Exploiting Sparsity in SOS and SDP Relaxations of Polynomial Optimization Problems

FoCM2005 Optimization Workshop Santander, Spain, July 4 - 6, 2005

M. Kojima	Tokyo Inst. of Tech.	Tokyo
S. Kim	Ewha Women's Univ.	\mathbf{Seoul}
M. Muramatsu	Univ. of Electro-Communications	Tokyo
H. Waki	Tokyo Inst. of Tech.	Tokyo

- 1. POPs (Polynomial Optimization Problems)
- 2. Rough sketch of SOS and SDP relaxations of POPs
- 3. Exploiting structured sparsity --- unconstrained case
- 4. Exploiting structured sparsity --- constrained case
- 5. Numerical results
- 6. Concluding remarks

- 1. POPs (Polynomial Optimization Problems)
- 2. Rough sketch of SOS and SDP relaxations of POPs
- 3. Exploiting structured sparsity --- unconstrained case
- 4. Exploiting structured sparsity --- constrained case
- 5. Numerical results
- 6. Concluding remarks

 \mathbb{R}^n : the *n*-dim Euclidean space.

$$x = (x_1, \dots, x_n) \in \mathbb{R}^n$$
: a vector variable.

 $f_p(x)$: a multivariate polynomial in $x \in \mathbb{R}^n$ (p = 0, 1, ..., m).

POP: min
$$f_0(x)$$
 sub.to $f_p(x) \ge 0 \ (p = 1, \dots, m)$.

Example: n = 3

$$\begin{array}{ll} \min & f_0(x) \equiv x_1^3 - 2x_1x_2^2 + x_1^2x_2x_3 - 4x_3^2 \\ \mathrm{sub.to} & f_1(x) \equiv -x_1^2 + 5x_2x_3 + 1 \geq 0, \\ f_2(x) \equiv x_1^2 - 3x_1x_2x_3 + 2x_3 + 2 \geq 0, \\ f_3(x) \equiv -x_1^2 - x_2^2 - x_3^2 + 1 \geq 0. \\ x_1(x_1 - 1) = 0 \; (0\text{-}1 \; \mathrm{integer}), \\ x_2 \geq 0, \; x_3 \geq 0, \; x_2x_3 = 0 \; (\mathrm{complementarity}). \end{array}$$

- Various problems can be described as POPs.
- A unified theoretical model for global optimization in nonlinear and combinatorial optimization problems.

- 1. POPs (Polynomial Optimization Problems)
- 2. Rough sketch of SOS and SDP relaxations of POPs
- 3. Exploiting structured sparsity --- unconstrained case
- 4. Exploiting structured sparsity --- constrained case
- 5. Numerical results
- 6. Concluding remarks

POP: min $f_0(x)$ sub.to $f_p(x) \ge 0$ (p = 1, ..., m).

- J.B.Lasserre, "Global optimization with polynomials and the problems of moments", SIAM J. on Optim. (2001).
- [2] P.A.Parrilo, "Semidefinite programming relaxations for semialgebraic problems". Math. Prog. (2003).
 - [1] ⇒ SDP relaxation primal approach.
 - [2] ⇒ SOS relaxation dual approach.
 - [1] and [2] are dual to each other.
 - (a) Lower bounds for the optimal value.
- (b) Convergence to global optimal solutions in theory.
- (c) Large-scale SDPs require enormous computation.
- (d) SDP[1] + "Exploiting sstructured sparsity" ⇒ Sparse SDP relaxation

POP: min
$$f_0(x)$$
 sub.to $f_p(x) \ge 0$ $(p = 1, ..., m)$.

Basic idea (practical point of view)

- (a) Linearization (Lifting) \Longrightarrow relaxation.
- (b) Strengthen the relaxation by adding valid poly. matrix inequalities (before (a)) \Longrightarrow a poly. SDP equiv. to POP.

Represent a polynomial
$$f$$
 as $f(x) = \sum_{\alpha \in \mathcal{G}} c(\alpha) x^{\alpha}$, where $\mathcal{G} = \text{a finite subset of } \mathbb{Z}_{+}^{n} \equiv \{z \in \mathbb{R}_{+}^{n} : z_{i} \text{ is an integer } \geq 0\},$ $x^{\alpha} = x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}} \text{ for } \forall x \in \mathbb{R}^{n} \text{ and } \forall \alpha \in \mathbb{Z}_{+}^{n}.$

Replacing each x^{α} by a single variable $y_{\alpha} \in \mathbb{R}$, we have the linearization of f(x): $F(y) = F((y_{\alpha} : \alpha \in \mathcal{G})) = \sum_{\alpha \in \mathcal{G}} c(\alpha)y_{\alpha}$.

Example

$$f(x_1, x_2) = 2x_1 - 3x_1^2 + 4x_1x_2^3$$

 $= 2x^{(1,0)} - 3x^{(2,0)} + 4x^{(1,3)}$
 \Downarrow (a) Linearization
 $F(y_{(1,0)}, y_{(2,0)}, y_{(1,3)}) = 2y_{(1,0)} - 3y_{(2,0)} + 4y_{(1,3)}.$

POP: min
$$f_0(x)$$
 sub.to $f_p(x) \ge 0$ $(p = 1, ..., m)$.

Basic idea (practical point of view)

- (a) Linearization (Lifting) \Longrightarrow relaxation.
- (b) Strengthen the relaxation by adding valid poly. matrix inequalities (before (a)) \Longrightarrow a poly. SDP equiv. to POP.

For \forall finite $\mathcal{G} \subset \mathbb{Z}_+^n \equiv \{z \in \mathbb{R}_+^n : z_i \text{ is an integer } \geq 0\}$, let $u(x;\mathcal{G})$ denote a column vector consisting of x^{α} ($\alpha \in \mathcal{G}$). Then

- (i) rank 1 sym.matrix $u(x; \mathcal{G})u(x; \mathcal{G})^T \succeq O$ for $\forall x \in \mathbb{R}^n$.
- (ii) $f_p(x)u(x;\mathcal{G})u(x;\mathcal{G})^T \succeq O \text{ if } f_p(x) \geq 0.$

Example of (ii). n = 2. $\mathcal{G} = \{(0,0), (1,0)\}.$

$$(1-x_1x_2)\left(\begin{array}{c} 1 \\ x_1 \end{array}\right)\left(\begin{array}{c} 1 \\ x_1 \end{array}\right)^T \succeq O \Leftrightarrow \left(\begin{array}{c} 1-x_1x_2 & x_1-x_1^2x_2 \\ x_1-x_1^2x_2 & x_1^2-x_1^3x_2 \end{array}\right) \succeq O$$

↓ (a) Linearization

$$\psi$$
 (a) Linearization $1 - y_{(1,1)} \ge 0$

$$\begin{array}{ll} \Downarrow \text{ (a) Linearization} \\ 1-y_{(1,1)} \geq 0 \end{array} \qquad \left(\begin{array}{ccc} 1-y_{(1,1)} & y_{(1,0)}-y_{(2,1)} \\ y_{(1,0)}-y_{(2,1)} & y_{(2,0)}-y_{(3,1)} \end{array} \right) \succeq O$$

LMI is stronger!

POP: min
$$f_0(x)$$
 sub.to $f_p(x) \ge 0$ $(p = 1, ..., m)$.

Basic idea (practical point of view)

- (a) Linearization (Lifting) \Longrightarrow relaxation.
- (b) Strengthen the relaxation by adding valid poly. matrix inequalities (before (a)) \Longrightarrow a poly. SDP equiv. to POP.

For \forall finite $\mathcal{G} \subset \mathbb{Z}_+^n \equiv \{z \in \mathbb{R}_+^n : z_i \text{ is an integer } \geq 0\}$, let $u(x;\mathcal{G})$ denote a column vector consisting of x^{α} ($\alpha \in \mathcal{G}$). Then

- (i) rank 1 sym.matrix $u(x; \mathcal{G})u(x; \mathcal{G})^T \succeq O$ for $\forall x \in \mathbb{R}^n$.
- (ii) $f_p(x)u(x;\mathcal{G})u(x;\mathcal{G})^T \succeq O \text{ if } f_p(x) \geq 0.$

Let G_p (p = 1, ..., q > m) be finite subset of \mathbb{Z}_+^n ; $0 \in G_p$.

```
Polynomial SDP(\mathcal{G}_p)

min f_0(x)

sub.to f_p(x)u(x, \mathcal{G}_p)u(x, \mathcal{G}_p)^T \succeq O \ (p = 1, ..., m) \Leftarrow (ii)

u(x, \mathcal{G}_p)u(x, \mathcal{G}_p)^T \succeq O \ (p = m + 1, ..., q) \Leftarrow (i)
```

Apply (a) \Rightarrow Linear SDP(\mathcal{G}_p) = SDP relaxation of POP

- $\{\mathcal{G}_p^k\}$; opt.val. of L.SDP (\mathcal{G}_p^k) \rightarrow opt.val. of POP (Lasserre01).
- Expensive ⇒ Exploit sparsity of f_p(x) (p = 0,...,m).

- 1. POPs (Polynomial Optimization Problems)
- 2. Rough sketch of SOS and SDP relaxations of POPs
- 3. Exploiting structured sparsity --- unconstrained case
- 4. Exploiting structured sparsity --- constrained case
- 5. Numerical results
- 6. Concluding remarks

 \mathcal{P} : $\min_{x \in \mathbb{R}^n} f(x)$, where f is a polynomial with deg f = 2r

H: the sparsity pattern of the Hessian matrix of f(x)

$$\boldsymbol{H}_{ij} = \begin{cases} \star \text{ if } i = j \text{ or } \partial^2 f(x) / \partial x_i \partial x_j \not\equiv 0, \\ 0 \text{ otherwise.} \end{cases}$$

f(x): correlatively sparse $\Leftrightarrow \exists$ sparse Cholesky fact. of H.

- (a) Sparse C.fact. is characterized as a sparse chordal graph G(N, E'); $N = \{1, ..., n\}, E' \supset E = \{(i, j) : H_{ij} = *\}.$
- (b) Let C₁, C₂,..., C_ℓ ⊂ N be the max. cliques of a chordal extension G(N, E') of G(N, E), where E' = E & "fill in".

Sparse relaxation = Linearization of min f(x) s.t. $u(x, \mathcal{G}_p)u(x, \mathcal{G}_p)^T \succeq O \ (p = 1, 2, ..., \ell)$, where $\mathcal{G}_p \subset \{z \in \mathbb{Z}_+^n : z_i = 0 \ (i \not\in C_p)\} \ (p = 1, 2, ..., \ell)$.

Dense relaxation (Lasserre) = Linearization of min f(x) s.t. $u(x, \mathcal{G})u(x, \mathcal{G})^T \succeq O$, where $\mathcal{G} \subset \mathbb{Z}_+^n$. \mathcal{P} : $\min_{x \in \mathbb{R}^n} \overline{f(x)}$, where f is a polynomial with deg f = 2r

H: the sparsity pattern of the Hessian matrix of f(x)

$$\boldsymbol{H}_{ij} = \begin{cases} \star \text{ if } i = j \text{ or } \partial^2 f(x) / \partial x_i \partial x_j \not\equiv 0, \\ 0 \text{ otherwise.} \end{cases}$$

f(x): correlatively sparse $\Leftrightarrow \exists$ sparse Cholesky fact. of H.

G. Rosenbrock func:
$$f(x) = \sum_{i=1}^{n-1} 100(x_{i+1} - x_i^2)^2 + (1 - x_{i+1})^2$$
.

Dense relaxation (Lasserre) = Linearization of min f(x) s.t. $u(x, \mathcal{G})u(x, \mathcal{G})^T \succeq O$,

where $u(x,\mathcal{G}) = (1,x_1,\ldots,x_n,x_1^2,x_1x_2,\ldots,x_2^2,x_2x_3,\ldots,x_n^2)^T$ considting of all monomials in x_1,\ldots,x_n with degree ≤ 2 .

- The size of $u(x,\mathcal{G})u(x,\mathcal{G})^T = \binom{n+2}{2}$; $\geq 20,000$ if n = 200.
- Difficult to use Dense relaxation for larger POPs in practice.

$$\mathcal{P}$$
: $\min_{x \in \mathbb{R}^n} f(x)$, where f is a polynomial with deg $f = 2r$

H: the sparsity pattern of the Hessian matrix of f(x)

$$\boldsymbol{H}_{ij} = \begin{cases} \star & \text{if } i = j \text{ or } \partial^2 f(x) / \partial x_i \partial x_j \not\equiv 0, \\ 0 & \text{otherwise.} \end{cases}$$

f(x): correlatively sparse $\Leftrightarrow \exists$ sparse Cholesky fact. of H.

G. Rosenbrock func:
$$f(x) = \sum_{i=1}^{n-1} 100(x_{i+1} - x_i^2)^2 + (1 - x_{i+1})^2$$
.

The Hessian matrix is sparse (tridiagonal).

$$\begin{aligned} & \text{Sparse relaxation} = \text{Linearization of} \\ & \min \ f(x) \ \text{s.t.} \begin{pmatrix} 1 \\ x_i \\ x_{i+1} \\ x_i^2 \\ x_i x_{i+1} \\ x_{i+1}^2 \\ x_{i+1}^2 \end{pmatrix} \begin{pmatrix} 1 \\ x_i \\ x_{i+1} \\ x_i^2 \\ x_i x_{i+1} \\ x_{i+1}^2 \end{pmatrix} \succeq O \ (i=1,2,\ldots,n-1), \end{aligned}$$

Much smaller than Dense relaxation; the size is linear in n.

- 1. POPs (Polynomial Optimization Problems)
- 2. Rough sketch of SOS and SDP relaxations of POPs
- 3. Exploiting structured sparsity --- unconstrained case
- 4. Exploiting structured sparsity --- constrained case
- 5. Numerical results
- 6. Concluding remarks

 This part is complicated, so we present only a basic idea in 3 steps 1), 2) and 3).

POP: min
$$f_0(x)$$
 sub.to $f_p(x) \ge 0 \ (p = 1, ..., m)$.

Let \mathcal{G}_p $(p=1,2,\ldots,q>m)$ be finite subset of \mathbb{Z}_+^n ; $0\in\mathcal{G}_p$.

Relaxation = Linearization of Polynomial SDP(\mathcal{G}_p) min $f_0(x)$ sub.to $f_p(x)u(x,\mathcal{G}_p)u(x,\mathcal{G}_p)^T \succeq O \ (p=1,\ldots,m) \ - (a)$ $u(x,\mathcal{G}_p)u(x,\mathcal{G}_p)^T \succeq O \ (p=m+1,\ldots,q) \ - (b)$

In (a), take u(x, G_p) so that it shares all x_i's with f_p(x).
 For example,

$$-x_1^2 + 2x_5^3 - 2 \ge 0 \Rightarrow \left(-x_1^2 + 2x_5^3 - 2\right) \begin{pmatrix} 1 \\ x_1 \\ x_5 \end{pmatrix} \begin{pmatrix} 1 \\ x_1 \\ x_5 \end{pmatrix}^1 \succeq O,$$

$$x_3^2 + 3x_3 - 2 \ge 0 \Rightarrow (x_3^2 + 3x_3 - 2) \begin{pmatrix} 1 \\ x_3 \\ x_3^2 \end{pmatrix} \begin{pmatrix} 1 \\ x_3 \\ x_3^2 \end{pmatrix}^T \succeq O.$$

POP: min $f_0(x)$ sub.to $f_p(x) \ge 0$ (p = 1, ..., m).

Let \mathcal{G}_p $(p=1,2,\ldots,q>m)$ be finite subset of \mathbb{Z}_+^n ; $0\in\mathcal{G}_p$.

Relaxation = Linearization of Polynomial SDP(\mathcal{G}_p) min $f_0(x)$ sub.to $f_p(x)u(x,\mathcal{G}_p)u(x,\mathcal{G}_p)^T \succeq O \ (p=1,\ldots,m) \ - (a)$ $u(x,\mathcal{G}_p)u(x,\mathcal{G}_p)^T \succeq O \ (p=m+1,\ldots,q) \ - (b)$

- 1) In (a), take $u(x, \mathcal{G}_p)$ so that it shares all x_i 's with $f_p(x)$.
- Let H be the correlative sparsity pattern of f₀(x) and (a);

$$H_{ij} = \begin{cases} \star \text{ if } i = j \text{ or } \partial^2 f_0(x) / \partial x_i \partial x_j \not\equiv 0, \\ \star \text{ if } x_i \text{ and } x_j \text{ involved in } f_p(x) \text{ for some } p, \\ 0 \text{ otherwise.} \end{cases}$$

In (b), choose $u(x, \mathcal{G}_p)$ taking account of the correlative sparsity pattern H as in the unconstrained case.

- Expand \(\mathcal{G}_p \) in (a) as long as the sparsity is maintained.
- Balance degrees of poly. mat. inequalities in (a) and (b).
- Let r denote the max degree of monomials in u(x, \mathcal{G}_p)s.
- As r ↑, a better approx. sol. but the size ↑.

- 1. POPs (Polynomial Optimization Problems)
- 2. Rough sketch of SOS and SDP relaxations of POPs
- 3. Exploiting structured sparsity --- unconstrained case
- 4. Exploiting structured sparsity --- constrained case
- 5. Numerical results
- 6. Concluding remarks

- Balance degrees of poly. mat. inequalities in (a) and (b).
- Let r denote the max degree of monomials in $u(x, \mathcal{G}_p)$ s.
- As r ↑, a better approx. sol. but the size ↑.

r = relaxation order

Software

- MATLAB for constructing sparse and dense SDP relaxation problems
- SeDuMi to solve SDPs.

Hardware

 \bullet 2.4 GHz Xeon cpu with 6.0 GB memory.

G.Rosenbrock function:

$$f(x) = \sum_{i=2}^{n} \left(100(x_i - x_{i-1}^2)^2 + (1 - x_i)^2\right)$$

- Two minimizers on \mathbb{R}^n : $x_1 = \pm 1$, $x_i = 1$ $(i \geq 2)$.
- Sparse can not handle multiple minimizers effectively.
- Perturb the function or add $x_1 \geq 0 \Rightarrow$ unique minimizer.

cpu in sec.				cpu in sec.		
Sparse	€obj	n	$\epsilon_{ m obj}$	Sparse	Dense	
0.2	5.1e-04	10	2.5e-08	0.2	10.6	
0.3	1.8e-03	15	6.5e-08	0.2	756.6	
2.2	3.1e-03	200	$5.2\mathrm{e}\text{-}07$	2.2		
4.6	5.9e-03	400	2.5e-06	3.7		
8.6	8.3e-03	800	$5.5\mathrm{e}\text{-}06$	6.8		

$$\epsilon_{\text{obj}} = \frac{|\text{the lower bound for opt. value} - \text{the approx. opt. value}|}{\max\{1, |\text{the lower bound for opt. value}|\}}.$$

An optimal control problem from Coleman et al. 1995

$$\min \frac{1}{M} \sum_{i=1}^{M-1} (y_i^2 + x_i^2)$$
s.t. $y_{i+1} = y_i + \frac{1}{M} (y_i^2 - x_i), \quad (i = 1, ..., M-1), \quad y_1 = 1.$

Numerical results on sparse relaxation (r = 2)

	M	# of variables	$\epsilon_{ m obj}$	$\epsilon_{ m feas}$	\mathbf{cpu}
Γ	600	1198	3.4e-08	2.2e-10	3.4
	700	1398	$2.5\mathrm{e}\text{-}08$	$8.1\mathrm{e}\text{-}10$	3.3
	800	1598	5.9e-08	1.6e-10	3.8
	900	1798	1.4e-07	6.8e-10	4.5
	1000	1998	$6.3\mathrm{e}\text{-}08$	$2.7\mathrm{e}\text{-}10$	5.0

$$\begin{split} \epsilon_{\text{obj}} = & \frac{|\text{the lower bound for opt. value} - \text{the approx. opt. value}|}{\max\{1, |\text{the lower bound for opt. value}|\}} \\ \epsilon_{\text{feas}} = & \text{the maximum error in the equality constraints,} \\ \text{cpu: cpu time in sec. to solve an SDP relaxation problem.} \end{split}$$

alkyl.gms: a benchmark problem from globallib min $-6.3x_5x_8 + 5.04x_2 + 0.35x_3 + x_4 + 3.36x_6$ sub.to $-0.820x_2 + x_5 - 0.820x_6 = 0$, $0.98x_4 - x_7(0.01x_5x_{10} + x_4) = 0$, $-x_2x_9 + 10x_3 + x_6 = 0$, $x_5x_{12} - x_2(1.12 + 0.132x_9 - 0.0067x_9^2) = 0$, $x_8x_{13} - 0.01x_9(1.098 - 0.038x_9) - 0.325x_7 = 0.574$, $x_{10}x_{14} + 22.2x_{11} = 35.82$, $x_1x_{11} - 3x_8 = -1.33$, $1bd_i < x_i < ubd_i \ (i = 1, 2, \dots, 14)$.

			Sparse			Dense	(Lasser	re)
problem	n	r	$\epsilon_{ m obj}$	$\epsilon_{ m feas}$	${\bf cpu}$	$\epsilon_{ m obj}$	$\epsilon_{ m feas}$	cpu
alkyl	14	2	4.1e-03	2.7e-01	0.9	6.3e-06	1.8e-02	17.6
alkyl	14	3	5.6e-10	$2.0\mathrm{e}\text{-}08$	6.9	_	_	

r = relaxation order,

 $\epsilon_{\mathrm{obj}} = \frac{|\mathrm{the\ lower\ bound\ for\ opt.\ value} - \mathrm{the\ approx.\ opt.\ value}|}{\max\{1,|\mathrm{the\ lower\ bound\ for\ opt.\ value}|\}}$ $\epsilon_{\mathrm{feas}} = \mathrm{the\ maximum\ error\ in\ the\ equality\ constraints},$ $\mathrm{cpu}:\mathrm{cpu\ time\ in\ sec.\ to\ solve\ an\ SDP\ relaxation\ problem}.$

Some other benchmark problems from globallib

				Sparse		Dense (Lasserre)			
problem	n	r	$\epsilon_{ m obj}$	$\epsilon_{ m feas}$	cpu	$\epsilon_{ m obj}$	$\epsilon_{ m feas}$	$_{ m cpu}$	
ex3_1_1	8	3	6.3e-09	4.7e-04	5.5	0.7e-08	2.5e-03	597.8	
st_bpaf1b	10	2	3.8e-08	2.8e-08	1.0	4.6e-09	7.2e-10	1.7	
st_e07	10	2	0.0e + 00	8.1e-05	0.4	0.0e + 00	8.8e-06	3.0	
ex2_1_3	13	2	5.1e-09	3.5e-09	0.5	1.6e-09	1.5e-09	7.7	
ex9_1_1	13	2	0.0	4.5e-06	1.5	0.0	9.2e-07	7.7	
ex9_2_3	16	2	0.0e + 00	5.7e-06	2.3	0.0e + 00	7.5e-06	49.7	
ex2_1_8	24	2	1.0e-05	$0.0\mathrm{e}{+00}$	304.6	3.4e-06	$0.0\mathrm{e}{+00}$	1946.6	
$ex5_2_c1$	9	2	1.0e-2	3.2e + 01	1.8	1.6e-05	2.1e-01	2.6	
$\mathrm{ex}5_2_2_\mathrm{c}1$	9	3	6.4e-04	2.3e-01	295.9	-	-	-	
$\operatorname{ex} 5_2_2_c2$	9	2	1.0e-02	$7.2\mathrm{e}{+01}$	$^{2.1}$	1.3e-04	2.7e-01	3.5	
$\mathbf{ex5_2_2_c2}$	9	3	5.8e-04	8.9e-01	332.9	-	-	-	

$$\begin{split} r &= \text{ relaxation order,} \\ \epsilon_{\text{obj}} &= \frac{|\text{the lower bound for opt. value} - \text{the approx. opt. value}|}{\max\{1,|\text{the lower bound for opt. value}|\}}, \\ \epsilon_{\text{feas}} &= \text{the maximum error in the equality constraints,} \\ \text{cpu: cpu time in sec. to solve an SDP relaxation problem.} \end{split}$$

Some other benchmark problems from globallib

				Sparse		Dense (Lasserre)			
problem	n	r	$\epsilon_{ m obj}$	$\epsilon_{ m feas}$	cpu	$\epsilon_{ m obj}$	$\epsilon_{ m feas}$	$_{ m cpu}$	
ex3_1_1	8	3	6.3e-09	4.7e-04	5.5	0.7e-08	2.5e-03	597.8	
st_bpaf1b	10	2	3.8e-08	2.8e-08	1.0	4.6e-09	7.2e-10	1.7	
st_e07	10	2	0.0e + 00	8.1e-05	0.4	0.0e + 00	8.8e-06	3.0	
ex2_1_3	13	2	5.1e-09	3.5e-09	0.5	1.6e-09	1.5e-09	7.7	
ex9_1_1	13	2	0.0	4.5e-06	1.5	0.0	9.2e-07	7.7	
ex9_2_3	16	2	0.0e + 00	5.7e-06	2.3	0.0e + 00	7.5e-06	49.7	
ex2_1_8	24	2	1.0e-05	0.0e+00	304.6	3.4e-06	$0.0\mathrm{e}{+00}$	1946.6	
$ex5_2_c1$	9	2	1.0e-2	3.2e + 01	1.8	1.6e-05	2.1e-01	2.6	
$ex5_2_c1$	9	3	6.4e-04	2.3e-01	295.9	-	-	-	
$\operatorname{ex} 5 \underline{\hspace{0.1cm} 2} \underline{\hspace{0.1cm} 2} \underline{\hspace{0.1cm} 2} \underline{\hspace{0.1cm} 2}$	9	2	1.0e-02	7.2e+01	$^{2.1}$	1.3e-04	2.7e-01	3.5	
$\rm ex5_2_2_c2$	9	3	5.8e-04	8.9e-01	332.9	-	-	-	

- ex5_2_2_c1 and ex5_2_2_c2 (r = 2) Dense is better.
- Sparse attains approx. opt. solutions with the same quality as Dense except ex5_2_2_c1 and ex5_2_2_c2.
- Sparse is much faster than Dense in large dim. and higher relaxation order cases.

- 1. POPs (Polynomial Optimization Problems)
- 2. Rough sketch of SOS and SDP relaxations of POPs
- 3. Exploiting structured sparsity --- unconstrained case
- 4. Exploiting structured sparsity --- constrained case
- 5. Numerical results
- 6. Concluding remarks

- Lasserre's (dense) relaxation
 - theoretical convergence but expensive in practice.
- The proposed sparse relaxation
 - = Lasserre's (dense) relaxation + sparsity
 - no theoretical convergence but very powerful in practice.
- There remain many issues to be studied further.
 - Exploiting sparsity.
 - Large-scale SDPs.
 - Numerical difficulty in solving SDP relaxations of POPs.

This presentation material is available at

http://www.is.titech.ac.jp/~kojima/talk.html

Thank you!