Exploiting Sparsity in SOS and SDP Relaxations of Polynomial Optimization Problems

FoCM2005 Optimization Workshop
Santander, Spain, July 4-6, 2005

M. Kojima	Tokyo Inst. of Tech.	Tokyo
S. Kim	Ewha Women's Univ.	Seoul
M. Muramatsu	Univ. of Electro-Communications	Tokyo
H. Waki	Tokyo Inst. of Tech.	Tokyo

Outline

1. POPs (Polynomial Optimization Problems)
2. Rough sketch of SOS and SDP relaxations of POPs
3. Exploiting structured sparsity --- unconstrained case
4. Exploiting structured sparsity --- constrained case
5. Numerical results
6. Concluding remarks

Outline

1. POPs (Polynomial Optimization Problems)
2. Rough sketch of SOS and SDP relaxations of POPs
3. Exploiting structured sparsity --- unconstrained case
4. Exploiting structured sparsity --- constrained case
5. Numerical results
6. Concluding remarks
\mathbb{R}^{n} : the n-dim Euclidean space.
$x=\left(x_{1}, \ldots, x_{n}\right) \in \mathrm{R}^{n}$: a vector variable.
$f_{p}(x)$: a multivariate polynomial in $x \in \mathbb{R}^{n}(p=0,1, \ldots, m)$.
POP: $\min f_{0}(x)$ sub.to $f_{p}(x) \geq 0(p=1, \ldots, m)$.
Example: $n=3$

$$
\begin{aligned}
\min & f_{0}(x) \equiv x_{1}^{3}-2 x_{1} x_{2}^{2}+x_{1}^{2} x_{2} x_{3}-4 x_{3}^{2} \\
\text { sub.to } & f_{1}(x) \equiv-x_{1}^{2}+5 x_{2} x_{3}+1 \geq 0 \\
& f_{2}(x) \equiv x_{1}^{2}-3 x_{1} x_{2} x_{3}+2 x_{3}+2 \geq 0 \\
& f_{3}(x) \equiv-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}+1 \geq 0 \\
& x_{1}\left(x_{1}-1\right)=0(0-1 \text { integer) } \\
& x_{2} \geq 0, x_{3} \geq 0, x_{2} x_{3}=0 \text { (complementarity). }
\end{aligned}
$$

- Various problems can be described as POPs.
- A unified theoretical model for global optimization in nonlinear and combinatorial optimization problems.

Outline

1. POPs (Polynomial Optimization Problems)
2. Rough sketch of SOS and SDP relaxations of POPs
3. Exploiting structured sparsity --- unconstrained case
4. Exploiting structured sparsity --- constrained case
5. Numerical results
6. Concluding remarks

POP: min $f_{0}(x)$ sub.to $f_{p}(x) \geq 0(p=1, \ldots, m)$.
[1] J.B.Lasserre, "Global optimization with polynomials and the problems of moments", SIAM J. on Optim. (2001).
[2] P.A.Parrilo, "Semidefinite programming relaxations for semialgebraic problems". Math. Prog. (2003).

- $[1] \Longrightarrow$ SDP relaxation - primal approach.
- $[2] \Longrightarrow$ SOS relaxation - dual approach.
- [1] and [2] are dual to each other.
(a) Lower bounds for the optimal value.
(b) Convergence to global optimal solutions in theory.
(c) Large-scale SDPs require enormous computation.
(d) SDP[1] + "Exploiting sstructured sparsity" \Longrightarrow Sparse SDP relaxation

$$
\text { POP: } \min f_{0}(x) \text { sub.to } f_{p}(x) \geq 0(p=1, \ldots, m)
$$

Basic idea (practical point of view)
(a) Linearization (Lifting) \Longrightarrow relaxation.
(b) Strengthen the relaxation by adding valid poly. matrix inequalities (before (a)) \Longrightarrow a poly. SDP equiv. to POP.

Represent a polynomial f as $f(x)=\sum_{\alpha \in \mathcal{G}} c(\alpha) x^{\alpha}$, where $\mathcal{G}=$ a finite subset of $\mathbb{Z}_{+}^{n} \equiv\left\{z \in \mathbb{R}_{+}^{n}: z_{i}\right.$ is an integer $\left.\geq 0\right\}$, $x^{\alpha}=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$ for $\forall x \in \mathbb{R}^{n}$ and $\forall \alpha \in \mathbb{Z}_{+}^{n}$.

Replacing each x^{α} by a single variable $y_{\alpha} \in \mathbb{R}$, we have the linearization of $f(x): F(y)=F\left(\left(y_{\alpha}: \alpha \in \mathcal{G}\right)\right)=\sum_{\alpha \in \mathcal{G}} c(\alpha) y_{\alpha}$.

Example

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =2 x_{1}-3 x_{1}^{2}+4 x_{1} x_{2}^{3} \\
& =2 x^{(1,0)}-3 x^{(2,0)}+4 x^{(1,3)} \\
& \Downarrow(\text { a) Linearization } \\
F\left(y_{(1,0)}, y_{(2,0)}, y_{(1,3)}\right) & =2 y_{(1,0)}-3 y_{(2,0)}+4 y_{(1,3)} .
\end{aligned}
$$

$$
\text { POP: } \min f_{0}(x) \text { sub.to } f_{p}(x) \geq 0(p=1, \ldots, m)
$$

Basic idea (practical point of view)
(a) Linearization (Lifting) \Longrightarrow relaxation.
(b) Strengthen the relaxation by adding valid poly. matrix inequalities (before (a)) \Longrightarrow a poly. SDP equiv. to POP.

For \forall finite $\mathcal{G} \subset \mathbb{Z}_{+}^{n} \equiv\left\{z \in \mathbb{R}_{+}^{n}: z_{i}\right.$ is an integer $\left.\geq 0\right\}$, let $u(x ; \mathcal{G})$ denote a column vector consisting of $x^{\alpha}(\alpha \in \overline{\mathcal{G}})$. Then
(i) rank 1 sym.matrix $u(x ; \mathcal{G}) u(x ; \mathcal{G})^{T} \succeq O$ for $\forall x \in \mathrm{R}^{n}$.
(ii) $f_{p}(x) u(x ; \mathcal{G}) u(x ; \mathcal{G})^{T} \succeq O$ if $f_{p}(x) \geq 0$.

Example of (ii). $n=2 . \quad \mathcal{G}=\{(0,0),(1,0)\}$.

$$
\left(1-x_{1} x_{2}\right)\binom{1}{x_{1}}\binom{1}{x_{1}}^{T} \succeq O \Leftrightarrow\left(\begin{array}{cc}
1-x_{1} x_{2} & x_{1}-x_{1}^{2} x_{2} \\
x_{1}-x_{1}^{2} x_{2} & x_{1}^{2}-x_{1}^{3} x_{2}
\end{array}\right) \succeq O
$$

$$
\begin{aligned}
& \Downarrow \text { (a) Linearization } \\
& 1-y_{(1,1)} \geq 0
\end{aligned} \cdot\left(\begin{array}{cc}
1-y_{(1,1)} & y_{(1,0)}-\boldsymbol{y}_{(2,1)} \\
\boldsymbol{y}_{(1,0)}-\boldsymbol{y}_{(2,1)} & \boldsymbol{y}_{(2,0)}-\boldsymbol{y}_{(3,1)}
\end{array}\right) \succeq O
$$

LMI is stronger!

$$
\text { POP: } \min f_{0}(x) \text { sub.to } f_{p}(x) \geq 0(p=1, \ldots, m)
$$

Basic idea (practical point of view)
(a) Linearization (Lifting) \Longrightarrow relaxation.
(b) Strengthen the relaxation by adding valid poly. matrix inequalities (before (a)) \Longrightarrow a poly. SDP equiv. to POP.

For \forall finite $\mathcal{G} \subset \mathbb{Z}_{+}^{n} \equiv\left\{z \in \mathbb{R}_{+}^{n}: z_{i}\right.$ is an integer $\left.\geq 0\right\}$, let $u(x ; \mathcal{G})$ denote a column vector consisting of $x^{\alpha}(\alpha \in \mathcal{G})$. Then
(i) rank 1 sym.matrix $u(x ; \mathcal{G}) u(x ; \mathcal{G})^{T} \succeq O$ for $\forall x \in \mathrm{R}^{n}$.
(ii) $f_{p}(x) u(x ; \mathcal{G}) u(x ; \mathcal{G})^{T} \succeq O$ if $f_{p}(x) \geq 0$.

Let $\mathcal{G}_{p}(p=1, \ldots, q>m)$ be finite subset of $\mathbb{Z}_{+}^{n} ; 0 \in \mathcal{G}_{p}$.

$$
\begin{array}{|ll}
\hline \text { Polynomial } \operatorname{SDP}\left(\mathcal{G}_{p}\right) \\
\min & f_{0}(x) \\
\text { sub.to } & f_{p}(x) u\left(x, \mathcal{G}_{p}\right) u\left(x, \mathcal{G}_{p}\right)^{T} \succeq O(p=1, \ldots, m) \Leftarrow \text { (ii) } \\
& u\left(x, \mathcal{G}_{p}\right) u\left(x, \mathcal{G}_{p}\right)^{T} \succeq O(p=m+1, \ldots, q) \\
(\text { i }) \\
\hline
\end{array}
$$

$$
\text { Apply }(\mathrm{a}) \Rightarrow \text { Linear } \operatorname{SDP}\left(\mathcal{G}_{p}\right)=\text { SDP relaxation of POP }
$$

- $\left\{\mathcal{G}_{p}^{k}\right\}$; opt.val. of L. $\operatorname{SDP}\left(\mathcal{G}_{p}^{k}\right) \rightarrow$ opt.val. of POP (Lasserre01).
- Expensive \Rightarrow Exploit sparsity of $f_{p}(x)(p=0, \ldots, m)$.

Outline

1. POPs (Polynomial Optimization Problems)
2. Rough sketch of SOS and SDP relaxations of POPs
3. Exploiting structured sparsity --- unconstrained case
4. Exploiting structured sparsity --- constrained case
5. Numerical results
6. Concluding remarks
$\mathcal{P}: \min _{x \in \mathbf{R}^{n}} f(x)$, where f is a polynomial with $\operatorname{deg} f=2 r$
H : the sparsity pattern of the Hessian matrix of $f(x)$

$$
H_{i j}=\left\{\begin{array}{l}
\star \text { if } i=j \text { or } \partial^{2} f(x) / \partial x_{i} \partial x_{j} \not \equiv 0 \\
0 \text { otherwise. }
\end{array}\right.
$$

$f(x)$: correlatively sparse $\Leftrightarrow \exists$ sparse Cholesky fact. of H.
(a) Sparse C.fact. is characterized as a sparse chordal graph $G\left(N, E^{\prime}\right) ; N=\{1, \ldots, n\}, E^{\prime} \supset E=\left\{(i, j): H_{i j}=\star\right\}$.
(b) Let $C_{1}, C_{2}, \ldots, C_{\ell} \subset N$ be the max. cliques of a chordal extension $G\left(N, E^{\prime}\right)$ of $G(N, E)$, where $E^{\prime}=E \&$ "fill in".

$$
\begin{aligned}
& \text { Sparse relaxation }=\text { Linearization of } \\
& \quad \min f(x) \text { s.t. } u\left(x, \mathcal{G}_{p}\right) u\left(x, \mathcal{G}_{p}\right)^{T} \succeq O(p=1,2, \ldots, \ell), \\
& \text { where } \mathcal{G}_{p} \subset\left\{z \in \mathbb{Z}_{+}^{n}: z_{i}=0\left(i \notin C_{p}\right)\right\}(p=1,2, \ldots, \ell) .
\end{aligned}
$$

Dense relaxation (Lasserre) $=$ Linearization of $\min f(x)$ s.t. $u(x, \mathcal{G}) u(x, \mathcal{G})^{T} \succeq O, \quad$ where $\mathcal{G} \subset \mathbb{Z}_{+}^{n}$.
$\mathcal{P}: \min _{x \in \mathbf{R}^{n}} f(x)$, where f is a polynomial with $\operatorname{deg} f=2 r$
H : the sparsity pattern of the Hessian matrix of $f(x)$

$$
H_{i j}=\left\{\begin{array}{l}
\star \text { if } i=j \text { or } \partial^{2} f(x) / \partial x_{i} \partial x_{j} \not \equiv 0 \\
0 \text { otherwise. }
\end{array}\right.
$$

$f(x)$: correlatively sparse $\Leftrightarrow \exists$ sparse Cholesky fact. of H.
G. Rosenbrock func: $f(x)=\sum_{i=1}^{n-1} 100\left(x_{i+1}-x_{i}^{2}\right)^{2}+\left(1-x_{i+1}\right)^{2}$.

Dense relaxation (Lasserre) $=$ Linearization of

$$
\min f(x) \text { s.t. } u(x, \mathcal{G}) u(x, \mathcal{G})^{T} \succeq O
$$

where $u(x, \mathcal{G})=\left(1, x_{1}, \ldots, x_{n}, x_{1}^{2}, x_{1} x_{2}, \ldots, x_{2}^{2}, x_{2} x_{3}, \ldots, x_{n}^{2}\right)^{T}$ considting of all monomials in x_{1}, \ldots, x_{n} with degree ≤ 2.

- The size of $u(x, \mathcal{G}) u(x, \mathcal{G})^{T}=\binom{n+2}{2} ; \geq 20,000$ if $n=200$.
- Difficult to use Dense relaxation for larger POPs in practice.
$\mathcal{P}: \min _{x \in \mathbf{R}^{n}} f(x)$, where f is a polynomial with $\operatorname{deg} f=2 r$
H : the sparsity pattern of the Hessian matrix of $f(x)$

$$
H_{i j}=\left\{\begin{array}{l}
\star \text { if } i=j \text { or } \partial^{2} f(x) / \partial x_{i} \partial x_{j} \not \equiv 0 \\
0 \text { otherwise. }
\end{array}\right.
$$

$f(x)$: correlatively sparse $\Leftrightarrow \exists$ sparse Cholesky fact. of H.
G. Rosenbrock func: $f(x)=\sum_{i=1}^{n-1} 100\left(x_{i+1}-x_{i}^{2}\right)^{2}+\left(1-x_{i+1}\right)^{2}$.

- The Hessian matrix is sparse (tridiagonal).

Sparse relaxation $=$ Linearization of
$\min f(x)$ s.t. $\left(\begin{array}{c}1 \\ x_{i} \\ x_{i+1} \\ x_{i}^{2} \\ x_{i} x_{i+1} \\ x_{i+1}^{2}\end{array}\right)\left(\begin{array}{c}1 \\ x_{i} \\ x_{i+1} \\ x_{i}^{2} \\ x_{i} x_{i+1} \\ x_{i+1}^{2}\end{array}\right)^{T} \succeq O(i=1,2, \ldots, n-1)$,

- Much smaller than Dense relaxation; the size is linear in n.

Outline

1. POPs (Polynomial Optimization Problems)
2. Rough sketch of SOS and SDP relaxations of POPs
3. Exploiting structured sparsity --- unconstrained case
4. Exploiting structured sparsity --- constrained case
5. Numerical results
6. Concluding remarks

- This part is complicated, so we present only a basic idea in 3 steps 1), 2) and 3).

POP: $\min f_{0}(x)$ sub.to $f_{p}(x) \geq 0(p=1, \ldots, m)$.
Let $\mathcal{G}_{p}(p=1,2, \ldots, q>m)$ be finite subset of $\mathbb{Z}_{+}^{n} ; 0 \in \mathcal{G}_{p}$.
Relaxation $=$ Linearization of Polynomial $\operatorname{SDP}\left(\mathcal{G}_{p}\right)$

$$
\begin{array}{ll}
\min & f_{0}(x) \\
\text { sub.to } & f_{p}(x) u\left(x, \mathcal{G}_{p}\right) u\left(x, \mathcal{G}_{p}\right)^{T} \succeq O(p=1, \ldots, m) \\
& u\left(x, \mathcal{G}_{p}\right) u\left(x, \mathcal{G}_{p}\right)^{T} \succeq O(p=m+1, \ldots, q) \tag{b}\\
\hline
\end{array}
$$

1) In (a), take $u\left(x, \mathcal{G}_{p}\right)$ so that it shares all x_{i} 's with $f_{p}(x)$.

For example,

$$
\begin{gathered}
-x_{1}^{2}+2 x_{5}^{3}-2 \geq 0 \Rightarrow\left(-x_{1}^{2}+2 x_{5}^{3}-2\right)\left(\begin{array}{c}
1 \\
x_{1} \\
x_{5}
\end{array}\right)\left(\begin{array}{c}
1 \\
x_{1} \\
x_{5}
\end{array}\right)^{T} \succeq O \\
x_{3}^{2}+3 x_{3}-2 \geq 0 \Rightarrow\left(x_{3}^{2}+3 x_{3}-2\right)\left(\begin{array}{c}
1 \\
x_{3} \\
x_{3}^{2}
\end{array}\right)\left(\begin{array}{c}
1 \\
x_{3} \\
x_{3}^{2}
\end{array}\right)^{T} \succeq O
\end{gathered}
$$

POP: $\min f_{0}(x)$ sub.to $f_{p}(x) \geq 0(p=1, \ldots, m)$.
Let $\mathcal{G}_{p}(p=1,2, \ldots, q>m)$ be finite subset of $\mathbb{Z}_{+}^{n} ; 0 \in \mathcal{G}_{p}$.

Relaxation $=$ Linearization of Polynomial $\operatorname{SDP}\left(\mathcal{G}_{p}\right)$		
min	$f_{0}(x)$	
sub.to	$f_{p}(x) u\left(x, \mathcal{G}_{p}\right) u\left(x, \mathcal{G}_{p}\right)^{T} \succeq O(p=1, \ldots, m)-$ (a)	
	$u\left(x, \mathcal{G}_{p}\right) u\left(x, \mathcal{G}_{p}\right)^{T} \succeq O(p=m+1, \ldots, q)$	- (b)

1) In (a), take $u\left(x, \mathcal{G}_{n}\right)$ so that it shares all x_{i} 's with $f_{n}(x)$.
2) Let H be the correlative sparsity pattern of $f_{0}(x)$ and (a);

$$
H_{i j}=\left\{\begin{array}{l}
\star \text { if } i=j \text { or } \partial^{2} f_{0}(x) / \partial x_{i} \partial x_{j} \neq 0 \\
\star \text { if } x_{i} \text { and } x_{j} \text { involved in } f_{p}(x) \text { for some } p \\
0 \text { otherwise. }
\end{array}\right.
$$

In (b), choose $u\left(x, \mathcal{G}_{p}\right)$ taking account of the correlative sparsity pattern H as in the unconstrained case.
3) Expand \mathcal{G}_{p} in (a) as long as the sparsity is maintained.

- Balance degrees of poly. mat. inequalities in (a) and (b).
- Let r denote the max degree of monomials in $u\left(x, \mathcal{G}_{p}\right)$ s.
- As $r \uparrow$, a better approx. sol. but the size \uparrow.

Outline

1. POPs (Polynomial Optimization Problems)
2. Rough sketch of SOS and SDP relaxations of POPs
3. Exploiting structured sparsity --- unconstrained case
4. Exploiting structured sparsity --- constrained case
5. Numerical results
6. Concluding remarks

- Balance degrees of poly. mat. inequalities in (a) and (b).
- Let r denote the max degree of monomials in $u\left(x, \mathcal{G}_{p}\right) \mathrm{s}$.
- As $r \uparrow$, a better approx. sol. but the size \uparrow.
$r=$ relaxation order

Software

- MATLAB for constructing sparse and dense SDP relaxation problems
- SeDuMi to solve SDPs.

Hardware

- 2.4GHz Xeon cpu with 6.0 GB memory.
G.Rosenbrock function:

$$
f(x)=\sum_{i=2}^{n}\left(100\left(x_{i}-x_{i-1}^{2}\right)^{2}+\left(1-x_{i}\right)^{2}\right)
$$

- Two minimizers on $\mathbb{R}^{n}: x_{1}= \pm 1, x_{i}=1(i \geq 2)$.
- Sparse can not handle multiple minimizers effectively.
- Perturb the function or add $x_{1} \geq 0 \Rightarrow$ unique minimizer.

cpu in sec.				cpu in sec.	
Sparse	ϵ_{obj}	n	ϵ_{Obj}	Sparse	Dense
0.2	$5.1 \mathrm{e}-04$	10	$2.5 \mathrm{e}-08$	0.2	10.6
0.3	$1.8 \mathrm{e}-03$	15	$6.5 \mathrm{e}-08$	0.2	756.6
2.2	$3.1 \mathrm{e}-03$	200	$5.2 \mathrm{e}-07$	2.2	-
4.6	$5.9 \mathrm{e}-03$	400	$2.5 \mathrm{e}-06$	3.7	-
8.6	$8.3 \mathrm{e}-03$	800	$5.5 \mathrm{e}-06$	6.8	-

$\epsilon_{\mathrm{obj}}=\frac{\mid \text { the lower bound for opt. value }- \text { the approx. opt. value } \mid}{\max \{1, \mid \text { the lower bound for opt. value } \mid\}}$.

An optimal control problem from Coleman et al. 1995

$$
\left.\begin{array}{ll}
\min & \frac{1}{M} \sum_{i=1}^{M-1}\left(y_{i}^{2}+x_{i}^{2}\right) \\
\text { s.t. } & y_{i+1}=y_{i}+\frac{1}{M}\left(y_{i}^{2}-x_{i}\right), \quad(i=1, \ldots, M-1), \quad y_{1}=1 .
\end{array}\right\}
$$

Numerical results on sparse relaxation ($r=2$)

M	\# of variables	ϵ_{obj}	$\epsilon_{\text {feas }}$	cpu
600	1198	$3.4 \mathrm{e}-08$	$2.2 \mathrm{e}-10$	3.4
700	1398	$2.5 \mathrm{e}-08$	$8.1 \mathrm{e}-10$	3.3
800	1598	$5.9 \mathrm{e}-08$	$1.6 \mathrm{e}-10$	3.8
900	1798	$1.4 \mathrm{e}-07$	$6.8 \mathrm{e}-10$	4.5
1000	1998	$6.3 \mathrm{e}-08$	$2.7 \mathrm{e}-10$	5.0

$\epsilon_{\mathrm{obj}}=\frac{\mid \text { the lower bound for opt. value }- \text { the approx. opt. value } \mid}{\max \{1, \mid \text { the lower bound for opt. value } \mid\}}$,
$\epsilon_{\text {feas }}=$ the maximum error in the equality constraints, cpu : cpu time in sec. to solve an SDP relaxation problem.
alkyl.gms : a benchmark problem from globallib

$$
\begin{array}{ll}
\min & -6.3 x_{5} x_{8}+5.04 x_{2}+0.35 x_{3}+x_{4}+3.36 x_{6} \\
\text { sub.to } & -0.820 x_{2}+x_{5}-0.820 x_{6}=0, \\
& 0.98 x_{4}-x_{7}\left(0.01 x_{5} x_{10}+x_{4}\right)=0, \\
& -x_{2} x_{9}+10 x_{3}+x_{6}=0, \\
& x_{5} x_{12}-x_{2}\left(1.12+0.132 x_{9}-0.0067 x_{9}^{2}\right)=0, \\
& x_{8} x_{13}-0.01 x_{9}\left(1.098-0.038 x_{9}\right)-0.325 x_{7}=0.574, \\
& x_{10} x_{14}+22.2 x_{11}=35.82, \\
& x_{1} x_{11}-3 x_{8}=-1.33, \\
& \operatorname{lbd}_{i} \leq x_{i} \leq \operatorname{ubd}_{i}(i=1,2, \ldots, 14) .
\end{array}
$$

			Sparse			Dense (Lasserre)		
problem	n	r	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	cpu	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	
cpu								
alkyl	14	2	$4.1 \mathrm{e}-03$	$2.7 \mathrm{e}-01$	0.9	$6.3 \mathrm{e}-06$	$1.8 \mathrm{e}-02$	
alkyl	14	3	$5.6 \mathrm{e}-10$	$2.0 \mathrm{e}-08$	6.9	-	-	

$r=$ relaxation order,
$\epsilon_{\text {obj }}=\frac{\mid \text { the lower bound for opt. value - the approx. opt. value } \mid}{\max \{1, \mid \text { the lower bound for opt. value } \mid\}}$,
$\epsilon_{\text {feas }}=$ the maximum error in the equality constraints,
cpu : cpu time in sec. to solve an SDP relaxation problem.

Some other benchmark problems from globallib

			Sparse			Dense (Lasserre)		
problem	n	r	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	cpu	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	cpu
ex3_1_1	8	3	$6.3 \mathrm{e}-09$	$4.7 \mathrm{e}-04$	5.5	$0.7 \mathrm{e}-08$	$2.5 \mathrm{e}-03$	597.8
st_bpaf1b	10	2	$3.8 \mathrm{e}-08$	$2.8 \mathrm{e}-08$	1.0	$4.6 \mathrm{e}-09$	$7.2 \mathrm{e}-10$	1.7
st_e07	10	2	$0.0 \mathrm{e}+00$	$8.1 \mathrm{e}-05$	0.4	$0.0 \mathrm{e}+00$	$8.8 \mathrm{e}-06$	3.0
ex2_1_3	13	2	$5.1 \mathrm{e}-09$	$3.5 \mathrm{e}-09$	0.5	$1.6 \mathrm{e}-09$	$1.5 \mathrm{e}-09$	7.7
ex9_1_1	13	2	0.0	$4.5 \mathrm{e}-06$	1.5	0.0	$9.2 \mathrm{e}-07$	7.7
ex9_2_3	16	2	$0.0 \mathrm{e}+00$	$5.7 \mathrm{e}-06$	2.3	$0.0 \mathrm{e}+00$	$7.5 \mathrm{e}-06$	49.7
ex2_1_8	24	2	$1.0 \mathrm{e}-05$	$0.0 \mathrm{e}+00$	304.6	$3.4 \mathrm{e}-06$	$0.0 \mathrm{e}+00$	1946.6
ex5_2_2_c1	9	2	$1.0 \mathrm{e}-2$	$3.2 \mathrm{e}+01$	1.8	$1.6 \mathrm{e}-05$	$2.1 \mathrm{e}-01$	2.6
ex5_2_2_c1	9	3	$6.4 \mathrm{e}-04$	$2.3 \mathrm{e}-01$	295.9	-	-	-
ex5_2_2_c2	9	2	$1.0 \mathrm{e}-02$	$7.2 \mathrm{e}+01$	2.1	$1.3 \mathrm{e}-04$	$2.7 \mathrm{e}-01$	3.5
ex5_2_2_c2	9	3	$5.8 \mathrm{e}-04$	$8.9 \mathrm{e}-01$	332.9	-	-	-

$$
\begin{aligned}
& r=\text { relaxation order, } \\
& \epsilon_{\mathrm{obj}}=\frac{\mid \text { the lower bound for opt. value }- \text { the approx. opt. value } \mid}{\max \{1, \mid \text { the lower bound for opt. value } \mid\}} \\
& \epsilon_{\text {feas }}=\text { the maximum error in the equality constraints, } \\
& \text { cpu : cpu time in sec. to solve an SDP relaxation problem. }
\end{aligned}
$$

Some other benchmark problems from globallib

			Sparse			Dense (Lasserre)		
problem	n	r	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	cpu	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	cpu
ex3_1_1	8	3	$6.3 \mathrm{e}-09$	$4.7 \mathrm{e}-04$	5.5	$0.7 \mathrm{e}-08$	$2.5 \mathrm{e}-03$	597.8
st_bpaf1b	10	2	$3.8 \mathrm{e}-08$	$2.8 \mathrm{e}-08$	1.0	$4.6 \mathrm{e}-09$	$7.2 \mathrm{e}-10$	1.7
st_e07	10	2	$0.0 \mathrm{e}+00$	$8.1 \mathrm{e}-05$	0.4	$0.0 \mathrm{e}+00$	$8.8 \mathrm{e}-06$	3.0
ex2_1_3	13	2	$5.1 \mathrm{e}-09$	$3.5 \mathrm{e}-09$	0.5	$1.6 \mathrm{e}-09$	$1.5 \mathrm{e}-09$	7.7
ex9_1_1	13	2	0.0	$4.5 \mathrm{e}-06$	1.5	0.0	$9.2 \mathrm{e}-07$	7.7
ex9_2_3	16	2	$0.0 \mathrm{e}+00$	$5.7 \mathrm{e}-06$	2.3	$0.0 \mathrm{e}+00$	$7.5 \mathrm{e}-06$	49.7
ex2_1_8	24	2	$1.0 \mathrm{e}-05$	$0.0 \mathrm{e}+00$	304.6	$3.4 \mathrm{e}-06$	$0.0 \mathrm{e}+00$	1946.6
ex5_2_2_c1	9	2	$1.0 \mathrm{e}-2$	$3.2 \mathrm{e}+01$	1.8	$1.6 \mathrm{e}-05$	$2.1 \mathrm{e}-01$	2.6
ex5_2_2_c1	9	3	$6.4 \mathrm{e}-04$	$2.3 \mathrm{e}-01$	295.9	-	-	-
ex5_2_2_c2	9	2	$1.0 \mathrm{e}-02$	$7.2 \mathrm{e}+01$	2.1	$1.3 \mathrm{e}-04$	$2.7 \mathrm{e}-01$	3.5
ex5_2_2_c2	9	3	$5.8 \mathrm{e}-04$	$8.9 \mathrm{e}-01$	332.9	-	-	-

- ex5_2_2_c1 and ex5_2_2_c2 $(r=2)$ - Dense is better.
- Sparse attains approx. opt. solutions with the same quality as Dense except ex5_2_2_c1 and ex5_2_2_c2.
- Sparse is much faster than Dense in large dim. and higher relaxation order cases.

Outline

1. POPs (Polynomial Optimization Problems)
2. Rough sketch of SOS and SDP relaxations of POPs
3. Exploiting structured sparsity --- unconstrained case
4. Exploiting structured sparsity --- constrained case
5. Numerical results
6. Concluding remarks

- Lasserre's (dense) relaxation
- theoretical convergence but expensive in practice.
- The proposed sparse relaxation
$=$ Lasserre's (dense) relaxation + sparsity
- no theoretical convergence but very powerful in practice.
- There remain many issues to be studied further.
- Exploiting sparsity.
- Large-scale SDPs.
- Numerical difficulty in solving SDP relaxations of POPs.

This presentation material is available at
http://www.is.titech.ac.jp/~kojima/talk.html

Thank you!

