Parallel implementation of polyhedral continuation methods for systems of polynomial equations

> Masakazu Kojima Tokyo Institute of Technology, Tokyo 152-8552, Japan

> > Yang Dai The University of Illinois at Chicago Chicago, Illinois 60607-7052, USA

Katsuki Fujisawa Kyoto University, Kyoto 606-8501, Japan

Sunyoung Kim Ewha Women's University, Seoul 120-750, Korea,

Akiko Takeda Toshiba Corporation, Kawasaki, Kanagawa 212-8582, Japan,

Contents

- 1. A system of polynomial equations
- 2. Typical benchmark polynomial systems
- 3. Rough sketch of the polyhedral homotopy method
- 4. Basic idea of Phases 1 and 2 of the polyhedral homotopy method
- 5. Phase 1 Construction of a family of homotopy functions
- 6. Phase 2 Tracing homotopy paths
- 7. Numerical results on parallel implementation of the polyhedral homotopy method

1. A system of polynomial equations f(x) = 0, where

$$egin{aligned} &x\,=\,(x_1,x_2,\ldots,x_n)\in\mathbb{C}^n,\ &f(x)\,=\,(f_1(x),f_2(x),\ldots,f_n(x)),\ &f_j(x)\,=\, ext{a polynomial in }n ext{ complex variables }x_1,x_2,\ldots,x_n. \end{aligned}$$

1. A system of polynomial equations f(x) = 0, where

$$egin{aligned} &x=(x_1,x_2,\ldots,x_n)\in\mathbb{C}^n,\ &f(x)=(f_1(x),f_2(x),\ldots,f_n(x)),\ &f_j(x)= ext{a polynomial in }n ext{ complex variables }x_1,x_2,\ldots,x_n. \end{aligned}$$

Example

$$egin{aligned} n &= 3, \; x = (x_1, x_2, x_3), \; f(x) = (f_1(x), f_2(x), f_3(x)), \ f_1(x_1, x_2, x_3) &= x_1^2 - (2.1 + i) x_1 x_2 x_3^2 + 8.5, \ f_2(x_1, x_2, x_3) &= 1.5 x_1^2 x_2 - x_1^2 x_2^2 x_3 - 1.6, \ f_3(x_1, x_2, x_3) &= (3.6 + i) x_1 x_2^3 + 4.3 x_1 x_2^2 x_3^2. \end{aligned}$$

Find all isolated solutions in \mathbb{C}^n .

1. A system of polynomial equations f(x) = 0, where

$$egin{aligned} &x\,=\,(x_1,x_2,\ldots,x_n)\in\mathbb{C}^n,\ &f(x)\,=\,(f_1(x),f_2(x),\ldots,f_n(x)),\ &f_j(x)\,=\, ext{a polynomial in }n ext{ complex variables }x_1,x_2,\ldots,x_n. \end{aligned}$$

Example

$$egin{aligned} n &= 3, \; x = (x_1, x_2, x_3), \; f(x) = (f_1(x), f_2(x), f_3(x)), \ f_1(x_1, x_2, x_3) &= x_1^2 - (2.1 + i) x_1 x_2 x_3^2 + 8.5, \ f_2(x_1, x_2, x_3) &= 1.5 x_1^2 x_2 - x_1^2 x_2^2 x_3 - 1.6, \ f_3(x_1, x_2, x_3) &= (3.6 + i) x_1 x_2^3 + 4.3 x_1 x_2^2 x_3^2. \end{aligned}$$

Find all isolated solutions in \mathbb{C}^n .

- A Fundamental problem in numerical mathematics.
- Various engineering applications.
- Global optimization.

2. Typical benchmark test problem — 1: Economic-n polynomial:

$$egin{aligned} &(x_1+x_1x_2+x_2x_3+\dots+x_{n-2}x_{n-1})x_n-1=0\ &(x_2+x_1x_3+\dots+x_{n-3}x_{n-1})x_n-2=0\ &\dots\ &\dots\ &(x_{n-2}+x_1x_{n-1})x_n-(n-2)=0\ &x_{n-1}x_n-(n-1)=0\ &x_1+x_2+\dots+x_{n-1}+1=0. \end{aligned}$$

n	<pre># of isolated solutions</pre>
10	256
11	512
12	1,024
13	2,048
	• • •
20	262,144
	•••
n	2^{n-2}

Typical benchmark test problem — 2: Cyclic-n polynomial

$$egin{aligned} f_1(x) &= x_1 + x_2 + \dots + x_n, \ f_2(x) &= x_1 x_2 + x_2 x_3 + \dots + x_n x_1, \ &\dots \ &\dots \ &\dots \ &f_{n-1}(x) &= x_1 x_2 \dots x_{n-1} + x_2 x_3 \dots x_n + \dots + x_n x_1 \dots x_{n-1}, \ f_n(x) &= x_1 x_2 \dots x_{n-1} x_n - 1. \end{aligned}$$

(i) Symmetric structur — invariance under the cyclic permutation.
(ii) \$\$\$ of sol? & ↑↑. (iii) \$\$\$ singular sol and sol comp with dim > 0.

\boldsymbol{n}	<pre># of nonsingular isolated solutions</pre>	\sharp/n	$\sharp/(2n)$
10	$\boldsymbol{34,940}$	3,494	1,747
11	184,756	16,796	8,398
12	$\boldsymbol{367,488}$	30,624	15,312
13	2,696,044	207,288	103,694

(i) \Rightarrow We can reduce the solutions to be computed to 1/n (or 1/(2n)).

Enormous computational power for solving large scale problems \Rightarrow Parallel computation

3. Rough sketch of the polyhedral homotopy method

• Based on Bernshtein's theory on bounding the number of solutions of a polynomial system in terms of its mixed volume. [Bernshtein '75]

• Currently the most powerful and practical method for computing all solutions of a system of polynomial equations.

PHCpack [Verschelde '96], [Li '99], [Dai-Kim-Kojima '01], etc.

• Suitable for parallel computation; all solutions can be computed independently in parallel. 3. Rough sketch of the polyhedral homotopy method

• Based on Bernshtein's theory on bounding the number of solutions of a polynomial system in terms of its mixed volume. [Bernshtein '75]

• Currently the most powerful and practical method for computing all solutions of a system of polynomial equations.

PHCpack [Verschelde '96], [Li '99], [Dai-Kim-Kojima '01], etc.

• Suitable for parallel computation; all solutions can be computed independently in parallel.

3. Rough sketch of the polyhedral homotopy method — 2

Phase 1. Construct a family of homotopy functions.

- Branch-and-bound methods.
- Large scale linear programs.

Phase 2. Trace homotopy paths by predictor-corrector methods.

• Highly nonlinear homotopy paths that require complicated techniques for step length control.

Phase 3. Verify that all isolated solutions are computed.

- The number of solutions is unknown in general.
- Approximate solutions are computed but exact solutions are never computed.

- 3. Rough sketch of the polyhedral homotopy method 2
- Phase 1. Construct a family of homotopy functions.
 - Branch-and-bound methods.
 - Large scale linear programs.

Phase 2. Trace homotopy paths by predictor-corrector methods.

• Highly nonlinear homotopy paths that require complicated techniques for step length control.

Phase 3. Verify that all isolated solutions are computed.

- The number of solutions is unknown in general.
- Approximate solutions are computed but exact solutions are never computed.

- 3. Rough sketch of the polyhedral homotopy method 2
- Phase 1. Construct a family of homotopy functions.
 - Branch-and-bound methods.
 - Large scale linear programs.
- Phase 2. Trace homotopy paths by predictor-corrector methods.
 - Highly nonlinear homotopy paths that require complicated techniques for step length control.
- **Phase 3.** Verify that all isolated solutions are computed.
 - The number of solutions is unknown in general.
 - Approximate solutions are computed but exact solutions are never computed.

- 3. Rough sketch of the polyhedral homotopy method 2
- Phase 1. Construct a family of homotopy functions.
 - Branch-and-bound methods.
 - Large scale linear programs.

Phase 2. Trace homotopy paths by predictor-corrector methods.

• Highly nonlinear homotopy paths that require complicated techniques for step length control.

Phase 3. Verify that all isolated solutions are computed.

- The number of solutions is unknown in general.
- Approximate solutions are computed but exact solutions are never computed.

4. Basic ideas of Phases 1 and Phase 2.

Phase 1. Construct a homotopy system h(x,t) = 0 such that (i) all solutions of the initial sys h(x,0) = 0 are known, (ii) h(x,1) = f(x) for $\forall x \in \mathbb{C}^n$; if h(x,1) = 0, x is a sol of f(x) = 0, (iii) each solution x^* of f(x) = 0 is connected to a solution x^1 of h(x,0) = 0 through a solution path of h(x,t) = 0.

4. Basic ideas of Phases 1 and Phase 2.

Phase 1. Construct a homotopy system h(x,t) = 0 such that (i) all solutions of the initial sys h(x,0) = 0 are known, (ii) h(x,1) = f(x) for $\forall x \in \mathbb{C}^n$; if h(x,1) = 0, x is a sol of f(x) = 0, (iii) each solution x^* of f(x) = 0 is connected to a solution x^1 of h(x,0) = 0 through a solution path of h(x,t) = 0.

Phase 2. Starting from each known sol of the initial sys h(x, 0) = 0, we trace the solution paths of h(x, t) = 0 till t reaches 1 by a predictor-corrector method to obtain a solution of f(x) = 0.

- This idea is common for the traditional linear homotopy method and the polyhedral homotopy method.
- Some solution paths diverge as $t \rightarrow 1$; tracing such paths are useless.

The number of useless divergent paths is much less in the polyhedral homotopy method than in the traditional homotopy method.

- This idea is common for the traditional linear homotopy method and the polyhedral homotopy method.
- Some solution paths diverge as $t \to 1$; tracing such paths are useless.
- The number of useless divergent paths is much less in the polyhedral homotopy method than in the traditional homotopy method.

Multiple homotopy functions are employed in polyhedral homotopy methods while a common single homotopy function is employed for all solutions of f(x) = 0 in the traditional linear homotopy method.

- This idea is common for the traditional linear homotopy method and the polyhedral homotopy method.
- Some solution paths diverge as $t \to 1$; tracing such paths are useless.
- The number of useless divergent paths is much less in the polyhedral homotopy method than in the traditional homotopy method.

Multiple homotopy functions are employed in polyhedral homotopy methods while a common single homotopy function is employed for all solutions of f(x) = 0 in the traditional linear homotopy method.

$$egin{array}{l} ext{For } orall a \in \mathbb{Z}^n_+ \equiv \{(a_1,\ldots,a_n) \geq 0: a_j ext{ is integer}\}, \, orall x \in \mathbb{C}^n, \, ext{let} \ x^a \, = \, x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}. \end{array}$$

Write $\forall \; f_j(x) \; ext{of a poly. system} \; f(x) = (f_1(x), \ldots, f_n(x)) \; ext{as}$

$$f_j(x) = \sum_{a \in \mathcal{A}_j} c_j(a) x^a,$$

where $c_j(a) \in \mathbb{C}$ $(a \in \mathcal{A}_j)$ and \mathcal{A}_j a finite subset of \mathbb{Z}^n_+ (j = 1, ..., n). We call \mathcal{A}_j the support of $f_j(x)$.

$$egin{aligned} ext{For} \ orall a \in \mathbb{Z}^n_+ \equiv \{(a_1,\ldots,a_n) \geq 0: a_j ext{ is integer}\}, \ orall x \in \mathbb{C}^n, ext{ let} \ x^a \, = \, x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}. \end{aligned}$$

Write $\forall \; f_j(x) \; ext{of a poly. system} \; f(x) = (f_1(x), \dots, f_n(x)) \; ext{as}$

$$f_j(x) = \sum_{oldsymbol{a} \in oldsymbol{\mathcal{A}}_j} c_j(a) x^{oldsymbol{a}},$$

where $c_j(a) \in \mathbb{C}$ $(a \in \mathcal{A}_j)$ and \mathcal{A}_j a finite subset of \mathbb{Z}_+^n (j = 1, ..., n). We call \mathcal{A}_j the support of $f_j(x)$.

For example,
$$n = 3$$
,
 $f_3(x_1, x_2, x_3) = (3.6 + i)x_1x_2^3 + 4.3x_1x_2^2x_3^2$
 $= c_3((1, 3, 0))x^{(1,3,0)} + c_3((1, 2, 2))x^{(1,2,2)}$
 $= \sum_{a \in \mathcal{A}_3} c_3(a)x^a$
where $\mathcal{A}_3 = \{(1, 3, 0), (1, 2, 2)\},$
 $c_3((1, 3, 0)) = 3.6 + i, c_3((1, 2, 2)) = 4.3.$

$$egin{aligned} ext{For} \ orall a \in \mathbb{Z}^n_+ \equiv \{(a_1,\ldots,a_n) \geq 0: a_j ext{ is integer}\}, \ orall x \in \mathbb{C}^n, ext{ let} \ x^{m{a}} = x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}. \end{aligned}$$

Write $\forall \; f_j(x) \; ext{of a poly. system} \; f(x) = (f_1(x), \dots, f_n(x)) \; ext{as}$

$$f_j(x) = \sum_{oldsymbol{a} \in oldsymbol{\mathcal{A}}_j} c_j(a) x^{oldsymbol{a}},$$

where $c_j(a) \in \mathbb{C}$ $(a \in \mathcal{A}_j)$ and \mathcal{A}_j a finite subset of \mathbb{Z}^n_+ (j = 1, ..., n). We call \mathcal{A}_j the support of $f_j(x)$.

The main part (construction of a family of polyhedral homotopy functions) of Phase 1 is reduced to the following combinatorial problem.

Choose
$$\omega_j(a) \in \mathbb{R}$$
 (randomly) $(a \in \mathcal{A}_j, \ j = 1, 2, ..., n)$.
Find all $(\alpha, \beta) \in \mathbb{R}^{2n}$ satisfying
(1) $\langle a, \alpha \rangle + \omega_j(a) - \beta_j \ge 0$ $(a \in \mathcal{A}_j, \ j = 1, ..., n)$,
(2) for $\forall j$, exactly 2 of $\{\langle a, \alpha \rangle + \omega_j(a) - \beta_j : a \in \mathcal{A}_j\}$ are 0.

$$egin{aligned} ext{For} \ orall a \in \mathbb{Z}^n_+ \equiv \{(a_1,\ldots,a_n) \geq 0: a_j ext{ is integer}\}, \ orall x \in \mathbb{C}^n, ext{ let} \ x^{oldsymbol{a}} = x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}. \end{aligned}$$

Write $\forall \ f_j(x)$ of a poly. system $f(x) = (f_1(x), \ldots, f_n(x))$ as

$$f_j(x) = \sum_{a \in \mathcal{A}_j} c_j(a) x^a,$$

where $c_j(a) \in \mathbb{C}$ $(a \in \mathcal{A}_j)$ and \mathcal{A}_j a finite subset of \mathbb{Z}_+^n (j = 1, ..., n). We call \mathcal{A}_j the support of $f_j(x)$.

The main part (construction of a family of polyhedral homotopy functions) of Phase 1 is reduced to the following combinatorial problem.

Choose $\omega_j(a) \in \mathbb{R}$ (randomly) $(a \in \mathcal{A}_j, \ j = 1, 2, ..., n)$. Find all $(\alpha, \beta) \in \mathbb{R}^{2n}$ satisfying (1) $\langle a, \alpha \rangle + \omega_j(a) - \beta_j \ge 0$ $(a \in \mathcal{A}_j, \ j = 1, ..., n)$, (2) for $\forall j$, exactly 2 of $\{\langle a, \alpha \rangle + \omega_j(a) - \beta_j : a \in \mathcal{A}_j\}$ are 0. Illustration of (1) and (2): n = 4, a variable vector $(\alpha, \beta) \in \mathbb{R}^8$

$$(1) \quad \left\{egin{array}{ll} \langle a,lpha
angle+\omega_1(a)-eta_1\geq 0 \ (a\in \mathcal{A}_1),\ \langle a,lpha
angle+\omega_2(a)-eta_2\geq 0 \ (a\in \mathcal{A}_2),\ \langle a,lpha
angle+\omega_3(a)-eta_3\geq 0 \ (a\in \mathcal{A}_3),\ \langle a,lpha
angle+\omega_4(a)-eta_4\geq 0 \ (a\in \mathcal{A}_4). \end{array}
ight.$$

(2) requires that exactly two equalities hold in each group $\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3, \mathcal{A}_4$.

Choose
$$\omega_j(a) \in \mathbb{R}$$
 (randomly) $(a \in \mathcal{A}_j, j = 1, 2, ..., n)$.
Find all $(\alpha, \beta) \in \mathbb{R}^{2n}$ satisfying
(1) $\langle a, \alpha \rangle + \omega_j(a) - \beta_j \ge 0$ $(a \in \mathcal{A}_j, j = 1, ..., n)$,
(2) for $\forall j$, exactly 2 of $\{\langle a, \alpha \rangle + \omega_j(a) - \beta_j : a \in \mathcal{A}_j\}$ are 0.

- Parallel computation.
- The simplex method for linear programs.
- Implicit enum. tech. (or b-and-b. methods) used in optimization.

♠

This problem forms an important subprob. in Phase 1.

$$\label{eq:choose} \begin{split} & \Uparrow \\ & \text{Choose } \omega_j(a) \in \mathbb{R} \text{ (randomly) } (a \in \mathcal{A}_j, \ j = 1, 2, \dots, n). \\ & \text{Find all } (\alpha, \beta) \in \mathbb{R}^{2n} \text{ satisfying} \\ & (1) \ \langle a, \alpha \rangle + \omega_j(a) - \beta_j \geq 0 \ (a \in \mathcal{A}_j, \ j = 1, \dots, n), \\ & (2) \text{ for } \forall j, \text{ exactly } 2 \text{ of } \{ \langle a, \alpha \rangle + \omega_j(a) - \beta_j : a \in \mathcal{A}_j \} \text{ are } 0. \end{split}$$

(3)
$$h_j(x,t) \equiv \sum_{a \in \mathcal{A}_j} c_j(a) x^a t^{\rho_j(a)} = 0, \ (x,t) \in \mathbb{C}^n \times [0,1] \ (j=1,\ldots,n)$$

 $h(x,1) \equiv f(x), \ h(x,0) = 0 : a \text{ binomial system} \qquad \Downarrow$
 $\uparrow \qquad \text{Phase 2 - Tracing homotopy paths by pred.-correct. method}$
 $\uparrow \qquad \text{Each solution } (\alpha,\beta) \text{ induces a homotopy function.}$
 $\rho_j(a; \alpha, \beta, \omega) \equiv \langle a, \alpha \rangle + \omega_j(a) - \beta_j \ge 0 \ (a \in \mathcal{A}_j, \ j = 1, \ldots, n)$

(3)
$$h_j(x,t) \equiv \sum_{a \in \mathcal{A}_j} c_j(a) x^a t^{\rho_j(a)} = 0, \ (x,t) \in \mathbb{C}^n \times [0,1] \ (j=1,\ldots,n)$$

 $h(x,1) \equiv f(x), \ h(x,0) = 0 : a \text{ binomial system} \quad \Downarrow$
 $\uparrow \quad \text{Phase 2 - Tracing homotopy paths by pred.-correct. method}$
 $\uparrow \quad \text{Each solution } (\alpha, \beta) \text{ induces a homotopy function.}$

 $ho_j(a;lpha,eta,\omega)\equiv \langle a,lpha
angle+\omega_j(a)-eta_j\geq 0\,\,(a\in\mathcal{A}_j,\,\,j=1,\ldots,n)$

↑

Choose $\omega_j(a) \in \mathbb{R}$ (randomly) $(a \in \mathcal{A}_j, \ j = 1, 2, ..., n)$. Find all $(\alpha, \beta) \in \mathbb{R}^{2n}$ satisfying (1) $\langle a, \alpha \rangle + \omega_j(a) - \beta_j \ge 0$ $(a \in \mathcal{A}_j, \ j = 1, ..., n)$, (2) for $\forall j$, exactly 2 of $\{\langle a, \alpha \rangle + \omega_j(a) - \beta_j : a \in \mathcal{A}_j\}$ are 0.

$$(3) \; h_j(x,t) \equiv \sum_{a \in \mathcal{A}_j} c_j(a) x^a t^{
ho_j(a)} = 0, \; (x,t) \in \mathbb{C}^n imes [0,1] \; (j=1,\ldots,n)$$

$$(3) \ h_j(x,t) \equiv \sum_{a \in \mathcal{A}_j} c_j(a) x^a t^{\rho_j(a)} = 0, \ (x,t) \in \mathbb{C}^n \times [0,1] \ (j = 1, \dots, n)$$

From a known init. sol. $(x^0, 0)$, trace the sol. path $\ni (x^0, 0)$.

Pred. with a step len. dt > 0: $Dh_x(x^0, 0)dx + Dh_t(x^0, 0)dt = 0$ Corr. Newton meth. to h(x, 0 + dt) = 0 from $\tilde{x}^0 = x^0 + dx$.

$$(3) \ h_j(x,t) \equiv \sum_{a \in \mathcal{A}_j} c_j(a) x^a t^{\rho_j(a)} = 0, \ (x,t) \in \mathbb{C}^n \times [0,1] \ (j=1,\ldots,n)$$

From a known init. sol. $(x^0, 0)$, trace the sol. path $\ni (x^0, 0)$.

Predictor with dt > 0 at (x^k, t^k) : $Dh_x(x^k, t^k)dx + Dh_t(x^k, t^k)dt = 0$ Too large step length $dt \Longrightarrow$ Jump into a different solution path. Too small step length $dt \Longrightarrow$ more pred. iter. and more cpu time. Step length control is essential!

$$(3) \; h_j(x,t) \equiv \sum_{a \in \mathcal{A}_j} c_j(a) x^a t^{
ho_j(a)} = 0, \; (x,t) \in \mathbb{C}^n imes [0,1] \; (j=1,\ldots,n)$$

From a known init. sol. $(x^0, 0)$, trace the sol. path $\ni (x^0, 0)$.

Predictor with dt > 0 at (x^k, t^k) : $Dh_x(x^k, t^k)dx + Dh_t(x^k, t^k)dt = 0$ Too large step length $dt \Longrightarrow$ Jump into a different solution path. Too small step length $dt \Longrightarrow$ more pred. iter. and more cpu time. Step length control is essential!

$$(3) \; h_j(x,t) \equiv \sum_{a \in \mathcal{A}_j} c_j(a) x^a t^{
ho_j(a)} = 0, \; (x,t) \in \mathbb{C}^n imes [0,1] \; (j=1,\ldots,n)$$

From a known init. sol. $(x^0, 0)$, trace the sol. path $\ni (x^0, 0)$.

Difficulty in Phase 2 — High nonlinearity in h(x,t). Some $\rho_j(a)$'s are huge, for example

$$h_j(x,t) = \cdots + c_j(a) x^a t^{10} + c_j(a') x^{a'} t^{1,000} + c_j(a'') x^{a''} t^{100,000} + \cdots$$

- Complicated step length control.
- Construct homotopies with less power \implies Opt. problem.

$$(3) \ h_j(x,t) \equiv \sum_{a \in \mathcal{A}_j} c_j(a) x^a t^{
ho_j(a)} = 0, \ (x,t) \in \mathbb{C}^n imes [0,1] \ (j=1,\ldots,n)$$

From a known init. sol. $(x^0, 0)$, trace the sol. path $\ni (x^0, 0)$.

Difficulty in Phase 2 — High nonlinearity in h(x,t). Some $\rho_j(a)$'s are huge, for example

$$h_j(x,t) = \cdots + c_j(a) x^a t^{10} + c_j(a') x^{a'} t^{1,000} + c_j(a'') x^{a''} t^{100,000} + \cdots$$

Change of t^p as $t \to 1, p = 10, 1,000, 10,000$

t	t^{10}	$t^{1,000}$	$t^{100,000}$
1.0 - 1.0e-01	1.0 - 6.51e-01	0.0	0.0
1.0 - 1.0e-02	1.0 - 9.56e-02	0.0	0.0
1.0 - 1.0e-03	1.0 - 9.96e-03	1.0 - 6.32e-01	0.0
1.0 - 1.0e-04	1.0 - 1.00e-03	1.0 - 9.52e-02	0.0
1.0 - 1.0e-05	1.0 - 1.00e-04	1.0 - 9.95e-03	1.0 - 6.32e-01
1.0 - 1.0e-06	1.0 - 1.00e-05	1.0 - 1.00e-03	1.0 - 9.52e-02
1.0 - 1.0e-07	1.0 - 1.00e-06	1.0 - 1.00e-04	1.0 - 9.95e-03

- 7. Numerical results on parallel implementation of Phases 1 and 2
- Ninf: Client-Server Computing System by Sekiguchi, et. al.

Find all $(\alpha, \beta) \in \mathbb{R}^{2n}$ satisfying (1) $\langle a, \alpha \rangle + \omega_j(a) - \beta_j \geq 0 \ (a \in \mathcal{A}_j, \ j = 1, \dots, n),$ (2) for $\forall j$, exactly 2 of $\{\langle a, \alpha \rangle + \omega_j(a) - \beta_j : a \in \mathcal{A}_j\}$ are 0.

Parallel Comp. of all solutions of (1) & (2) — Eco-n problems Intel Pentium III 824MHz

	Eco- n Problems, real time in second							
# CPUs	n = 12	n = 13	(speed-up-ratio)	n = 14	(speed-up-ratio)			
1	$1,\!379$	8,399	(1.00)					
2	686	$4,\!200$	(2.00)					
4	344	$2,\!106$	(3.99)					
8	181	$1,\!064$	(7.89)	$12,\!500$	(1.00)			
16	97	553	(15.19)	$6,\!471$	(1.93)			
32	66	287	(29.06)	3,339	(3.74)			
64		177	(47.11)	1,779	(7.03)			
# solutions								
of (1) & (2)	364	719		$1,\!227$				

Find all $(\alpha, \beta) \in \mathbb{R}^{2n}$ satisfying (1) $\langle a, \alpha \rangle + \omega_j(a) - \beta_j \geq 0 \ (a \in \mathcal{A}_j, \ j = 1, \dots, n),$ (2) for $\forall j$, exactly 2 of $\{\langle a, \alpha \rangle + \omega_j(a) - \beta_j : a \in \mathcal{A}_j\}$ are 0.

Parallel Comp. of all solutions of (1) & (2) — Cyc-n problems Intel Pentium III (824MHz)

	Cyclic-n Problems, real time in second						
$\# \mathrm{CPUs}$	n = 11	n = 12	(speed-up-ratio)	n = 13	(speed-up-ratio)		
1	$1,\!647$	$14,\!403$	(1.00)				
2	832	$7,\!214$	(2.00)				
4	414	$3,\!624$	(3.97)				
8	214	$1,\!825$	(7.89)				
16	107	926	(15.55)	$11,\!745$	(1.00)		
32	67	476	(30.26)	$5,\!888$	(1.99)		
64		276	(52.18)	$3,\!155$	(3.72)		
128		182	(79.14)	$1,\!841$	(6.38)		
# solutions							
of (1) & (2)	$13,\!101$	$29,\!561$		$144,\!517$			

The entire Phase 1

- (a) All solutions of (1) & (2)
- (b) Reduction of the powers of the parameter $t \in [0, 1]$
 - \Rightarrow A large scale Linear Program;
 - # variables ≤ 200 and $1,000,000 \geq #$ inequalities
 - \Rightarrow Cutting plane methods based on the dual simplex method
- (c) All solutions of initial binomial systems
 - \Rightarrow starting solutions for Phase 2

	Cyclic-12, real time in second						
# CPUs	(a)	(b)	(c)	(a)+(b)+(c)	speed-up-ratio		
1	28,033	546	380	$28,\!959$	1.00		
2	$14,\!125$	306	191	$14,\!622$	1.98		
4	$7,\!342$	187	104	$7,\!633$	3.79		
8	3,793	123	56	$3,\!972$	7.29		
16	$2,\!166$	88	52	$2,\!316$	12.50		
32	1,390	68	43	$1,\!521$	19.04		

Celeron 500MHz

Phase 2 — Tracing solution paths

Celeron 500MHz

Athlon 1600MHz

	Cyclic-n, real time in second							
# CPUs	n = 11	(sp-up-ratio)	n = 12	(sp-up-ratio)	n=13 ((sp-up-ratio)		
2	$47,\!345$	(1.00)						
4	$23,\!674$	(2.00)						
8	$11,\!852$	(3.99)						
16	$5,\!927$	(7.99)						
32	$2,\!967$	(15.96)						
64	$1,\!487$	(31.84)	$2,\!592$	(1.00)				
128			$1,\!332$	(1.95)	$10,\!151$	(1.00)		
256			703	(3.69)	$5,\!191$	(1.95)		
# paths								
traced	$16,\!796$		$41,\!696$		208,012			

```
cyclic11, n = 11
# of paths traced = 16196; all paths converged
# of nonsingular solutions = 16196*n = 184756
# of isolated singular solutions = 0
```

cyclic12, n = 12# of paths traced = 41696; some paths diverged? # of nonsingular solutions = 30624*n = 367488# of isolated singular solutions with multiplicity 5 = 48*n = 576# of isolated singular solutions with multiplicity 10 = 4*n = 48Some nonisolated solutions — solution components with dim ≥ 1 ?

cyclic13, n = 13# of paths traced = 208012; all paths converged # of nonsingular solutions = 207388*n = 2696044 # of isolated singular solutions with multiplicity 4 = 156*n = 2028

- 8. Concluding Remarks -1
- (a) While we trace a homotopy path numerically, a jump into another path sometime occurs \implies Not 100% reliable. But the reliability is very high; for example, less than 0.1% solutions are missing in our numerical experiments. There are some ways to overcome such flaw.

- 8. Concluding Remarks -1
- (a) While we trace a homotopy path numerically, a jump into another path sometime occurs \implies Not 100% reliable. But the reliability is very high; for example, less than 0.1% solutions are missing in our numerical experiments. There are some ways to overcome such flaw.

Suppose that numerical tracing of two paths led to a common solution \hat{x} as in case 1 below \Rightarrow an illegal jump while tracing one of them. In such cases, follow again those two paths using smaller predictor step lengths.

- 8. Concluding Remarks 2
- (b) Reducing the powers of the continuation parameter t is crucial to achieve the numerical stability and efficiency in tracing homotopy paths. This problem can be formulated as a nonlinear combinatorial optimization problem.
- (c) The polyhedral homotopy continuation method involves various optimization techniques such as branch-and-bound methods, linear programs, and predictor-corrector methods.
- (d) An important feature of the homotopy continuation method is that all homotopy paths can be computed independently and simultaneously in parallel.

- 8. Concluding Remarks 2
 - (b) Reducing the powers of the continuation parameter t is crucial to achieve the numerical stability and efficiency in tracing homotopy paths. This problem can be formulated as a nonlinear combinatorial optimization problem.
 - (c) The polyhedral homotopy continuation method involves various optimization techniques such as branch-and-bound methods, linear programs, and predictor-corrector methods.
 - (d) An important feature of the homotopy continuation method is that all homotopy paths can be computed independently and simultaneously in parallel.

- 8. Concluding Remarks 2
- (b) Reducing the powers of the continuation parameter t is crucial to achieve the numerical stability and efficiency in tracing homotopy paths. This problem can be formulated as a nonlinear combinatorial optimization problem.
- (c) The polyhedral homotopy continuation method involves various optimization techniques such as branch-and-bound methods, linear programs, and predictor-corrector methods.
- (d) An important feature of the homotopy continuation method is that all homotopy paths can be computed independently and simultaneously in parallel.