{j}\right\}$ are 0 .

Polyhedral homotopy system
(3) $h_{j}(x, t) \equiv \sum_{a \in \mathcal{A}_{j}} c_{j}(a) x^{a_{t}} t^{\rho_{j}(a)}=0,(x, t) \in \mathbb{C}^{n} \times[0,1](j=1, \ldots, n)$

$$
h(x, 1) \equiv f(x), h(x, 0)=0: \text { a binomial system } \quad \Downarrow
$$

Phase 2 - Tracing homotopy paths by pred.-correct. method
Each solution (α, β) induces a homotopy function.

$$
\rho_{j}(a ; \alpha, \beta, \omega) \equiv\langle a, \alpha\rangle+\omega_{j}(a)-\beta_{j} \geq 0\left(a \in \mathcal{A}_{j}, j=1, \ldots, n\right)
$$

介
Choose $\omega_{j}(a) \in \mathbb{R}$ (randomly) $\left(a \in \mathcal{A}_{j}, j=1,2, \ldots, n\right)$. Find all $(\alpha, \beta) \in \mathbb{R}^{2 n}$ satisfying
(1) $\langle a, \alpha\rangle+\omega_{j}(a)-\beta_{j} \geq 0\left(a \in \mathcal{A}_{j}, j=1, \ldots, n\right)$,
(2) for $\forall j$, exactly 2 of $\left\{\langle a, \alpha\rangle+\omega_{j}(a)-\beta_{j}: a \in \mathcal{A}_{j}\right\}$ are 0 .

Polyhedral homotopy system

(3) $h_{j}(x, t) \equiv \sum_{a \in \mathcal{A}_{j}} c_{j}(a) x^{a} t^{\rho_{j}(a)}=0,(x, t) \in \mathbb{C}^{n} \times[0,1](j=1, \ldots, n)$

Polyhedral homotopy system

$$
\text { (3) } h_{j}(x, t) \equiv \sum_{a \in \mathcal{A}_{j}} c_{j}(a) x^{a_{t}} t^{\rho_{j}(a)}=0,(x, t) \in \mathbb{C}^{n} \times[0,1](j=1, \ldots, n)
$$

From a known init. sol. $\left(x^{0}, 0\right)$, trace the sol. path $\ni\left(x^{0}, 0\right)$.

Pred. with a step len. $d t>0: D h_{x}\left(x^{0}, 0\right) d x+D h_{t}\left(x^{0}, 0\right) d t=0$
Corr. Newton meth. to $h(x, 0+d t)=0$ from $\tilde{x}^{0}=x^{0}+d x$.

Polyhedral homotopy system
(3) $h_{j}(x, t) \equiv \sum_{a \in \mathcal{A}_{j}} c_{j}(a) x^{a_{t}} t^{\rho_{j}(a)}=0,(x, t) \in \mathbb{C}^{n} \times[0,1](j=1, \ldots, n)$

From a known init. sol. $\left(x^{0}, 0\right)$, trace the sol. path $\ni\left(x^{0}, 0\right)$.

Predictor with $d t>0$ at $\left(x^{k}, t^{k}\right): D h_{x}\left(x^{k}, t^{k}\right) d x+D h_{t}\left(x^{k}, t^{k}\right) d t=0$ Too large step length $d t \Longrightarrow$ Jump into a different solution path.

Step length control is essential!

Polyhedral homotopy system
(3) $h_{j}(x, t) \equiv \sum_{a \in \mathcal{A}_{j}} c_{j}(a) x^{a_{t}} t^{\rho_{j}(a)}=0,(x, t) \in \mathbb{C}^{n} \times[0,1](j=1, \ldots, n)$

From a known init. sol. $\left(x^{0}, 0\right)$, trace the sol. path $\ni\left(x^{0}, 0\right)$.

Predictor with $d t>0$ at $\left(x^{k}, t^{k}\right): D h_{x}\left(x^{k}, t^{k}\right) d x+D h_{t}\left(x^{k}, t^{k}\right) d t=0$ Too large step length $d t \Longrightarrow$ Jump into a different solution path. Too small step length $d t \Longrightarrow$ more pred. iter. and more cpu time.
Step length control is essential!

Polyhedral homotopy system

$$
\text { (3) } h_{j}(x, t) \equiv \sum_{a \in \mathcal{A}_{j}} c_{j}(a) x^{a} t^{\rho_{j}(a)}=0,(x, t) \in \mathbb{C}^{n} \times[0,1](j=1, \ldots, n)
$$

From a known init. sol. $\left(x^{0}, 0\right)$, trace the sol. path $\ni\left(x^{0}, 0\right)$.
Difficulty in Phase 2 - High nonlinearity in $h(x, t)$. Some $\rho_{j}(a)$'s are huge, for example

$$
h_{j}(x, t)=\cdots+c_{j}(a) x^{a_{t} 10}+c_{j}\left(a^{\prime}\right) x^{a^{\prime}} t^{1,000}+c_{j}\left(a^{" \prime}\right) x^{a "} t^{100,000}+\cdots
$$

- Complicated step length control.
- Construct homotopies with less power \Longrightarrow Opt. problem.

Polyhedral homotopy system
(3) $h_{j}(x, t) \equiv \sum_{a \in \mathcal{A}_{j}} c_{j}(a) x^{a_{t}} t^{\rho_{j}(a)}=0,(x, t) \in \mathbb{C}^{n} \times[0,1](j=1, \ldots, n)$

From a known init. sol. $\left(x^{0}, 0\right)$, trace the sol. path $\ni\left(x^{0}, 0\right)$.
Difficulty in Phase 2 - High nonlinearity in $h(x, t)$. Some $\rho_{j}(a)$'s are huge, for example

$$
h_{j}(x, t)=\cdots+c_{j}(a) x^{a_{t^{10}}}+c_{j}\left(a^{\prime}\right) x^{a^{\prime}} t^{1,000}+c_{j}\left(a^{"}\right) x^{a "} t^{100,000}+\cdots
$$

Change of t^{p} as $t \rightarrow 1, p=10,1,000,10,000$

t	t^{10}	$t^{1,000}$	$t^{100,000}$
$1.0-1.0 \mathrm{e}-01$	$1.0-6.51 \mathrm{e}-01$	0.0	0.0
$1.0-1.0 \mathrm{e}-02$	$1.0-9.56 \mathrm{e}-02$	0.0	0.0
$1.0-1.0 \mathrm{e}-03$	$1.0-9.96 \mathrm{e}-03$	$1.0-6.32 \mathrm{e}-01$	0.0
$1.0-1.0 \mathrm{e}-04$	$1.0-1.00 \mathrm{e}-03$	$1.0-9.52 \mathrm{e}-02$	0.0
$1.0-1.0 \mathrm{e}-05$	$1.0-1.00 \mathrm{e}-04$	$1.0-9.95 \mathrm{e}-03$	$1.0-6.32 \mathrm{e}-01$
$1.0-1.0 \mathrm{e}-06$	$1.0-1.00 \mathrm{e}-05$	$1.0-1.00 \mathrm{e}-03$	$1.0-9.52 \mathrm{e}-02$
$1.0-1.0 \mathrm{e}-07$	$1.0-1.00 \mathrm{e}-06$	$1.0-1.00 \mathrm{e}-04$	$1.0-9.95 \mathrm{e}-03$

7. Numerical results on parallel implementation of Phases 1 and 2

- Ninf: Client-Server Computing System by Sekiguchi, et. al.

Find all $(\alpha, \beta) \in \mathbb{R}^{2 n}$ satisfying
(1) $\langle a, \alpha\rangle+\omega_{j}(a)-\beta_{j} \geq 0\left(a \in \mathcal{A}_{j}, j=1, \ldots, n\right)$,
(2) for $\forall j$, exactly 2 of $\left\{\langle a, \alpha\rangle+\omega_{j}(a)-\beta_{j}: a \in \mathcal{A}_{j}\right\}$ are 0 .

Parallel Comp. of all solutions of (1) \& (2) - Eco-n problems Intel Pentium III 824 MHz

	Eco- n Problems, real time in second				
	$n=12$	$n=13$	(speed-up-ratio)	$n=14$ (speed-up-ratio)	
1	1,379	8,399	(1.00)		
2	686	4,200	(2.00)		(1.00)
4	344	2,106	(3.99)		(1.93)
8	181	1,064	(7.89)	12,500	(3.74)
16	97	553	(15.19)	6,471	(7.03)
32	66	287	(29.06)	3,339	
64		177	(47.11)	1,779	
\# solutions				1,227	
of (1) \& (2)	364	719			

Find all $(\alpha, \beta) \in \mathbb{R}^{2 n}$ satisfying
(1) $\langle a, \alpha\rangle+\omega_{j}(a)-\beta_{j} \geq 0\left(a \in \mathcal{A}_{j}, j=1, \ldots, n\right)$,
(2) for $\forall j$, exactly 2 of $\left\{\langle a, \alpha\rangle+\omega_{j}(a)-\beta_{j}: a \in \mathcal{A}_{j}\right\}$ are 0 .

Parallel Comp. of all solutions of (1) \& (2) - Cyc-n problems Intel Pentium III (824 MHz)

	Cyclic- n Problems, real time in second				
	$n=11$	$n=12$	(speed-up-ratio)	$n=13$ (speed-up-ratio)	
1	1,647	14,403	(1.00)		
2	832	7,214	(2.00)		
4	414	3,624	(3.97)		(1.00)
8	214	1,825	(7.89)		(1.99)
16	107	926	(15.55)	11,745	(3.72)
32	67	476	(30.26)	5,888	(6.38)
64		276	(52.18)	3,155	
128		182	(79.14)	1,841	
\# solutions					
of (1) \& (2)	13,101	29,561		144,517	

The entire Phase 1
(a) All solutions of (1) \& (2)
(b) Reduction of the powers of the parameter $t \in[0,1]$
\Rightarrow A large scale Linear Program;
$\#$ variables ≤ 200 and $1,000,000 \geq \#$ inequalities
\Rightarrow Cutting plane methods based on the dual simplex method
(c) All solutions of initial binomial systems
\Rightarrow starting solutions for Phase 2

	Cyclic-12, real time in second				
\# CPUs	(a)	(b)	(c)	(a) $+(\mathrm{b})+(\mathrm{c})$	speed-up-ratio
1	28,033	546	380	28,959	1.00
2	14,125	306	191	14,622	1.98
4	7,342	187	104	7,633	3.79
8	3,793	123	56	3,972	7.29
16	2,166	88	52	2,316	12.50
32	1,390	68	43	1,521	19.04

Celeron 500 MHz

Phase 2 - Tracing solution paths
Celeron 500 MHz
Athlon 1600 MHz

	Cyclic- n, real time in second				
$\#$ CPUs	$n=11$	(sp-up-ratio)	$n=12$ (sp-up-ratio)	$n=13$ (sp-up-ratio)	
2	47,345	(1.00)			
4	23,674	(2.00)			
8	11,852	(3.99)			
16	5,927	(7.99)		(1.00)	
32	2,967	(15.96)		(1.95)	10,151
64	1,487	(31.84)	2,592	(1.00)	
128			1,332	703	(3.69)
256				5,191	(1.95)
\# paths			41,696		
traced	16,796			208,012	

$\operatorname{cyclic} 11, n=11$
$\#$ of paths traced $=16196$; all paths converged
\# of nonsingular solutions $=16196^{*} \mathrm{n}=184756$
$\#$ of isolated singular solutions $=0$
cyclic12, $n=12$
$\#$ of paths traced $=41696$; some paths diverged?
\# of nonsingular solutions $=30624 *$ n $=367488$
\# of isolated singular solutions with multiplicity $5=48^{*} \mathrm{n}=576$
\# of isolated singular solutions with multiplicity $10=4^{*} \mathrm{n}=48$
Some nonisolated solutions - solution components with $\operatorname{dim} \geq 1 ?$
cyclic13, $n=13$
\# of paths traced $=208012$; all paths converged
\# of nonsingular solutions $=207388^{*} \mathrm{n}=2696044$
\# of isolated singular solutions with multiplicity $4=156^{*} \mathbf{n}=2028$

8. Concluding Remarks - 1

(a) While we trace a homotopy path numerically, a jump into another path sometime occurs \Longrightarrow Not 100% reliable. But the reliability is very high; for example, less than 0.1% solutions are missing in our numerical experiments. There are some ways to overcome such flaw.
8. Concluding Remarks - 1
(a) While we trace a homotopy path numerically, a jump into another path sometime occurs \Longrightarrow Not 100% reliable. But the reliability is very high; for example, less than 0.1% solutions are missing in our numerical experiments. There are some ways to overcome such flaw.

Suppose that numerical tracing of two paths led to a common solution \hat{x} as in case 1 below \Rightarrow an illegal jump while tracing one of them. In such cases, follow again those two paths using smaller predictor step lengths.

8. Concluding Remarks - 2

(b) Reducing the powers of the continuation parameter t is crucial to achieve the numerical stability and efficiency in tracing homotopy paths. This problem can be formulated as a nonlinear combinatorial optimization problem.

> The polyhedral homotopy continuation method involves various optimization techniques such as branch-and-bound methods, linear programs, and predictor-corrector methods.

[^0]
8. Concluding Remarks - 2

(b) Reducing the powers of the continuation parameter t is crucial to achieve the numerical stability and efficiency in tracing homotopy paths. This problem can be formulated as a nonlinear combinatorial optimization problem.
(c) The polyhedral homotopy continuation method involves various optimization techniques such as branch-and-bound methods, linear programs, and predictor-corrector methods.

[^1]8. Concluding Remarks - 2
(b) Reducing the powers of the continuation parameter t is crucial to achieve the numerical stability and efficiency in tracing homotopy paths. This problem can be formulated as a nonlinear combinatorial optimization problem.
(c) The polyhedral homotopy continuation method involves various optimization techniques such as branch-and-bound methods, linear programs, and predictor-corrector methods.
(d) An important feature of the homotopy continuation method is that all homotopy paths can be computed independently and simultaneously in parallel.

[^0]: An important feature of the homotopy continuation method is that all homotopy paths can be computed independently and simultaneously in parallel.

[^1]: onay in bearale

