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1 Introduction

Quadratic optimization problems (QOPs) can be written as QOP(Q,A):

ζ(Q, A) = min
{
xTQx | x = (x1, . . . , xm)

T ∈ A
}
, (1)

where the constraint set A, a subset of the n-dimensional Euclidean space Rn, is described
in terms of quadratic equalities and inequalities, and Q is in the space of n × n real
symmetric matrices Sn.

Let

B0 = {0, 1}n = {x = (x1, x2, . . . , xn)
T ∈ Rn : x2

i − xi = 0 (i = 1, 2, . . . , n)},
B1 = {−1, 1}n = {x = (x1, x2, . . . , xn)

T ∈ Rn : x2
i − 1 = 0 (i = 1, 2, . . . , n)}.

If we take A = B0 or A = B1, then (1) becomes binary QOPs, which are the main
subject of this paper. This class of binary QOPs includes the max-cut problem [4] as an
important application. Both QOP(Q,B0) and QOP(Q,B1) are simple but yet known to
be NP-hard.

For general QOPs, various linear conic relaxations have been proposed and studied
extensively. In particular, semidefinite programming (SDP) relaxations are the most
popular technique for computing lower bounds of their optimal values. The SDP relax-
ation provides a lower bound for (1), which may not be tight in many applications. For
a stronger conic relaxation than the SDP relaxations, Burer [2] reformulated a class of
linearly constrained QOPs with binary and continuous variables as completely positive
programming (CPP) problems and showed that the reformulated CPP problem is equiv-
alent to the original QOP. Thus, the resulting CPP is the strongest conic relaxation in
theory. It is, however, numerically intractable.

As a numerically tractable relaxation of their CPP reformulation of QOPs, a simpli-
fied doubly nonnegative programming (DNN) relaxation was proposed by Airma, Kim,
and Kojima in [1]. They showed through numerical results on binary QOP(Q,B0) that
the simplified DNN relaxation is stronger, but, it is still much more expensive than the
standard SDP relaxation. More recently, Kim, Kojima and Toh [6] further applied the
Lagrangian relaxation to the simplified DNN relaxation. A first-order method based on
their Lagrangian-DNN relaxation was shown to work efficiently and effectively in com-
putation with numerical results on binary QOPs, quadratic multiple knapsack problems,
maximum stable set problems, and quadratic assignment problems.

The lower bounds obtained by the simplified DNN relaxation and the Lagrangian-
DNN relaxation for a given QOP are not equivalent to the optimal value in general,
although they were shown to be effective in practice. On the other hand, if we view a
QOP as a special case of a polynomial optimization problem (POP), then we can apply
the hierarchy of SDP relaxations proposed for genreal POPs by Lasserre [7] to QOPs. In
particular, when it is applied to binary QOPs, the nth SDP in the hierarchy (or the SDP
with the relaxation order ω = n in the terminology used in [10, 11]), which involves 2n−1
independent variables, attains the optimal value [8]. In practice, a small relaxation order
(e.g., ω ≤ 4) is usually sufficient to compute an accurate lower bound of the optimal
value of a QOP [10, 11].

2



This article provides numerical examples of binary QOPs with dimension n ∈ {3, 4, . . . , 11}
for which

(i) neither the standard DNN relaxation nor the DNN relaxation derived from the CPP
reformulation is effective,

(ii) the hierarchy of SDP relaxation requires at least ω = ⌈n/2⌉th SDP to attain the
optimal value.

These problems are essentially equivalent to the max-cut problem of a graph with an odd
number of nodes and equal weight. The numerical result for (ii) leads to a conjecture
that there exists a Q ∈ Sn for which (ii) holds if n ≥ 3. The binary QOP examples
given in this paper can be used for evaluating numerical methods for QOPs and for their
further development.

In Section 2, we state our numerical examples of binary QOPs and numerical and
theoretical results showing (i) and a numerical evidence for (ii). In addition, we provide
two classes of binary QOPs which are difficult to solve by the standard DNN relaxation,
the DNN relaxation derived from the CPP reformulation and even the hierarchy of SDP
relaxation as their dimension increases. Section 3 includes the description of the SDP
relaxation, the standard DNN relaxation, and the DNN relaxation derived from the CPP
reformulation. In Section 4, we propose a conjecture and discuss its implication.

2 Main result

As an instance of binary QOPs, we consider QOP(E,B1), where E denotes the n × n
matrix with all elements 1. We can rewrite the objective quadratic function as xTEx =
(
∑n

i=1 xi)
2
. It follows that the optimal value ζ(E, B1) of QOP(E,B1) is 1 if the dimension

n is odd and 0 otherwise. Since xTEx = 2
∑

1≤i<j≤n xixj+n holds for every x ∈ {−1, 1}n,
QOP(E,B1) corresponds to the max-cut problem with equal weight.

Lasserre [8] showed that for every Q ∈ Sn the nth hierarchical SDP relaxation (or
the SDP with the relaxation order ω = n) applied to QOP(Q,B1) always attains the
optimal value ζ(Q, B1). We will see from numerical results that the hierarchy of SDP
relaxation requires at least ω = ⌈n/2⌉ for the relaxation order to attain the optimal value
ζ(E, B1) = 1 when dimension n is odd.

Let Q ∈ Rn. QOP(Q,B1) can be converted to an equivalent binary QOP(R,B0),
where R = 4(Q − diag(Qe)) and e = (1, 1, . . . , 1)T ∈ Rn. In fact, if an affine transfor-
mation x = 2y − e is applied to QOP(Q,B1), then

y ∈ {0, 1}n if and only if x ∈ {−1, 1}n,
xTQx = 4yTQy − 4eTQy + eTQe = yTRy + eTQe for every y ∈ {0, 1}n.

Here the last equality holds because eTQy = yTdiag(Qe)y for every y ∈ {0, 1}n.
Therefore, ζ(Q, B1) = ζ(R, B0) + eTQe. Specifically, defining F = 4(E − nI), we
see ζ(E, B1) = ζ(F , B0) + n2.

As conic relaxation methods, we consider
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(s) a standard semidefinite programming (SDP) relaxation of QOP(E,B1),

(d1) a standard doubly nonnegative (DNN) relaxation of QOP(F ,B0),

(d2) a DNN relaxation derived from the CPP reformulation of of QOP(F ,B0) [1, 2],

(h) the hierarchy of SDP relaxations of QOP(E,B1) proposed by Lasserre [7].

The lower bound for the optimal value of QOP(Q,B) provided by each relaxation is
denoted by ηs(Q), ηd1(Q), ηd2(Q) and ηh(Q, ω), respectively. Here B stands for either
B1 or B0, and ω denotes the relaxation order used in (h). Although we know that
ηs(Q) ≤ ηd1(Q) + eTQe ≤ ηd2(Q) + eTQe for any Q ∈ Sn by construction described
in Section 3, (s) and (d1) are included since they are popular relaxations. We can
additionally consider

(h’) the hierarchy of SDP relaxations of QOP(F ,B0),

but (h) and (h’)’are known to be equivalent [12]. Some technical details of (s), (d1) and
(d2) are given in Section 3. We refer to [7, 8] for (h).

We report numerical results on the relaxation methods (s), (d1), (d2) and (h) applied
to binary QOP(Q,B1) and QOP(R,B0), where R = 4(Q − diag(Qe)). All the experi-
ments were performed in Matlab on a Mac Pro with 3.0GHZ 8-core Intel Xeon E5 CPU
and 64 GB memory.

Table 1 shows the numerical results on the relaxation methods (s), (d1) and (d2).
SparseCoLO [3] was used to convert the DNN problems (d1) and (d2) into SDPs, and
SeDuMi [9] to solve SDPs. All the lower bounds ηs(E)), ηd1(F ) + n2 and ηd2(F ) + n2

obtained are nearly 0, which is the trivial lower bound for the optimal value ζ(E, B1) = 1
of QOP(E,B1). We also note that the values in Table 1 (and Table 2) must have involved
some numerical error. For example, ηs(E) ≤ ηd1(F ) + n2 must have hold theoretically
since the lower bound provided by the standard DNN relaxation (d1) is at least as tight
as the standard SDP relaxation (s). From the table, we see that all the methods (s), (d1),
(d2) are not effective at all for QOP(E,B1) and QOP(F ,B0) when n is odd. Theoretically,
ηs(E) = ηd1(F ) + n2 = 0 if n ≥ 3 is odd. This will be proved in Section 4.

Table 1: Numerical results on SDP and DNN relaxations

n ζ(E) ηs(E) ηd1(F ) + n2 ηd2(F ) + n2

3 1 +6.66e-16 -8.24e-10 -1.83e-09
5 1 +8.01e-09 -1.93e-09 -1.22e-08
7 1 +1.84e-14 -1.87e-08 -1.96e-09
9 1 +9.59e-09 -1.01e-08 -3.40e-08
11 1 +1.72e-12 -1.56e-08 -4.25e-09

Table 2 shows numerical results on the hierarchy of SDP relaxation (h) applied to
QOP(E,B1) with odd dimension n = 3, 5, 7, 9, 11. We used two software packages Glop-
tiPoly [5] and SparsePOP [11] which implemented (h). SeDuMi [9] was used in the
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both software packages for solving SDPs. GloptiPoly attempts to generate all optimal
solutions when the optimal value is obtained. Although SparsePOP can only provide
the optimal value of QOP(E,B1), it is faster than GloptiPoly and can process larger
dimensional QOPs. In all cases of n = 3, 5, 7, 9, 11, the hierarchy of SDP relaxation can
nearly attains the trivial lower bound 0 with relaxation order ⌊n/2⌋, and it attains the
optimal value 1 with relaxation order ⌈n/2⌉. In case of n = 11 , we notice that the lower
bound ηh(11, ⌈11/2⌉) attained by by SparsePOP displays a wider gap 1− 9.999785904e-
01 ≥ 2.14e-05 compared to other cases. The reason is that SeDuMi, the SDP solver used
in SparsePOP, stopped with a numerical error before attaining a given accuracy 1.0e-9.

Table 2: Numerical results on the hierarchy of SDP relaxations [7].

Opt GloptiPoly SparsePOP

n ζ(E, B1) ηh(E, ⌊n/2⌋) ηh(E, ⌈n/2⌉) ηh(E, ⌊n/2⌋) ηh(E, ⌈n/2⌉) (sec)
(sec) (sec) (sec) (sec)

3 1 −1.11e−11 +9.999999993e-01 −8.56e-12 +9.999999983e-01
(0.1) (0.1) (0.1) (0.1)

5 1 +8.39e−09 +1.000000002e+00 −2.78e-11 +9.999999987e-01
(0.1) (1.1) (0.1) (0.1)

7 1 +2.30e−07 +1.000000049e+00 −5.65e-09 +9.999999941e-01
(11.8) (678.1) (0.5) (6.1)

9 1 not tested not tested −7.93e-09 +9.999999332e-01
(50.7) (591.2)

11 1 not tested not tested −1.32e-09 +9.999785904e-01
( 11182.2) (54716.8)

Remark. Both GloptiPoly and SparsePOP are designed for general POPs, and their
construction of SDP relaxation problems are not specialized for binary QOPs. We could
considerably simplify SDP relaxation problems derived from binary QOPs to reduce their
sizes, which would enable to process larger-scale QOPs. However, we note that the size of
SDPs constructed still grows very rapidly as dimension n of binary QOPs and/or relax-
ation order ω increases. Therefore, binary QOP(E, B1) that can be solved numerically
by the hierarchy of SDP relaxation will be still limited to small-sized problems, probably
n ≤ 20. See Section 4 and [8].

2.1 Even dimensional case

If n = 2, we can easily verify that ηs(E, B1) = ζ(E, B1). Suppose that n is even and not
less that 4. Define the n× n rank 1 matrix G ∈ Sn such that

G =

(
E 0
0T 0

)
,

where E denotes the (n−1)× (n−1)-dimensional matrix of 1’s. Obviously QOP(G, B1)
in even number of variables x1, x2, . . . , xn is equivalent to QOP(E, B1) in odd number of
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variables x1, x2, . . . , xn−1 in the sense ζ(G, B1) = ζ(E, B1). If we define

H = 4(G− diag(Ge)) = 4

(
E − (n− 1)I 0

0T 0

)
,

then ζ(G, B1) = ζ(H , B0) + (n − 1)2. Hence ζ(H , B0) = ζ(F , B0) holds Thus we may
regard QOP(G, B1) and QOP(H , B0) in Rn as binary QOPs obtained by introducing
an additional dummy variable xn to QOP(E, B1) and QOP(F , B0) in Rn−1, respectively.
We can easily verify that ηs(G) = ηs(E), ηd1(H) = ηd1(F ), ηd2(H) = ηd2(F ) and
ηh(G, ω) = ηh(E, ω) for every ω = 1, 2, . . .. Therefore, we can apply the discussions
on binary QOP(E, B1) and QOP(F , B0) in the odd dimensional space Rn−1 to ones on
binary QOP(G, B1) and QOP(H , B0) in the even dimensional space Rn. We also note
that ⌊n/2⌋ = ⌈n/2⌉ = ⌈(n− 1)/2⌉.

2.2 Full rank binary QOPs vs. rank-1 binary QOPs

From the fact that the coefficient matrix E of the objective function of QOP(E, B1) is of
rank 1, it may be worthwhile to investigate that the rank of the coefficient matrix plays
a role in failing to obtain a tight approximation to the true optimal value of QOP(E, B1)
by the relaxation methods (s), (d1), (d2) and (h).

We consider two types of coefficient matrices for QOP(Q, B1) to examine the role
of the rank of Q. The first one is Q ∈ Sn with each component Qij ∈ R (1 ≤ i ≤ j)
randomly chosen from (100,−100). In this case, the matrix Q generated is of full rank
almost surely. The second is a rank-1 matrix Q = qqT ∈ Sn with each qi ∈ R (1 ≤ i ≤ n)
chosen from (10,−10).

Figures 1 and 2 show the numerical results on 100 cases of QOP(Q, B1) with these
two types of Q’s. We observe that the two cases exhibit a clear difference. In the first
case, the hierarchy of SDP relaxation with relaxation order 2 ∗ successfully generated
tight lower bounds with respect to the relative accuracy log10 ((ζ − η)/max{|ζ|, 1.0e-8}).
On the other hand, the quality of the lower bound obtained by the hierarchy of SDP
relaxation with even relaxation order 3 ⋄ deteriorates as dimension n increases in the
second case.

2.3 A convex combination of QOP(E, B1) and QOP(Q1, B1) with
randomly generated full rank Q1

Although the binary QOP(E, B1) with odd dimension is difficult to solve by the relax-
ation methods (s), (d1), (d2) and (h), it is certainly a trivial problem; the optimal value
is 1 and each optimal solution x is characterized by the property that the number of
{i : xi = 1} is either ⌊n/2⌋ or ⌈n/2⌉.

We note that not only the optimal value of QOP(Q, B1) but also its lower bounds
obtained by the relaxation methods are continuous functions of Q. Thus, if Q is suffi-
ciently close to E, QOP(Q, B1) remains difficult to solve by them. To see this, we now
consider a convex combination Q(λ) of E and Q1 ∈ Sn with each Q1

ij (1 ≤ i ≤ j ≤ 1)

chosen randomly from interval (−1, 1) such that Q(λ) = (1 − λ)E + λQ1 for λ ∈ [0, 1].
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Figure 1: 100 QOP(Q, B1)s with randomly generated full rank Q solved by the standard
DNN relaxation method ⊗, the DNN relaxation derived from the CPP reformulation
⋆, SparsePOP with ω = 2 ∗ and SparsePOP with ω = 3 ⋄. The vertical axis stands
for the relative accuracy log10 ((ζ − η)/max{|ζ|, 1.0e-8}), where ζ is the optimal value
of QOP(Q, B1) and η the lower bound obtained by either of the relaxations mentioned
above. The left figure shows for n = 10, and the right the change of the average relative
accuracy over 100 QOP(E, B1) (or QOP(F , B0)) as dimension n increases from n = 2 to
n = 10.
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Figure 2: 100 QOP(Q, B1)s with randomly generated rank-1 Q solved by the standard
DNN relaxation method ⊗, the DNN relaxation derived from the CPP reformulation
⋆, SparsePOP with ω = 2 ∗ and SparsePOP with ω = 3 ⋄. The vertical axis stands
for the relative accuracy log10 ((ζ − η)/max{|ζ|, 1.0e-8}), where ζ is the minimum value
of QOP(Q, B1) and η the lower bound obtained by either of the relaxations mentioned
above. The left figure displays for n = 10, and the right the change of the average relative
accuracy over 100 BQOPs, as the dimension n increases from n = 2 to n = 10.
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Figure 3: 100 QOP(Q(λ), B1)s with Q(λ) = (1−λ)E+λQ1 solved by the standard DNN
relaxation method ⊗, SparsePOP with ω = 2 ∗ and SparsePOP with ω = 3 ⋄. Here Q1

is an 7 × 7 symmetric matrix with each Qij randomly chosen from the interval (−1, 1),
E the 7 × 7 matrix of 1’s, and λ = 0.05, 0.10, 0.20 and 0.40 (the upper left, the upper
right, the bottom left, and the bottom right, respectively). The vertical axis stands for
the minimum value of the QOP (the green), the lower bounds obtained by the standard
DNN relaxation method ⊗ , SparsePOP with ω = 2 ∗ or SparsePOP with ω = 3 ⋄.

As λ increases, the difficulty of solving QOP(Q(λ), B1) with an unknown optimal value
and solution decreases, whose tendency is shown in Figure 3. When we take λ = 0.05,
the optimal value (the green line) and the lower bounds obtained by the standard DNN
relaxation method ⊗, SparsePOP with ω = 2 ∗ and SparsePOP with ω = 3 ⋄ exhibit
a clear gap. As λ increases, the gap decreases, and SparsePOP with both ω = 2 ∗ and
ω = 3 ⋄ attain the optimal value accurately when λ is near 0.4.
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3 Some technical details

3.1 SDP relaxation (s) of QOP(Q, B1)

Let Q ∈ Sn. We rewrite QOP(Q, B1) as

minimize Q • xxT subject to x2
i = 1 (i = 1, 2, . . . ,m).

We know that xxT ∈ Sn
+ holds for every x ∈ Rn. Replacing xxT ∈ Sn

+ by a single
symmetric matrix variable X, we obtain the standard SDP relaxation (s) of QOP(Q, B1)

(s): minimize Q •X subject to Xii = 1 (i = 1, 2, . . . , n), X ∈ Sn
+.

Here Q •X denotes the inner product of Q and X; Q •X =
∑n

i=1

∑n
j=1QijXij. If we

add rank(X) = 1 to the constraint, then the problem previously derived is known to be
equivalent to QOP(Q, B1).

Now suppose that n ≥ 2 and Q = E ∈ Sn. Then we can easily verify that X ∈ Sn

with components Xii = 1 (i = 1, 2, . . . , n) and Xij = Xji = −1/(n− 1) (1 ≤ i < j ≤ n)
is an optimal solution of QOP(E, B1), and that the optimal value is zero. This gives
a theoretical proof for ηs(E) = 0, which has been shown numerically in Table 1 for
n = 3, 5, 7, 9, 11.

3.2 DNN relaxation (d1) of QOP(R, B0)

Let R ∈ Sn. We rewrite QOP(R, B0) as

minimize

(
0 0T

0 R

)
•
(

1 yT

y yyT

)
subject to y2i − yi = 0 (i = 1, 2, . . . , n).

We note that

(
1 yT

y Y

)
is contained in the intersection of S1+n

+ and the cone N1+n of (1+

n)× (1+n) nonnegative symmetric matrices. Thus, replacing yyT by a single symmetric
matrix variable Y , we obtain the standard DNN relaxation (d1) of QOP(R, B0)

(d1):
minimize R • Y

subject to yi = Yii (i = 1, 2, . . . , n),

(
1 yT

y Y

)
∈ S1+n

+ ∩ N1+n.

LetQ ∈ Sn. When we takeR = 4(Q−diag(Qe)I), then QOP(Q, B1) and QOP(R, B0)
are equivalent as shown in Section 2. More precisely, ζ(Q, B1) = ζ(R, B0)+eTQe. In this
case, ηs(Q) ≤ ηd1(R)+eTQe ≤ ζ(Q, B1) holds. Namely, the lower bound ηd1(R)+eTQe
provided by the standard DNN relaxation (d1) of QOP(R, B0) for the optimal value
ζ(Q, B1) of QOP(Q, B1) is at least as tight as the lower bound ηs(Q) provided by the

standard SDP relaxation (s). To see this, suppose that

(
1 yT

y Y

)
∈ S1+n is a feasible

solution of (d1). Let X = 4Y − 2eyT − 2yeT + eeT . Then

Q •X = 4Q • Y − 4eTQy + eTQe = R • Y + eTQe.
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Here the second equality follows from yi = Yii (i = 1, 2, . . . , n). Since Y ⪰ yyT , we have
that

X ⪰ 4yyT − 2eyT − 2yeT + eeT = (2y − e)(2y − e)T ⪰ O.

It also follows from yi = Yii (i = 1, 2, . . . , n) that Xii = 1 (i = 1, 2, . . . , n). Therefore we
have shown that X is a feasible solution of (s) with the objective value R • Y + eTQe.
This implies ηs(Q) ≤ ηd1(R) + eTQe.

Now suppose that n ≥ 3 is odd, Q = E ∈ Sn and R = F = 4(E − nI). Let
y = (1/2)e ∈ Rn, and let Y be a matrix in Sn whose components are given by

Yii = yi = 1/2 (i = 1, 2, . . . , n), Yij = Yji = (n− 2)/(8⌊n/2⌋) (1 ≤ i < j ≤ n).

Then we can verify that (y,Y ) is a feasible solution of QOP(F , B0), i.e., (d1) with
R = 4(E − n2I), and that the objective value −n2. Hence ηd2(F ) + n2 ≤ 0. Since we
already know that 0 = ηs(E) ≤ ηd2(F ) + n2, we obtain ηd2(F ) + n2 = 0.

3.3 DNN relaxation (d2) derived from a CPP reformulation of
QOP(R, B0)

Let R ∈ Sn. To describe DNN relaxation (d2) of QOP(R, B0), we convert QOP(R, B0)
to

minimize yTRy

subject to y2i − yi = 0 (i = 1, 2, . . . , n),

u2
i − ui = 0 (i = 1, 2, . . . , n), y + u = e,

y ≥ 0, u ≥ 0,
n∑

i=1

yiui = 0.

 (2)

Here u ∈ Rn serves as a slack variable vector. The added constraints (2) are redundant
for QOP(R, B0) itself, but they make its DNN relaxation, whose derivation is described
in the subsequent discussion, stronger. In particular, the last three constraints in (2)
forms a complementarity condition on y ∈ Rn and u ∈ Rn.

Let

A = (−e I I), H1 = ATA, H2 =

 0 0T 0T

0 O I
0 I O

 .

Then we can rewrite the problem above as

minimize R • yyT

subject to y0 = 1, Hk •

 y0 yT uT

y yyT yuT

u uyT uuT

 = 0 (k = 1, 2),

y0 = 1, y ≥ 0, u ≥ 0,

y2i − yi = 0 (i = 1, 2, . . . , n), u2
i − ui = 0 (i = 1, 2, . . . , n).
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We note that for every y0 ≥ 0, y ≥ 0 and u ≥ 0, the matrix

 y0 yT uT

y yyT yuT

u uyT uuT

 lies

in the cone of (1 + 2n)× (1 + 2n) completely positive matrices C1+2n, which is included
in the intersection of S1+2n

+ and N1+2n. Thus, as a conic relaxation of QOP(R, B0), we
obtain a linear conic optimization problem

LCOP(K):



minimize R • Y

subject to y0 = 1, Hk •

 y0 yT uT

y Y W T

u W U

 = 0 (k = 1, 2),

y0 = 1, Yii − yi = 0 (i = 1, 2, . . . , n),
Uii − ui = 0 (i = 1, 2, . . . , n), y0 yT uT

y Y W T

u W U

 ∈ K.

Here K stands for either C1+2n (the CPP cone) or S1+2n
+ ∩N1+2n (the DNN cone). In the

latter case, we have a DNN relaxation LCOP(S1+2n
+ ∩N1+2n) which corresponds to (d2).

If we remove the complementarity constraint
n∑

i=1

yiui = 0 in the previous discussion,

the resulting LCOP(K) does not involve the equality constraintH2•

 y0 yT uT

y Y W T

u W U

 =

0. In this case, the above construction of LCOP(C1+2n) corresponds to the CPP refor-
mulation of QOP(R, B0), which was shown to be equivalent to QOP(R, B0) in a more
general framework for a class of linearly constrained QOPs with continuous and binary
variables, by Burer [2].

On the other hand, we can remove the 0-1 constraints y2i − yi = 0, u2
i − ui = 0 (i =

1, 2, . . . , n) while keeping all the other constraints in (2) to obtain a CPP or DNN re-
laxation LCOP(K) without imposing the constraints Yii − yi = 0, Uii − ui = 0 (i =
1, 2, . . . , n). This construction corresponds to the simplified CPP and DNN relaxation of
QOP(R, B0) by Arima-Kim-Kojima [1]. The simplified CPP relaxation is equivalent to
QOP(R, B0) too. See [1] for more details.

If we take R = 4(Q − diag(Qe)), then DNN relaxation (d2), which corresponds to
LCOP(S1+2n

+ ∩ N1+2n), is the strongest relaxation of QOP(Q, B1) among (s), (d1) and
(d2); ηs(Q) ≤ ηd1(R) + eTQe ≤ ηd2(R) + eTQe ≤ ζ(Q, B1).

3.4 Relation between QOP(Q, B1) and QOP(R, B0)

LetQ ∈ Sn be given. We have already seen that QOP(Q, B1) is equivalent to QOP(R, B0)
with R = 4(Q − diag(Qe)I); ζ(Q, B1) = ζ(R, B0) + eTQe. We note that if x ∈ Rn is
a feasible solution of QOP(Q, B1) with the objective value xTQx, then −x is a feasible
solution with the same objective value. This means that the resulting QOP(R, B0) also
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satisfies this symmetry; if y ∈ Rn is a feasible solution of QOP(R, B0) with the objective
value yTRy then e− y is a feasible solution with the same objective value.

Now let R ∈ Sn. In general, QOP(R, B0) does not satisfy the aforementioned sym-
metry. Thus, we need an additional dimension (or an additional variable x0 as shown in
the following) to convert QOP(R, B0) into an equivalent QOP(Q, B1). In fact, define

Q =
1

4

(
eTRe eTR
Re R

)
.

Then it is easily verified that the QOP

minimize xTQx subject to x = (x0, x1, . . . , xn) ∈ {−1, 1}1+n, x0 = 1

is equivalent to QOP(R, B0). Since this problem satisfies the symmetry, we can remove
the constraint x0 = 1, which leads to QOP(Q, B1) in R1+n.

4 Conjecture

Suppose that n is not less than 3. By Lasserre [8], we know that ηh(Q, 1) ≤ ηh(Q, ω) ≤
ηh(Q, n) = ζ(Q, B1) for every Q ∈ Sn and every ω ≥ 2. The numerical results shown in
Table 2 and the discussions in Section 2.1 lead to a conjecture that

• there exists a Q̃ ∈ Sn such that ηh(Q̃, ω) = ζ(Q, B1) = 1 if ω ≥ ⌈n/2⌉ and

ηh(Q̃, ω) = 0 otherwise; take Q̃ = E if n is odd, and Q̃ = G otherwise as shown
in Section 2.1.

We discuss some implications of this conjecture.

For every ω = 1, 2, . . . , n, let

B0(ω) = {α ∈ B0 :
n∑

i=1

αi = ω},

C0(ω) = {α ∈ B0 :
n∑

i=1

αi ≤ ω} =
∪
ξ≤ω

B0(ξ),

ρ(ω) = the number of elements in C0(ω) =


ω∑

k=0

(
n
k

)
if ω < n,

2n otherwise.

The hierarchy of SDP relaxation of QOP(Q, B1) with the relaxation order ω is represented
as

SDPω(Q) : ηh(Q, ω) = min

 ∑
α∈B0(2)

Q̂αyα | M̂ω(y) ⪰ O

 .

Here each Q̂α (α ∈ B1(2)) corresponds to 2Qij or Qii such that Qα = 2Qij if αi = 1
and αj = 1 for some (1 ≤ i < j ≤ n) and Qα = Qii if αi = 2 for some (1 ≤ i ≤ n).
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M̂ (y) denotes a moment matrix for QOP(Q, B1), which forms a ρ(ω)× ρ(ω) symmetric
matrix with each element corresponding to a variable from the set {yα : α ∈ C0(2ω)} of
variables. See [8] for more details. Since every variable of the set appears at least once

in the moment matrix M̂ω(y) and y0 is fixed to 1, the number of independent variables

involved in M̂ω(y) amounts to ρ(2ω) − 1. Thus the size ρ(ω) of the moment matrix

M̂ω(y) and the number ρ(2ω)− 1 of independent variables involved in it determine the
size of SDPω to be solved for computing ηh(Q, ω).

We now compare the size of SDPn(Q) whose optimal value ηh(Q, n) is guaranteed

to attain ζ(Q, B1) for all Q ∈ Sn and the size of SDP⌈n⌉(Q̃) involved in the conjecture.
In the first SDPn(Q), the size of the moment matrix is ρ(n) = 2n and the number of

independent variables is ρ(2n)−1 = 2n−1. In the second SDP⌈n⌉(Q̃), these two numbers
are:

ρ(⌈n/2⌉) =

⌈n/2⌉∑
k=0

(
n
k

)
, ρ(2⌈n/2⌉)− 1 = 2n − 1.

Hence the size of SDP⌈n/2⌉ for ηh(Q̃, B1, ⌈n/2⌉) is smaller than the size of SDPn for
ηh(Q, B1, n) although the number of independent variables involved them are identical.

If n ≥ 3 is odd, we further see that

ρ(⌈n/2⌉) =

⌈n/2⌉∑
k=0

(
n
k

)
=

⌊n/2⌋∑
k=0

(
n
k

)
+

(
n

⌈n/2⌉

)

=

(
n∑

k=0

(
n
k

))
/2 +

(
n

⌈n/2⌉

)
= 2n−1 +

(
n

⌈n/2⌉

)
.

If n ≥ 4 is even, then

ρ(⌈n/2⌉) =

⌈n/2⌉∑
k=0

(
n
k

)
=

⌊n/2⌋∑
k=0

(
n
k

)
+

(
n

⌈n/2⌉

)
/2 +

(
n

⌈n/2⌉

)
/2

=

(
n∑

k=0

(
n
k

))
/2 +

(
n

⌈n/2⌉

)
/2 = 2n−1 +

(
n

⌈n/2⌉

)
/2.

In both cases, 2n−1 < ρ(⌈n/2⌉) < 2n.

Now define

ω∗(n) = inf {ω : ηh(Q, ω) = ζ(Q, B1) for all Q ∈ Sn} ,

which may be regarded as the worst case complexity to solve a class of binary QOPs,
{QOP(Q, B1) : Q ∈ Sn} by the hierarchy of SDP relaxation method. If the conjecture
above is true, then ⌈n/2⌉ ≤ ω∗(n) ≤ n. A more ambitious conjecture may be

• ω∗(n) = ⌈n/2⌉.

So far, we have not found any numerical counter example to this conjecture.
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5 Concluding remarks

We have provided binary QOP instances that are difficult to solve by SDP and DNN
relaxations. The instances are based on the max-cut problem of a graph with an odd
number of nodes and equal weight. The binary QOP takes a very simple form in the
sense that it does not involve any constraints other than requiring the variables binary.
In connection with the difficulty of solving these simple binary QOPs, it is extremely
interesting to mention that the randomized approximation algorithm using the standard
SDP relaxation given by Goemans and Williamson [4] for the max-cut problem attains
an optimal value of at least 0.87856 times the optimal value. Another problem known to
be very difficult to solve is the quadratic assignment problem (QAP). The difficulty in
this case rises from the size of the problem, too large to handle with available solution
methods on a regular computer. Compared to the QAP, the size of the binary QOP
instances presented in this paper is tiny, yet SDP and DNN fail on the problem. Thus,
any relaxation method that can approximately solve them can be regarded to have an
advantage over the other methods.

If the hierarchy of SDP relaxation is employed for the binary QOP instances, the
minimum relaxation order to solve them within high accuracy was numerically found to
be ω = ⌈n/2⌉. Since the size of the SDP relaxation in the hierarchy grows very rapidly
as ω increases, the binary QOP instances with a moderate size cannot be solved by the
hierarchy of SDP relaxation method.

Therefore, the binary QOP instances presented in this paper can serve as challenging
problems for developing conic relaxation methods in the future.
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