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Abstract. In Part I of a series of study on Lagrangian-conic relaxations, we introduce
a unified framework for conic and Lagrangian-conic relaxations of quadratic optimization
problems (QOPs) and polynomial optimization problems (POPs). The framework is con-
structed with a linear conic optimization problem (COP) in a finite dimensional vector
space endowed with an inner product, where the cone used is not necessarily convex. By
imposing a copositive condition on the COP, we establish fundamental theoretical results for
the COP, its conic relaxations, its Lagrangian-conic relaxations, and their duals. A linearly
constrained QOP with complementarity constraints and a general POP can be reduced to
the COP satisfying the copositivity condition. Then, the conic and Lagrangian-conic relax-
ations of such a QOP and POP are discussed in a unified manner. The Lagrangian-conic
relaxation takes one of the simplest forms, which is very useful to design efficient numerical
methods. As for applications of the framework, we discuss the completely positive pro-
gramming relaxation, and a sparse doubly nonnegative relaxation for a linearly constrained
QOP with complementarity constraints. The unified framework is applied to general POPs
in Part II.
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1 Introduction

We present a unified framework for conic and Lagrangian-conic relaxations of quadratic
optimization problems (QOPs) and polynomial optimization problems (POPs). The unified
framework is described as a primal-dual pair of conic (not necessarily convex) optimization
problems (COPs) as follows:

ζp(K) := inf

{
〈Q0, X〉

∣∣∣∣ X ∈ K, 〈H0, X〉 = 1,
〈Qk, X〉 = 0 (k = 1, 2, . . . , m)

}
(1)

ζd(K) := sup

{
z0

∣∣∣∣∣ Q0 +
m∑

k=1

Qkzk − H0z0 ∈ K∗

}
(2)

where K is a (not necessarily convex nor closed) cone in a finite dimensional vector space
V endowed with an inner product 〈·, ·〉 and its induced norm ‖ · ‖. When applying this
framework to QOPs and POPs, we will take V to be the linear space of symmetric matrices
with appropriate dimension. (This is why capital letters are used to denote vectors as Q and
X in the space V.) The primal COP minimizes a linear objective function 〈Q0, X〉 subject
to three types of constraints, a nonhomogeneous linear equality 〈H0, X〉 = 1, multiple
homogeneous linear equalities 〈Qk, X〉 = 0 (k = 1, 2, . . . , m), and a cone constraint X ∈ K.
We note that X denotes a variable vector in V, and H0 and Qk (k = 1, 2, . . . , m) are
constant vectors in V. A copositivity condition is imposed on H0 and Qk (k = 1, 2, . . . , m):
O 6= H0 ∈ K∗ and Qk ∈ K∗ (k = 1, 2, . . . , m) (Condition (I) in Section 2.3), where K∗

denotes the dual of K, i.e., K∗ = {Y ∈ V : 〈X, Y 〉 ≥ 0 for every X ∈ K}. We assume that
if the feasible region of (1) is empty, then ζp(K) = ∞, and that if the feasible region of (2)
is empty, then ζd(K) = −∞. By standard argument, we have the following weak duality
result: ζd(K) ≤ ζp(K).

Using this unified framework, we develop fundamental theoretical properties of the
conic and Lagrangian-conic relaxations of QOPs and POPs in a unified manner. The
Lagrangian-conic relaxation presented in this paper for QOPs and POPs is a generaliza-
tion of the Lagrangian completely positive programming (Lagrangian-CPP) relaxation and
the Lagrangian-doubly nonnegative (Lagrangian-DNN) relaxation for a class of linearly
constrained QOPs in continuous and binary variables [3, 19]. The unified framework, its
theoretical properties, and its applications to a class of linearly constrained QOPs with
complementarity constraints are discussed in Part I, and applications of the framework to
general POPs will be presented in Part II.

The copositive programming and the CPP relaxations (or formulations) have been im-
portant areas of active research for nonconvex QOPs in recent years; see the survey paper
[9] and the references therein. In particular, Burer [8] formulated a class of linearly con-
strained QOPs in nonnegative continuous variables and binary variables as CPP problems,
and showed that a QOP in the class has the same optimal objective value as its CPP formu-
lation under certain assumptions. This result of Burer was extended to more general QOPs
by [2, 10], and to POPs by [4, 25].

Indeed, many of those QOPs and POPs can be reformulated in the primal COP with
a nonconvex cone K satisfying the copositivitiy condition. This realization has led to the
study on the unified framework in which the equivalence between the optimal values of the
original QOP (or POP) and its CPP formulation (or its extended CPP formulation) can

2



be discussed as the equivalence ζp(co K) = ζp(K), where co K denotes the convex hull of
K. We provide a necessary and sufficient condition for this equivalence, which is one of the
main theoretical contributions of this paper.

Although Burer’s CPP formulation of a QOP and its extension are very strong in theory,
they are numerically intractable. The computational difficulty arises from the numerical in-
tractability of determining whether a given matrix lies in the CPP cone, which is known
to be co-NP-complete [22]. If the CPP cone is replaced by the doubly nonnegative (DNN)
cone, a numerically tractable DNN relaxation is obtained [14, 30]. Solving the resulting
DNN relaxation by a primal-dual interior-point method [7, 12, 27, 28], however, is known
to be numerically inefficient, especially for large scale problems. More precisely, the DNN
relaxation includes the nonnegativity constraints for the elements of the variable matrix
in addition to the semidefinite constraint of the variable matrix. Thus, the number of the
nonnegativity constraints grows quadratically as the size of the matrix variable increases.
Many software packages currently available for nonconvex QOPs and POPs, for instance,
GloptiPoly and SparsePOP [16, 29], are based on solving semidefinite relaxations of the
problems using a primal-dual interior-point method. The size of the DNN relaxation prob-
lems that can be handled by a primal-dual interior point method is limited, particularly
for POPs. Thus, it is essential to develop an efficient and effective numerical method for
large-scale QOPs and POPs.

The Lagrangian-DNN relaxation of linearly constrained QOPs with complementarity
constraints and a solution method using first-order algorithms were proposed in [19] to
improve the numerical efficiency of solving the DNN relaxation of a class of linearly con-
strained QOPs with complementarity constraints. In fact, the Lagrangian-DNN relaxation
was suggested originally in [3] as a numerically tractable method for the numerically in-
tractable Lagrangian-CPP relaxation. The numerical results in [19] demonstrated that it
was very efficient to solve the Lagrangian-DNN relaxation of the tested problems, including
maximum stable set and quadratic assignment problems, by a bisection method combined
with the proximal alternating direction multiplier method [11] and the accelerated proximal
gradient method [6].

The primary goal of the current series of study is to develop an effective and efficient nu-
merical method based on the Lagrangian-conic relaxation of large-scale QOPs and POPs,
by generalizing the idea in the Lagrangian-DNN relaxation combined with first-order al-
gorithms [19]. In the unified framework, we can reduce the primal COP satisfying the
copositivity condition to an equivalent, but simpler COP; see Lemma 2.1. We note that the
primal COP corresponds to the DNN relaxation of a nonconvex QOP when the framework
is applied to QOPs. The precise forms of the simplified COP corresponding to (1) and (2)
are given by

ηp(K) := inf {〈Q0, X〉 | 〈H0, X〉 = 1, 〈H1, X〉 = 0, X ∈ K} (3)

ηd(K) := sup
{
y0

∣∣ Q0 + H1y1 − H0y0 ∈ K∗ } , (4)

where the homogeneous linear equality constraints 〈Qk, X〉 = 0 (k = 1, . . . , m) in (1) are
combined into a single a homogeneous linear equality 〈H1, X〉 = 0, with H1 =

∑m
k=1 Qk.

When the cone K is closed and convex as in the cases of DNN and SDP cones, a primal-
dual pair of Lagrangian-conic relaxation problems of the original COP can be obtained by
applying the Lagrangian relaxation to the simplified COP. The primal Lagrangian-conic

3



relaxation problem minimizes the objective function 〈Q0 + λH1, X〉 subject to the single
linear equality 〈H0, X〉 = 1 and the cone constraint X ∈ K, where λ ∈ R denotes a
Lagrangian multiplier (or parameter). Let ηp(λ, K) and ηd(λ, K) denote the optimal values
of the Lagrangian-conic relaxation problem with a parameter λ and its dual, respectively.
The dual Lagraingian-conic relaxation problem can be further reduced to a problem of
minimizing y0 subject to a single equality constraint gλ(y0) = 0 in a single real variable y0,
where gλ(y0) is defined as the norm of the metric projection ΠK(−(Q0 + λH1 − y0H

0)) of
−(Q0+λH1−y0H

0) onto K. The primal-dual pair of Lagrangian-conic relaxation problems
satisfy nice properties listed as follows:

• The optimal value ηp(λ, K) = ηd(λ, K) monotonically converges to the optimal value
ζd(K) of the original dual COP (or the optimal value of the dual of the DNN relaxation
of a nonconvex QOP in the QOP case) as λ tends to ∞.

• For every λ ∈ R, the primal problem is strictly feasible (i.e., there exists a primal
feasible solution that lies in the relative interior of the cone K), and has an optimal
solution with the optimal value ηp(λ, K) = ηd(λ, K) (the strong duality).

• gλ : R → R is a nonnegative continuous function such that gλ(y0) = 0 if and only if
y0 ≤ ηd(λ, K).

• gλ is continuously differentiable, strictly increasing and convex in the interval (ηd(λ, K),
∞), and its derivative can be computed easily from ΠK(−(Q0 + λH1 − y0H

0)).

The first property ensures that solving the Lagrangian-conic relaxation with a sufficiently
large λ can generate a tight lower bound for the optimal value of the original COP. The rest
of the properties provide the theoretical support to design efficient and stable numerical
methods for solving the Lagrangian-conic relaxation problem and its dual. In fact, it was
the first three properties that made it possible to apply a bisection method combined with
first-order methods efficiently, stably, and effectively to the Lagrangian-DNN relaxation of
QOPs in [19]. In addition to the bisection method, the last property makes it possible
to apply an 1-dimensional Newton iteration from any initial point y0 with gλ(y0) > 0 for
computing ηd(λ, K) = max {y0 : gλ(y0) = 0}. Furthermore the Newton iteration generates
as a byproduct, a sequence of feasible solutions of the primal problem whose objective
values tend to ηp(λ, K) = ηd(λ, K). The numerical efficiency can be further improved if the
method proposed by [13, 23] for exploiting structured sparsity in SDPs is incorporated into
the Lagrangian-DNN relaxations for QOPs.

The unified framework described in Section 2 consists of three primal-dual pairs of COPs
over a (not necessarily convex nor closed) cone K. The first pair is the primal-dual COPs
(1) and (2) with the objective values ζp(K) and ζd(K), and it will be used for a unified
model to represent nonconvex QOPs and general POPs as well as their convex relaxations
in the subsequent discussions. The second pair is the simplified COPs (3) and (4) with the
objective values ηp(K) and ηd(K). It is equivalent to the first one under the copositivity
condition (Condition (I)). The third pair is the Lagrangian-conic relaxation of (3) and (4)
with the objective values ηp(λ, K) and ηp(λ, K). We discuss the relations among their
optimal values ζp(K), ζd(K), ηp(K), ηd(K), ηp(λ, K) and ηd(λ, K) in details.

In Section 3, the COP satisfying the copositive condition is considered for a nonconvex
cone K. We establish a necessary and sufficient condition for ζp(K) = ζd(co K). This
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identity indicates that the optimal value of the COP over the nonconvex cone K is attained
by its convexification, i.e., by the COP with replacing the nonconvex cone K by its convex
hull co K. The result in Section 3 is applied to QOPs in Section 4.2 and to POPs in Section
3, Part II [5].

In Section 4, we convert the dual Lagrangian-conic relaxation problem into the above
mentioned problem in a single real variable y0, and present some fundamental properties on
the function gλ for the bisection and the 1-dimensional Newton methods.

In Section 5, we deal with a class of linearly constrained QOPs with complementarity
constraints, and derive some fundamental properties of its CPP and DNN relaxations of
a QOP in the class. The results in this section are closely related to, but more general
than, the ones obtained in [19] where the same class of QOPs was studied. In Section 6, we
exploit structured sparsity in the DNN and the Lagrangian-DNN relaxations for the class
of linearly constrained QOPs with complementarity constraints. Section 7 is devoted to
concluding remarks.

2 A class of conic optimization problems and their re-

laxations

We note that conic optimization problems described in this section is not necessarily convex.

2.1 Notation and symbols

Let R denote the set of real numbers, R+ the set of nonnegative real numbers, and Z+

the set of nonnegative integers. We use the following notation and symbols throughout the
paper.

V = a finite dimensional vector space endowed with an inner product

〈Q, X〉 and a norm ‖X‖ =
√
〈X, X〉 for every Q, X ∈ V,

K = a nonempty (but not necessarily convex nor closed) cone in V,

L = the subspace of V generated by K,

(the minimal subspace of V that contains K),

K∗ = {Y ∈ V : 〈X, Y 〉 ≥ 0 for every X ∈ K} (the dual of K),

co K = the convex hull of K,

H0, Qk ∈ V (k = 0, 1, 2, . . . ,m),

F (K) =

{
X ∈ V

∣∣∣∣ X ∈ K, 〈H0, X〉 = 1,
〈Qk, X〉 = 0 (k = 1, 2, . . . , m)

}
.

2.2 Combining the homogeneous equalities in a single equality

We impose the following condition on the coefficient vectors H0 and Qk (k = 1, 2, . . . , m)
of the equality constraints in (1).
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Condition (I) O 6= H0 ∈ K∗, Qk ∈ K∗ (k = 1, 2, . . . , m).

Lemma 2.1. Suppose that Condition (I) is satisfied. Then, the following assertions hold.

(i) X ∈ F (K) if and only if

X ∈ K, 〈H0, X〉 = 1, 〈H1, X〉 = 0, (5)

Hence, F (K) =
{
X ∈ K : 〈H0, X〉 = 1, 〈H1, X〉 = 0

}
.

(ii) ζp(K) = ηp(K).

(iii) ζd(K) = ηd(K).

Proof. We prove (i) and (iii) since (ii) follows directly from (i). (i) The only if part follows
from the definitions of F (K) and H1. Assume that (5) holds. Thus,

0 = 〈H1, X〉 =
m∑

k=1

〈Qk, X〉.

By Condition (I) and X ∈ K, we know that 〈Qk, X〉 ≥ 0 (k = 1, 2, . . . , m). Therefore,
〈Qk, X〉 = 0 (k = 1, 2, . . . , m), and X ∈ F (K).

(iii) If (y0, y1) is a feasible solution of (4) with the objective value y0, then (z0, z1, . . . , zm)
= (y0, y1, . . . , y1) is a feasible solution of (2) with the same objective value. Conversely if
(z0, z1, . . . , zm) is a feasible solution of (2) with the objective value z0, then

K∗ 3 Q0 +
m∑

k=1

Qkzk − H0z0 +
m∑

k=1

Qk

(
max

j
zj − zk

)
(by Condition (I))

= Q0 +

(
m∑

k=1

Qk

)
max

j
zj − H0z0 = Q0 + H1 max

j
zj − H0z0.

Thus, (y0, y1) = (z0, maxj zj) is a feasible solution of (4) with the same objective value.
Consequently, ζd(K) = ηd(K) holds.

2.3 A Lagrangian-conic relaxation and its dual

Applying the Lagrangian relaxation to the simplified COP (3), we obtain the Lagrangian-
conic relaxation of the COP (1) and its dual

ηp(λ, K) := inf
{
〈Q0 + λH1, X〉

∣∣ X ∈ K, 〈H0, X〉 = 1
}

, (6)

ηd(λ, K) := sup
{
y0

∣∣ Q0 + λH1 − H0y0 ∈ K∗ } , (7)

where λ ∈ R denotes the Lagrangian multiplier for the homogeneous equality 〈H1, X〉 = 0
in (3).

Lemma 2.2. Suppose that Condition (I) is satisfied. Then, the following assertions hold.

(i) ηd(λ, K) ≤ ηp(λ, K) for every λ ∈ R.
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(ii) ηp(λ1, K) ≤ ηp(λ2, K) ≤ ηp(K) if λ1 < λ2.

(iii) ηd(λ1, K) ≤ ηd(λ2, K) ≤ ηd(K) if λ1 < λ2, and limλ→∞ ηd(λ, K) = ηd(K).

Proof. Since the weak duality relation (i) is straightforward, we only prove assertions (ii)
and (iii).

(ii) The first inequality follows from the inequality 〈H1, X〉 ≥ 0 for every X ∈ K. To
show the second inequality, suppose that X ∈ K is a feasible solution of (3) with objective
value 〈Q0, X〉. Then, it is a feasible solution of (6) with the same objective value for any
λ ∈ R. Hence ηp(λ2, K) ≤ ηp(K).

(iii) Suppose that λ1 < λ2. If y0 is a feasible solution of (7) with λ = λ1, then it is a
feasible solution of (7) with λ = λ2 because H1 ∈ K∗. This implies the first inequality. To
show the second inequality, suppose that y0 is a feasible solution of (7) with λ = λ2. Then
(y0, y1) with y1 = λ2 is a feasible solution of (4), and the second inequality follows. If (y0, y1)
is a feasible solution of (4), then y0 is a feasible solution of (7) with λ = y1. Therefore, we
obtain limλ→∞ ηd(λ, K) ≥ ηd(K).

2.4 Strong duality relations

We assume the following condition to discuss the strong duality between (6) and (7), and
between (1) and (2) in this subsection.

Condition (II) K is closed and convex.

Lemma 2.3. Suppose that Conditions (I) and (II) are satisfied. Then, the following asser-
tions hold.

(i) ηd(λ, K) = ηp(λ, K) for every λ ∈ R. Moreover, if ηp(λ, K) is finite, then (7) has an
optimal solution with the objective value ηp(λ, K).

(ii)
(
ηd(λ, K) = ηp(λ, K)

)
↑= ηd(K) = ζd(K). Here ↑ means “increases monotonically as

λ → ∞”.

Proof. Assertion (ii) follows from assertion (i) and Lemma 2.2. Thus, we only have to show
(i). Let λ ∈ R be fixed. We know by the weak duality that ηd(λ, K) ≤ ηp(λ, K). By
O 6= H0 ∈ K∗ from Condition (I), ηp(λ, K) < ∞. If ηp(λ, K) = −∞, then it is obvious
that the equality holds. Thus, we assume that ηp(λ, K) takes a finite value, and prove the
assertion by the duality theorem. We notice, however, that K may not have an interior
point with respect to V. In this case, the standard duality theorem can not be directly used
(see, for example, Theorem 4.2.1 in [24]). Let L denote the subspace of V generated by K,
i.e., the minimal subspace of V that contains K. Then K has an interior-point with respect
to L. Now, (6) and its dual (7) can be converted into conic optimization problems within
the space L:

η̂p(λ, K) := inf
{
〈Q̂

0
+ λĤ

1
, X〉

∣∣∣ X ∈ K, 〈Ĥ
0
, X〉 = 1

}
, (8)

η̂d(λ, K) := sup
{

y0 | Q̂
0
+ λĤ

1
− Ĥ

0
y0 ∈ K∗ ∩ L

}
, (9)
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where Q̂
0
, Ĥ

0
and Ĥ

1
are the metric projections of Q0, H0 and H1 onto L, respectively.

We can easily see that (6) is equivalent to (8). We also see that

Q0 + λH1 − H0y0 ∈ K∗

i .e., 〈Q0 + λH1 − H0y0, X〉 ≥ 0 for every X ∈ K

if and only if

Q̂
0
+ λĤ

1
− Ĥ

0
y0 ∈ K∗ ∩ L

i .e., 〈Q̂
0
+ λĤ

1
− Ĥ

0
y0, X〉 ≥ 0 for every X ∈ K ∩ L.

Thus, (7) is equivalent to (9). It suffices to show by the duality theorem that η̂p(λ, K) =

η̂d(λ, K). By O 6= H0 ∈ K∗ from Condition (I), there exists an X̂ ∈ K such that 〈Ĥ
0
, X̂〉 >

0. We can take such an X̂ from the interior of K with respect to L. Then, X̂/〈Ĥ
0
, X̂〉 is

an interior feasible solution of (8). Recall that η̂p(λ, K) = ηp(λ, K) is assumed to be finite.
By the duality theorem, the dual problem (9) (hence (7)) has an optimal solution with the
objective value η̂p(λ, K).

The following lemma shows the difficulty of proving the strong duality for the pair of
the problems (1) and (2) and the pair of the problems (3) and (4) in the same way as in
the proof above for the pair of (6) and (7) by the duality theorem.

Lemma 2.4. Suppose that Conditions (I) and (II) are satisfied and that F (K) is a proper
subset of

{
X ∈ K : 〈H0, X〉 = 1

}
. Then, the feasible region F (K) of (1) (and (3)) contains

no interior point of K with respect to L (= the subspace of V generated by K).

Proof. We assume that F (K) 6= ∅ since otherwise the assertion is trivial. By Condition (I)
and the assumption that F (K) is a proper subset of

{
X ∈ K : 〈H0, X〉 = 1

}
, there exists

k ∈ {1, 2, . . . , m} and X ∈ K such that 〈Qk, X〉 > 0. Let Q̂
k

be the metric projection

of Qk onto L. Then, Q̂
k
∈ K∗ ∩ L and 〈Q̂

k
, X〉 = 〈Qk, X〉 > 0. Let X̃ be an arbitrary

interior point of K with respect to L. Then, there exists a positive number ε such that

X̃ − εQ̂
k

remains in K. Thus, 〈Q̂
k
, X̃ − εQ̂

k
〉 ≥ 0. It follows that

〈Qk, X̃〉 = 〈Q̂
k
, X̃〉 > 〈Q̂

k
, X̃〉 − ε〈Q̂

k
, Q̂

k
〉 = 〈Q̂

k
, X̃ − εQ̂

k
〉 ≥ 0.

Therefore, any interior point of K with respect to L cannot be contained in F (K).

We need an additional condition to ensure the strong duality between (1) and (2).

Condition (III)
{

X ∈ F (K) : 〈Q0, X〉 ≤ ζ̃
}

is nonempty and bounded for some ζ̃ ∈ R.

Lemma 2.5. Suppose that Conditions (I), (II) and (III) are satisfied. Then, the following
assertions hold.

(i) lim
λ→∞

ηp(λ, K) = ηp(K).

(ii)
(
ηd(λ, K) = ηp(λ, K)

)
↑ = ηd(K) = ζd(K) = ηp(K) = ζp(K).
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Proof. Assertion (ii) follows from assertion (i) and Lemma 2.3, thus we only prove (i). We
first show that the set L(λ) = {X ∈ K : 〈H0, X〉 = 1, 〈Q0 + λH1, X〉 ≤ ζ̃} is nonempty,
closed, and bounded (hence −∞ < ηp(λ, K)) for every sufficiently large λ. The closedness
of L(λ) follows from Condition (II). By Conditions (I) and (III), we see that

∅ 6=
{

X ∈ F (K) : 〈Q0, X〉 ≤ ζ̃
}
⊂ L(λ2) ⊂ L(λ1) if 0 < λ1 < λ2.

Next, we show that L(λ) is bounded for every sufficiently large λ > 0. Assume on the
contrary that there exists a sequence

{
(λk,Xk) ∈ R+ × K

}
such that Xk ∈ L(λk), 0 <

λk → ∞ and 0 < ‖Xk‖ → ∞ as k → ∞. Then, we have

Xk

‖Xk‖
∈ K, 〈H1,

Xk

‖Xk‖
〉 ≥ 0, 〈Q0,

Xk

‖Xk‖
〉 ≤ ζ̃

‖Xk‖
,

〈H0,
Xk

‖Xk‖
〉 =

1

‖Xk‖
and 〈Q0,

Xk

λk‖Xk‖
〉 + 〈H1,

Xk

‖Xk‖
〉 ≤ ζ̃

λk‖Xk‖
.

We may assume without loss of generality that X/‖Xk‖ converges to a nonzero D ∈ K.
By taking the limit as k → ∞, we obtain that

O 6= D ∈ K, 〈H0, D〉 = 0, 〈H1, D〉 = 0, 〈Q0, D〉 ≤ 0.

Thus, if we choose an X from the set
{

X ∈ F (K) : 〈Q0, X〉 ≤ ζ̃
}

, then {X + µD : µ ≥ 0}
forms an unbounded ray contained in the set by Condition (II). This contradicts Condition
(III). Therefore, we have shown that L(λ̃) is bounded for some sufficiently large λ̃ > 0 and
∅ 6= L(λ) ⊂ L(λ̃) for every λ ≥ λ̃.

Let {λk ≥ λ̃} be a divergent sequence to ∞. Since the nonempty and closed level set
L(λk) is contained in a bounded set L(λ̃), the problem (6) with each λ = λk has an optimal
solution Xk with the objective value ηp(λk) = 〈Q0 + λkH1, Xk〉 in the level set L(λ̃).

We may assume without loss of generality that Xk converges to some X̃ ∈ L(λ̃). Since
ηp(λk, K) ≤ ηp(K) by Lemma 2.2, it follows that

〈H0, Xk〉 = 1, 〈Q
0

λk
+ H1, Xk〉 ≤ ηp(K)

λk
, 〈H1, Xk〉 ≥ 0, 〈Q0, Xk〉 ≤ ηp(K).

By taking the limit as k → ∞, we obtain that

X̃ ∈ K, 〈H0, X̃〉 = 1, 〈H1, X̃〉 = 0, 〈Q0, X̃〉 ≤ ηp(K).

This implies that X̃ is an optimal solution of the problem (3), hence, 〈Q0, Xk〉 converges
to ηp(K) as k → ∞. We also see from

〈Q0, Xk〉 ≤ ηp(λk, K) = 〈Q0 + λkH1, Xk〉 ≤ ηp(K)

that ηp(λk, K) converges to ηp(K) as k → ∞. Thus, we have shown assertion (i).
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Alternatively, the strong duality can be established by incorporating the linear constraint
〈H1, X〉 = 0 into the cone K for the problem (3). Define M = {X ∈ V : 〈H1, X〉 = 0

}
and K̃ = K ∩ M, and consider the following primal-dual pair:

η̃p = inf
{
〈Q0, X〉

∣∣∣X ∈ K̃, 〈H0, X〉 = 1
}

.

η̃d = sup
{

y0

∣∣∣ Q0 − H0y0 ∈ K̃
∗}

.

By the same argument in the proof of Lemma 2.3, we can prove that there is no duality gap
between these problems, i.e., η̃p = η̃d, and that if their common optimal value is finite, then
the dual problem has an optimal solution. Some readers may find this proof more clear than
the one presented in Lemma 2.5. However, it should be mentioned that the dual problem
is not equivalent to (4) although the primal problem is equivalent to (3). In fact, we know

that K̃
∗

= cl(K∗ + M⊥) while (4) is equivalent to the dual problem above with replacing K̃
∗

by K∗ + M⊥. In general, K∗ + M⊥ may not be closed and may be a proper subset of K̃
∗
.

Such an example was given in Section 3.3 of [3].
The following theorem summarizes the results in this section.

Theorem 2.1.

(i) ηd(λ, K)↑ = ηd(K) = ζd(K) ≤ ηp(K) = ζp(K) and
(
ηd(λ, K) ≤ ηp(λ, K)

)
↑ ≤ ηp(K)

under Condition (I).

(ii)
(
ηd(λ, K) = ηp(λ, K)

)
↑ = ηd(K) = ζd(K) ≤ ηp(K) = ζp(K) under Conditions (I) and

(II).

(iii)
(
ηd(λ, K) = ηp(λ, K)

)
↑ = ηd(K) = ζd(K) = ηp(K) = ζp(K) under Conditions (I), (II)

and (III).

3 Convexification

We focus on the COP (1) with nonconvex cone Γ in V in this section. Assuming that Con-
dition (I) holds for K = Γ, we drive a necessary and sufficient condition for the equivalence
between COP (1) with K = Γ and COP (1) with K = co Γ.

Since Γ ⊂ co Γ, we immediately see that ζp(Γ) ≥ ζp(co Γ). Suppose that Condition (I) is
satisfied for K = Γ. Then it also holds for K = co Γ. As a result, we can consistently define
the simplified COP (3), the Lagrangian-conic relaxation (8) and their duals for K = co Γ,
and all results established in Lemmas 2.1, 2.2 and 2.3 remain valid for K = co Γ.

Let

∆1 =
{
X ∈ Γ : 〈H0, X〉 = 1

}
and ∆ = {µX : µ ≥ 0, X ∈ ∆1} . (10)

We assume throughout this section that ∆1 6= ∅, because otherwise COP (1) with K = Γ
is obviously infeasible. Then, ∆ forms a cone in V. Suppose that Condition (I) holds
for K = Γ. Then, 〈H0, X〉 ≥ 0 for every X ∈ Γ. This geometrically implies that{
X ∈ V : 〈H0, X〉 = 0

}
forms a supporting hyperplane for the cone Γ. We can easily

verify that

∆ =
{
X ∈ Γ : 〈H0, X〉 > 0

}
∪ {O}, ∆ ∩ ∆0 = {O} and Γ = ∆ ∪ ∆0,
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where ∆0 = Γ ∩
{
X ∈ V : 〈H0, X〉 = 0

}
=
{
X ∈ Γ : 〈H0, X〉 = 0

}
. Since Γ ⊃ ∆, even

if the cone K = Γ is replaced by the cone K = ∆, Condition (I) is satisfied. Thus, all
assertions of Lemmas 2.1, 2.2 and 2.3 remain valid for K = ∆.

To characterize the convexification of COP (1) with K = Γ, we introduce the following
COP:

ζp
0 (K) = inf

{
〈Q0, X〉

∣∣ X ∈ F0(K)
}

, (11)

where F0(K) =
{
X ∈ K : 〈H0, X〉 = 0, 〈Qk, X〉 = 0 (k = 1, 2, . . . , m)

}
and K denotes a

cone in V. We will assume Condition (I) and the following condition for K = Γ to ensure
ζp(co Γ) = ζp(Γ) in Lemma 3.1.

Condition (IV) 〈Q0, X〉 ≥ 0 for every X ∈ F0(K).

Lemma 3.1. Assume that Condition (I) holds. Then,

ζp
0 (K) = ζp

0 (co K) =

{
0 if Condition (IV) holds,
−∞ otherwise.

Proof. We first prove that Condition (IV) is equivalent to the condition

〈Q0, X〉 ≥ 0 for every X ∈ F0(co K). (12)

Since the condition above implies Condition (IV), we only need to show that Condition
(IV) implies the condition above. Assume that X ∈ F0(co K). Then there are X i ∈ K
(i = 1, 2, . . . , r) such that

X =
r∑

i=1

X i, 0 = 〈H0, X〉 =
r∑

i=1

〈H0, X i〉,

0 = 〈Qk, X〉 =
r∑

i=1

〈Qk, X i〉 (k = 1, 2, . . . , m).

By Condition (I), we know that 〈H0, X i〉 ≥ 0 and 〈Qk, X i〉 ≥ 0 (i = 1, 2, . . . , r, k =
1, 2, . . . , m). Thus, each X i (i = 1, 2, . . . , r) satisfies

X i ∈ K, 〈H0, X i〉 = 0, 〈Qk, X i〉 = 0 (k = 1, 2, . . . , m),

or X i ∈ F0(K) (i = 1, 2, . . . , r). By Condition (IV), 〈Q0, X〉 =
∑r

i=1〈Q
0, X i〉 ≥ 0 holds.

Since the objective function of the problem (11) is linear and its feasible region forms a
cone, we know that ζp

0 (K) = 0 or −∞ and that ζp
0 (K) = 0 if and only if the objective value

is nonnegative for all feasible solutions, i.e., Condition (IV) holds. Similarly, ζp
0 (co K) = 0

or −∞, and ζp
0 (co K) = 0 if and only if the condition (12), which has been shown to be

equivalent to Condition (IV), holds.

Before presenting the main result of this section, we show a simple illustrative example.

Example 3.1. Let V = R2, Q0 = (0, α), H0 = (1, 0), m = 0, and

Γ =
{
(x1, x2) ∈ R2

+ : x2 − x1 = 0 or x1 = 0
}

,
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where α denotes a parameter to be specified. Then, COP (1) with K = Γ is of the form

ζp(Γ) = inf
{
αx1

∣∣ (x1, x2) ∈ Γ, 〈H0, (x1, x2)〉 = x1 = 1
}

= inf
{
αx1

∣∣ (x1, x2) ∈ R2
+, x2 − x1 = 0, x1 = 1

}
.

Thus, the feasible region of COP (1) with K = Γ consists of a single point x = (1, 1). We
further see that

∆1 =
{
(x1, x2) ∈ R2

+ : x1 = x2 = 1
}

,

∆0 = F0(Γ) =
{
(x1, x2) ∈ R2

+ : x1 = 0
}

,

co ∆ = ∆ =
{
(x1, x2) ∈ R2

+ : x2 − x1 = 0
}

,

co Γ =
{
(x1, x2) ∈ R2

+ : x2 − x1 ≥ 0
}

,

ζp
0 (Γ) = inf

{
αx2

∣∣ (x1, x2) ∈ R2
+, x1 = 0

}
,

ζp(co Γ) = inf
{
αx2

∣∣ (x1, x2) ∈ R2
+, x2 − x1 ≥ 0, x1 = 1

}
.

If α < 0, then Condition (IV) is not satisfied for K = Γ, and −∞ = ζp(co Γ) < ζp(co ∆) =
ζp(Γ) = ζp(∆) = α. Otherwise, Condition (IV) is satisfied for K = Γ, and ζp(co Γ) =
ζp(co ∆) = ζp(Γ) = ζp(∆) = α.

Theorem 3.1. Suppose that Condition (I) holds for K = Γ and that ∆1 6= ∅. Then,

(i) F (Γ) = F (∆). Thus, ζp(Γ) = ζp(∆).

(ii) co F (Γ) = F (co ∆) and ζp(Γ) = ζp(co ∆).

(iii) ζp(co Γ) = ζp(Γ) + ζp
0 (Γ).

(iv) Assume that ζp(Γ) finite. Then,

ζp(co Γ) =

{
ζp(Γ) if Condition (IV) holds for K = Γ,
−∞ otherwise.

Proof. (i) Since Γ = ∆ ∪∆0 and F (∆0) = ∅, we know that F (Γ) = F (∆ ∪∆0) = F (∆).
(ii) Since F (co ∆) is a convex set containing F (∆) and F (Γ) = F (∆) by (i) , we obtain

that co F (Γ) = co F (∆) ⊂ F (co ∆). To show the converse inclusion relation, suppose that
X ∈ F (co ∆). Then,

O 6= X =
r∑

i=1

X i, O 6= X i ∈ ∆ (i = 1, 2, . . . , r),

1 = 〈H0, X〉 =
r∑

i=1

〈H0, X i〉, 0 = 〈Qk, X〉 =
r∑

i=1

〈Qk, X i〉 (k = 1, 2, . . . , m)

for some X i ∈ ∆ (i = 1, 2, . . . , m). By the definition of ∆, O 6= X i = µiY i for some µi > 0
and Y i ∈ ∆1 (i = 1, 2, . . . , r). Thus,

X =
r∑

i=1

µiY i, Y i ∈ ∆1 ⊂ Γ, 〈H0, Y i〉 = 1 (i = 1, 2, . . . , r),

1 =
r∑

i=1

〈H0, X i〉 =
r∑

i=1

µi, 0 =
r∑

i=1

µi〈Qk, Y i〉 (k = 1, 2, . . . , m).

12



Since Qk ∈ Γ∗ (k = 1, 2, . . . ,m) by Condition (I) and Y i ∈ Γ (i = 1, 2, . . . , r), we see that
〈Qk, Y i〉 ≥ 0 (k = 1, 2, . . . , m, i = 1, 2, . . . , r). Hence the last equality above is equivalent
to 〈Qk, Y i〉 = 0 (k = 1, 2, . . . , m, i = 1, 2, . . . , r). It follows that Y i ∈ F (Γ) (i = 1, 2, . . . , r)
and X ∈ co F (Γ) = co F (∆). Thus, we have shown that co F (∆) ⊃ F (co ∆). Since the
objective function is linear, we obtain that

ζp(co ∆) = inf {〈Q0, X〉 | X ∈ F (co ∆)}
= inf {〈Q0, X〉 | X ∈ co F (Γ)} = ζp(Γ).

(iii) We first prove that

co Γ = co ∆ + co ∆0. (13)

Recall that Γ, ∆ and ∆0 are all nonempty cones. Let X ∈ co ∆+co ∆0. Then there exist
Y i ∈ ∆ (i = 1, 2, . . . , p) and Zj ∈ ∆0 (j = 1, 2, . . . , q) such that X =

∑p
i=1 Y i +

∑q
j=1 Zj.

Since Γ = ∆ ∪ ∆0, we obtain that X ∈ co Γ. Now suppose that X ∈ co Γ. Then there
exist X i ∈ Γ (i = 1, 2, . . . , p) such that X =

∑p
i=1 X i. Let I+ = {i : 〈H0, X i〉 > 0} and

I0 = {i : 〈H0, X i〉 = 0}. Since 〈H0, X i〉 ≥ 0 (i = 1, 2, . . . , p) by Condition (I), we know
that I+ ∪ I0 = {1, 2, . . . , p} and I+ ∩ I0 = ∅. Hence X =

∑
i∈I+

X i +
∑

j∈I0
Xj. We also

see that X i = 〈H0, X i〉
(
X i/〈H0, X i〉

)
∈ ∆ (i ∈ I+) and Xj ∈ ∆0 (j ∈ I0). Therefore,

X ∈ co ∆ + co ∆0, and we have shown (13). We now observe that

ζp(co Γ) = inf

{
〈Q0, X〉

∣∣∣∣ X ∈ co Γ, 〈H0, X〉 = 1,
〈Qk, X〉 = 0 (k = 1, 2, . . . , m)

}

= inf

〈Q0, Y + Z〉

∣∣∣∣∣∣
Y ∈ co ∆, Z ∈ co ∆0,
〈H0, Y + Z〉 = 1,
〈Qk, Y + Z〉 = 0 (k = 1, 2, . . . , m)

 (by (13))

= inf

〈Q0, Y + Z〉

∣∣∣∣∣∣
Y ∈ co ∆, Z ∈ co ∆0,
〈H0, Y 〉 = 1,
〈Qk, Y 〉 = 0, 〈Qk, Z〉 = 0 (k = 1, 2, . . . ,m)


(since Y ∈ co ∆ ⊂ co Γ, Z ∈ co ∆0 ⊂ co Γ

and Qk ∈ Γ∗ (k = 1, 2, . . . , m))

= ζp(co ∆) + inf
{
〈Q0, Z〉

∣∣ Z ∈ co ∆0, 〈Qk, Z〉 = 0 (k = 1, 2, . . . , m)
}

= ζp(co ∆) + ζp
0 (co ∆0)

(since 〈H0, Z〉 = 0 for every Z ∈ co ∆0)

= ζp(Γ) + ζp
0 (∆0) (by assertion (ii) and Lemma 3.1)

= ζp(Γ) + ζp
0 (Γ) (by the definitions of ∆0 and ζp

0 (K)).

(iv) follows from assertion (iii) and Lemma 3.1.

In [2, 4], the following condition was assumed for nonconvex COP induced from various
classes of QOPs and POPs, in addition to Condition (I).
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Condition (IV)′

F0(K) ⊂ F (K)∞ =

{
D ∈ V :

∃ (µr,Xr) ∈ R+ × F (K) (r = 1, 2, . . . , );
(µr, µrXr) → (0, D) as r → ∞

}
(the horizontal cone generated by F (K))

Assume that Condition (I) holds for K = Γ and that ∆1 6= ∅. Then Condition (IV) is a
necessary and sufficient for the identity ζp(K) = ζp(co K), while Condition (IV)′ is merely
sufficient for the identity. Thus, Condition (IV)′ implies Condition (IV). In particular, if
Condition (IV)′ holds, then Condition (IV) is satisfied for any Q0 ∈ V. In fact, we can
prove the following lemma.

Lemma 3.2. Suppose that ζp(K) is finite. Then, Condition (IV) ′ implies Condition (IV)
for any Q0 ∈ V.

Proof. Assume on the contrary that 〈Q0, D〉 < 0 for some O 6= D ∈ F0(K). By Condition
(IV)′, there exists a sequence {(µr,Xr) ∈ R+ × F (K) : r = 1, 2, . . . } such that (µr, µrXr)
converges to (0,D) as r → ∞. Thus, there is a positive number δ such that 〈Q0, µrXr〉 <
−δ for every sufficiently large r. Therefore, 〈Q0, Xr〉 < −δ/µr → −∞ along a sequence
{Xr : r = 1, 2, . . . } of feasible solutions of COP (1). But this contradicts the assumption
that ζp(K) is finite.

By (ii) of Theorem 3.1, we may replace the cone K = Γ by K = ∆ in COP (1) to have
an equivalent COP whose convexification attains the same optimal objective value ζp(Γ)
without assuming Condition (IV) for the cone K = Γ. We note, however, that even when
Γ is closed, neither ∆ nor co ∆ is closed in general.

The results in this section are summarized as the following theorem.

Theorem 3.2. ζp(K) = ζp(co K) under Conditions (I) and (IV).

4 Numerical methods for solving the primal dual-pair

of COPs (6) and (7)

In this section, we take K to be a closed convex cone. For every G ∈ V, let Π(G) and
Π∗(G) denote the metric projection of G onto the cone K and K∗, respectively:

Π(G) = argmin {‖G − X‖ | X ∈ K} ,

Π∗(G) = argmin {‖G − Z‖ | Z ∈ K∗} .

In addition to Conditions (I), (II) and (III), we assume the following condition throughout
this section.

Condition (V) For every G ∈ V, Π(G) can be computed.

Under these four conditions, we briefly present two types of numerical methods for solving
the primal dual-pair of COPs (6) and (7) with a fixed λ. The first is based on a bisection
method, which was proposed in [19], and the second is an 1-dimensional Newton method,
which is newly proposed in this paper.
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Remark 4.1. When the unified framework is applied to QOPs in Section 5, and to POPs
in Section 4 of Part II [5], the cone K is given as the intersection of two closed convex cones
K1 and K2 in the space of symmetric matrices. In such cases, we can utilize the accelerated
proximal gradient method [6] to compute the metric projection onto K = K1 ∩K2 based on
those metric projections onto K1 and K2 as in Algorithm C of [19].

Let λ ∈ R be fixed arbitrarily. For every y0 ∈ R, define

Gλ(y0) = Q0 + λH1 − y0H
0,

gλ(y0) = min {‖Gλ(y0) − Z‖ | Z ∈ K∗} ,

Ẑλ(y0) = Π∗(Gλ(y0)), X̂λ(y0) = Π(−Gλ(y0))

By the decomposition theorem of Moreau [21], we know that

Ẑλ(y0) − X̂λ(y0) = Gλ(y0) and 〈X̂λ(y0), Ẑλ(y0)〉 = 0; (14)

hence

gλ(y0) = ‖Gλ(y0) − Ẑλ(y0)‖ = ‖X̂λ(y0)‖, (15)

(gλ(y0))
2 = ‖X̂λ(y0)‖2 = 〈H0, X̂λ(y0)〉y0 − 〈Q0 + λH1, X̂λ(y0)〉 (16)

hold for every y0. By definition, gλ(y0) ≥ 0 for every y0 ∈ R, and y0 is a feasible solution of
COP (7) if and only if gλ(y0) = 0. Therefore we can rewrite COP (7) as

ηd(λ, K) := sup {y0 | gλ(y0) = 0} .

Thus we can easily design a standard bracketing and bisection method for computing
ηd(λ, K). The details are omitted here. See [19].

To describe the 1-dimensional Newton method for computing ηd(λ, K), we need the
following lemma, which exhibits some fundamental properties of the function gλ.

Lemma 4.1. Let λ ∈ R be fixed.

(i) gλ : R → R+ is continuous and convex.

(ii) Assume that −∞ < ηd(λ, K) < y0. Then 〈H0, X̂λ(y0)〉 > 0.

(iii) Assume that −∞ < ηd(λ, K) < y0. Then dgλ(y0)/dy0 = 〈H0, X̂λ(y0)〉/gλ(y0) > 0;
hence gλ : (ηd(λ, K),∞) → R is continuously differentiable and strictly increasing.

Proof. Consider the distance function θ(x) = min {‖x − y‖ : y ∈ C} from x ∈ V to a closed
convex subset C of V and the metric projection P (x) = argmin {‖x − y‖ : y ∈ C} of x ∈ V
onto C in general. It is well-known and also easily proved that θ is convex and continuous
(see for example [17, 31]). It is also known that θ2(·) is continuously differentiable with
∇θ2(x) = 2(x − P (x)) (see for example [26, Proposition 2.2]).

Since gλ(y0) = θ(Gλ(y0)) and Gλ(y0) is linear with respect to y0 ∈ R, the assertion (i)
follows. In addition, we have that

dg2
λ(y0)

dy0

= 2〈Gλ(y0) − Π∗(Gλ(y0)), −H0〉 = 2〈X̂λ(y0), H0〉. (17)
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Next we prove assertion (ii) for y0 > ηd(λ, K). Note that by the definition of ηd(λ, K),

gλ(y0) > 0. Assume on the contrary that 〈H0, X̂λ(y0)〉 = 0. Then we see by (16) that

〈Q0 + λH1, X̂λ(y0)〉 = −‖X̂λ(y0)‖2 = −gλ(y0)
2 < 0.

Hence X̂λ(y0) 6= O is a direction along which the objective function of (7) tends to −∞.

This contradicts to the assumption −∞ < ηd(λ, K). Therefore 〈H0, X̂λ(y0)〉 > 0.
Finally we prove assertion (iii). Again, note that gλ(y0) > 0 for y0 > ηd(λ, K). By (17),

we get

dgλ(y0)

dy0

=
d
√

g2
λ(y0)

dy0

=
1

2gλ(y0)

dg2
λ(y0)

dy0

=
〈X̂λ(y0), H0〉

gλ(y0)
> 0.

From here, the remaining assertions follow.

Suppose that gλ(ȳ0) > 0 for some ȳ0 ∈ R. Then the Newton iteration for computing
ηd(λ, K) is given by

ȳ+
0 = ȳ0 −

gλ(ȳ0)

dgλ(ȳ0)/dy0

= ȳ0 −
〈X̂λ(ȳ0), X̂λ(ȳ0)〉
〈H0, X̂λ(ȳ0)〉

= ȳ0 −
〈Ẑ(ȳ0) + ȳ0H

0 − Q0 − λH1, X̂λ(ȳ0)〉
〈H0, X̂λ(ȳ0)〉

(by (14))

=
〈
Q0 + λH1, X̃λ(ȳ0)

〉
≥ ηp(λ, K).

where X̃λ(ȳ0) =
X̂λ(ȳ0)

〈H0, X̂λ(ȳ0)〉
denotes a feasible solution of the primal COP (6). Thus,

using this Newton iteration formula, we can design a numerical method for computing
optimal solutions of the primal-dual pair of COPs (6) and (7). The details are omitted
here.

5 Applications to a class of quadratic optimization

problems

Here we take V to be the linear space of (1+n)× (1+n) symmetric matrices S1+n with the
inner product 〈Q, X〉 = Trace QT X =

∑n
i=0

∑n
j=0 QijXij. We assume that the row and

column indices of each matrix in S1+n range from 0 to n. We are particularly interested in
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the following cones in the space of S1+n:

S1+n
+ = the cone of positive semidefinite matrices in S1+n,

N1+n =
{
X ∈ S1+n : Xij ≥ 0 (1 ≤ i ≤ j ≤ 1 + n)

}
,

C1+n =
{
A ∈ S1+n : 〈A, xxT 〉 ≥ 0 for every x ∈ R1+n

}
= (the copositive cone),

(C1+n)∗ =

{
r∑

i=1

xix
T
i : xi ∈ R1+n

+ (i = 1, 2, . . . , r), r ∈ Z+

}
= (the compeletely positive (CPP) cone),

D1+n = S1+n
+ ∩ N1+n (the doubly nonnegative cone).

5.1 A class of linearly constrained quadratic optimization prob-
lems with complementarity constraints

We first introduce the following linearly constrained QOP with complementarity constraints
[19] (see also [2, 3, 8]):

ζ∗ = inf

{
uT Qu + 2cT u

∣∣∣∣ u ∈ Rn
+, Au + b = 0,

uiuj = 0 ((i, j) ∈ E)

}
, (18)

where A ∈ Rq×n, b ∈ Rq, c ∈ Rn and E ⊂ {(i, j) : 1 ≤ i < j ≤ n} are given data. Since the
binary constraint ui(1− ui) = 0 can be converted to a complementarity constraint uivi = 0
with a slack variable vi = 1−ui ≥ 0, QOP (18) can represent nonconvex QOPs with linear,
binary, and complementarity constraints [3, 8].

5.2 Representing QOP (18) as a conic LOP over a nonconvex cone
and its convexification

Let

Q0 =

(
0 c
c Q

)
∈ S1+n, Q1 =

(
bT b bT A
AT b AT A

)
∈ S1+n, (19)

Cij = the n × n matrix with 1 at the (i, j)th element

and 0 elsewhere ((i, j) ∈ E),

Qij =

(
0 0T

0 Cij + (Cij)T

)
∈ S1+n ((i, j) ∈ E),

H0 = the (1 + n) × (1 + n) matrix whose (i, j)th element H0
ij is given by

H0
ij =

{
1 if i = j = 0
0 otherwise

(0 ≤ i, j ≤ n),

∆1 =

{
U =

(
1
u

)(
1
u

)T

=

(
1 uT

u uuT

)
∈ S1+n : u ∈ Rn

+

}
.
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We renumber the superscript ij of Qij ((i, j) ∈ E) to 2, . . . , m for some m. Then, we can
rewrite QOP (18) as follows:

ζ∗ = inf
{
〈Q0, U〉

∣∣ U ∈ ∆1, 〈Qk, U〉 = 0 (k = 1, 2, . . . , m)
}

. (20)

By definition, we know that

O 6= H0 ∈ S1+n
+ + N1+n =

(
D1+n

)∗
, Qk ∈

(
D1+n

)∗
(k = 1, 2, . . . ,m). (21)

The set ∆1 can be embedded in a nonconvex cone in two different ways. First, we can
simply take the conic hull of ∆1, i.e., ∆ = {λU : U ∈ ∆1, λ ≥ 0} , and alternatively, we
can homogenize ∆1 as

Γ =

{
X =

(
x0

x

)(
x0

x

)T

=

(
x2

0 x0x
T

x0x xxT

)
∈ S1+n :

(
x0

x

)
∈ R1+n

+

}
.

Obviously, both ∆ and Γ are cones in S1+n.
Now, we consider the COP (1) for K = ∆, Γ, co ∆, and co Γ. The feasible regions

F (Γ) and F (∆) of the first two COPs coincide with the feasible region of QOP (20),
resulting in ζp(Γ) = ζp(∆) = ζ∗. The third and fourth COPs with convex feasible regions
F (co ∆) and F (co Γ) correspond to their convexifications. In particular, co Γ coincides
with the completely positive programming (CPP) cone

(
C1+n

)∗
and the COP with K =

co Γ =
(
C1+n

)∗
is called a completely positive programing (CPP) relaxation of QOP (18)

(or QOP (20)) [2, 3, 8, 19]. Since co Γ ⊃ Γ, ζp(co Γ) always provides a lower bound for the
optimal value ζ∗ of QOP (20).

Next we describe a condition that characterizes the equivalence between ζp(co Γ) and
ζ∗. By construction, ∆, Γ, co ∆, co Γ ⊂ D1+n. From (21), we see that Condition (I) is
satisfied for K = ∆, Γ, co ∆, co Γ. Thus, we can consistently define the simplified COP
(3), the Lagrangian-conic relaxation (6) and their duals for K = ∆, Γ, co ∆, co Γ, and
apply 2.1 and 2.2.

Remark 5.1. In the previous discussion, we introduced the set ∆1 to describe the problem
(20) that is equivalent to QOP (18), and then defined the cones ∆ and Γ. We can define,
however, the cone Γ first, and then define ∆1 and ∆ by (10). In the process, we can apply
the discussions in Section 2.4.

To present main results of this section, we consider the following problem:

ζ∗
0 = inf

{
uT Qu

∣∣∣∣ u ∈ Rn
+, Au = 0,

uiuj = 0 ((i, j) ∈ E)

}
. (22)

The set of feasible solutions of this problem forms a cone in Rn
+. Hence, we see that ζ∗

0 = 0
or ζ∗

0 = −∞, and that ζ∗
0 = 0 if and only if

uT Qu ≥ 0 for every feasible solution u of (22). (23)

Assume that the set {u ∈ Rn
+ : Au + b = 0} of u satisfying the linear constraints in

QOP (18) is bounded. Then {u ∈ Rn
+ : Au = 0} = {0}, which implies the condition (23).

Furthermore, for every cone K ⊂ S1+n satisfying K ⊂ D1+n, we see that

O ∈
{
X ∈ K : 〈H0, X〉 = 0, 〈Qk, X〉 = 0 (k = 1, 2, . . . , m)

}
⊂

{
X ∈ D1+n : 〈H0, X〉 = 0, 〈Qk, X〉 = 0 (k = 1, 2, . . . , m)

}
= {O}, (24)
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which implies that the feasible region F (K) of COP (1) is bounded. As a result, Condition
(III) holds. (see Lemma 2.1 of [19] and its proof for the last identity of (24)).

Lemma 5.1.

(i) ζp(co ∆) = ζ∗.

(ii) Assume that ζ∗ is finite. Then,

ζp(co Γ) = ζ∗ + ζ∗
0 =

{
ζ∗ if the condition (23) holds,
−∞ otherwise.

(iii) Assume that the set {u ∈ Rn
+ : Au + b = 0} is bounded and the feasible region of

QOP (18) is nonempty. Then,(
ηd(λ, co Γ) = ηp(λ, co Γ)

)
↑ = ζd(co Γ) = ζp(co Γ) = ζ∗.

Proof. (i) We have already seen ζ∗ = ζp(Γ). Hence, ζp(co ∆) = ζ∗ follows from (ii) of
Theorem 3.1.

(ii) We apply (iv) of Lemma 3.1. Observe that X ∈ Γ and 〈H0, X〉 = 0 if and

only if X =

(
0
u

)(
0
u

)T

for some u ∈ Rn
+. With this correspondence, we see that

uT Qu = 〈Q0, X〉, and that u is a feasible solution of (22) if and only if X is a feasible
solution of (11) with K = Γ. Thus, ζ∗

0 = ζp
0 (Γ) and the condition (23) corresponds to

Condition (IV) with K = Γ. The desired result follows from (iv) of Theorem 3.1.

(iii) The CPP cone co Γ = (C1+n)∗ is known to be a closed convex cone, thus, Condition
(II) holds for K = co Γ. We have observed that the assumption implies that Condition (III)
holds for K = Γ and that F (co K) is bounded. The desired result follows from (iii) of
Theorem 2.1 and assertion (ii).

5.3 DNN and Lagrangian-DNN relaxations

In this subsection, we present DNN and Lagrangian-DNN relaxations of QOP (20). First,
we let K be the doubly nonnegative cone D1+n = S1+n

+ ∩ N1+n. Note the relation

co Γ =
(
C1+n

)∗ ⊂ D1+n ⊂ S1+n
+ + N1+n =

(
D1+n

)∗ ⊂ C1+n.

Hence, ζp(D1+n) ≤ ζp(
(
C1+n

)∗
) ≤ ζ∗. By (21), Condition (I) is satisfied for K = D1+n. As

a result, we can introduce the simplified COP (3), the Lagrangian-conic relaxation (6) and
their duals for K = D1+n.

Lemma 5.2.

(i) Assume that the set {u ∈ Rn
+ : Au + b = 0} is bounded. Then,

ζ∗ ≥ ζd(D1+n) = ζp(D1+n) =
(
ηd(λ, D1+n) = ηp(λ, D1+n)

)
↑

(ii) Assume that the condition (23) does not hold. Then, ζp(D1+n) = −∞.
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Proof. (i) Since Conditions (I), (II) and (III) hold for K = D1+n, the desired result follows
from Theorem 2.1. Note that Condition (III) was verified in the paragraph above Lemma 5.1.

(ii) Since co Γ ⊂ D1+n, we know that ζ∗ ≥ ζp(co Γ) ≥ ζp(D1+n). Hence ζp(D1+n) = −∞
follows from (ii) of Lemma 5.1.

In the recent paper [19], Kim, Kojima and Toh proposed a numerical method for QOPs
of the form (18) based on its Lagrangian-DNN relaxation (6) with K = D1+n and a bisec-
tion method, combined with the proximal alternating direction multiplier method [11] and
the accelerated proximal gradient method [6], for solving the relaxation problem. It was
assumed in [19] that the linear constraint set {u ∈ Rn : Au + b = 0} is bounded. Thus, by
Lemma 5.2, a common optimal value ηp(λ, D1+n) = ηd(λ, D1+n) of the primal-dual pair (6)
and (7) of Lagrangian-DNN relaxation converges to the optimal value ζp(D1+n) of the DNN
relaxation of (3) (which is derived from the QOP (20)) as λ → ∞. In addition, for each
fixed Lagrange parameter λ ∈ R+, the primal problem (6) is an unconstrained problem with
a DNN matrix variable whose upper left corner element is fixed to 1, and its dual, (7) with
K = D1+n, becomes a simple problem with just a single real variable. Furthermore, the
primal problem, COP (6) with K = D1+n is strictly feasible (i.e., its feasible region inter-
sect with the interior of the DNN cone). These properties contributed to the effectiveness,
efficiency, and stability of the numerical method proposed in [19]. Notice that Assertion (ii)
of Lemma 5.2 shows that their method will not work if condition (23) does not hold.

6 Exploiting sparsity in the DNN and Lagrangian-

DNN relaxations for QOP (18)

Let N0 = {0, 1, . . . , n}. We say that a subset G ⊂ N0 ×N0 is symmetric if (i, j) ∈ G implies
(j, i) ∈ G. For every symmetric subset G of N0 × N0 and every cone J ⊂ S1+n, let

Gc = {(i, j) ∈ N0 × N0 : (i, j) 6∈ G} ,

S1+n(G, 0) =
{
X ∈ S1+n : Xij = 0 if (i, j) 6∈ G

}
,

J(G, 0) = J ∩ S1+n(G, 0),

J(G, ?) = J + S1+n(Gc, 0)

=
{
X ∈ S1+n : Xij = X̄ij ((i, j) ∈ G) for some X̄ ∈ J

}
.

Obviously, S1+n(G, 0) forms a linear subspace of S1+n. J(G, 0) and J(G, ?) are cones in S1+n,
and

S1+n(G, 0)⊥ = S1+n(G, 0)∗ = S1+n(Gc, 0) and J(G, 0) ⊂ J ⊂ J(G, ?). (25)

We use J∗(G, 0) for J∗ ∩ S1+n(G, 0), and J(G, 0)∗ for the dual of J(G, 0).

Lemma 6.1. Let G be a symmetric subset N0×N0 and J a cone in S1+n. Then, the following
assertions hold.

(i) J(G, ?)∗ = J∗(G, 0).

(ii) Moreover, if J is a closed convex cone, then (J∗(G, 0))∗ = cl (J(G, ?)).
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Proof. (i) Suppose that X ∈ J∗(G, 0) = J∗ ∩ S1+n(G, 0). Then, for every Y + Z ∈ J(G, ?)
with Y ∈ J and Z ∈ S1+n(Gc, 0), we see that 〈X, Y +Z〉 = 〈X, Y 〉+ 〈X, Z〉 ≥ 0. Hence,
X ∈ J(G, ?)∗. Now suppose that X ∈ S1+n and X 6∈ J∗(G, 0) = J∗ ∩ S1+n(G, 0). Then we
have either

X 6∈ J∗ and X ∈ S1+n(G, 0) (26)

or

X 6∈ S1+n(G, 0), i.e., Xij 6= 0 for some (i, j) ∈ Gc. (27)

In the case of (26), there exists a Y ∈ J ⊂ J(G, ?) such that 〈X, Y 〉 < 0. Thus, X 6∈
J(G, ?)∗. For the case of (27), let Y ∈ S1+n be such that

Yij =

{
0 if (i, j) ∈ G,
−Xij if (i, j) ∈ Gc.

Then, Y ∈ J + S1+n(Gc, 0) = J(G, ?) and

〈X, Y 〉 =
∑

(i,j)∈Gc

XijYij =
∑

(i,j)∈Gc

Xij(−Xij) = −
∑

(i,j)∈Gc

X2
ij < 0.

Consequently, X 6∈ J(G, ?)∗.

(ii) It is known in general that (A∗)∗ = A and (A ∩ B)∗ = cl (A∗ + B∗) if A and B are
closed convex cone in S1+n. Thus, we obtain that

(J∗(G, 0))∗ =
(
J∗ ∩ S1+n(G, 0)

)∗
= cl

(
(J∗)∗ + S1+n(G, 0)⊥

)
= cl

(
J + S1+n(Gc, 0)

)
= cl (J(G, ?)) .

6.1 Sparse DNN and Lagrangian relaxation

We can utilize the last inclusion relation J ⊂ J(G, ?) of (25) with J = D1+n to construct
sparse DNN and Lagrangian-DNN relaxations of QOP (20). As seen in the previous section,
COP (1) with K = D1+n serves as the DNN relaxation of QOP (20), hence, the DNN
relaxation of QOP (18). If G is a symmetric subset of N0 × N0 and K1 is a convex cone
in S1+n satisfying D1+n(G, ?) ⊂ K1, then COP (1) with K = K1 serves as a sparse DNN
relaxation. To derive effective and efficient DNN and Lagrangian-DNN relaxations of QOP
(20), some additional restrictions on G and K1 are necessary. In particular, Condition (I)
with K = K1 is necessary for the sparse Lagrangian-DNN relaxation (6) with K = K1.
We also want to choose a symmetric subset G of N0 × N0 so that it properly reflects the
sparsity of the matrices Qk (k = 0, 1, . . . , m) for the resulting DNN and Lagrangian-DNN
relaxations to be solved efficiently.

For such a symmetric subset G of N0×N0, we introduce the sparsity pattern (undirected)
graph G(N0, E0) such that

E0 =
{
(i, j) ∈ N0 × N0 : i 6= j, Qk

ij 6= 0 for some k ∈ {0, 1, . . . , m}
}

.
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We identify (i, j) ∈ E0 and (j, i) ∈ E0 so that G(N0, E0) forms an undirected graph.
Let Ḡ(N0, Ē0) be a chordal extension of G(N0, E0). Consider the set of maximal cliques
C1, . . . , Cr of Ḡ(N0, Ē0), where each maximal clique is denoted by a subset of N0. It is
known that the number r of the maximal cliques is not greater than the size 1 + n of the
node set N0, and that the maximal cliques can be renumbered so that they can satisfy the
running intersection property

∀p ∈ {1, . . . , r − 1}, ∃q > p; Cp ∩ (Cp+1 ∪ · · · ∪ Cr) ⊂ Cq. (28)

Let 2Cp = Cp × Cp (p = 1, . . . , p) and E =
∪r

p=1 2Cp. In this case, we can apply

the following lemma to determine whether a matrix X ∈ S1+n belongs to S1+n
+ (E , ?) and

S1+n
+ (E , 0). If X ∈ S1+n

+ (E , ?), then Xij ((i, j) ∈ Ec) may be regarded as elements with
undetermined values, but their values can be assigned so that the completed matrix belongs
to S1+n

+ . Assigning appropriate values is known as the positive semidefinite matrix comple-
tion in the literature [15]. Techniques for exploiting sparsity in SDPs based on the positive
semidefinite matrix completion were proposed in [13, 23]; see also [18, 20]. We can utilize
those techniques for an efficient implementation of the method proposed in this section.

Lemma 6.2. Let X ∈ S1+n.

(i) X ∈ S1+n
+ (E , ?) if and only if

X ∈
r∩

p=1

S1+n
+ (2Cp, ?) =

r∩
p=1

{
X ∈ S1+n : (Xij : 2Cp) is positive semidefinite

}
.

(ii) X ∈ S1+n
+ (E , 0) if and only if X ∈

∑r
p=1 S1+n

+ (2Cp, 0).

(iii) X ∈ N1+n
+ (E , ?) if and only if

X ∈
r∩

p=1

N1+n
+ (2Cp, ?) =

r∩
p=1

{
X ∈ N1+n : (Xij : 2Cp) is a nonnegative matrix

}
.

(iv) X ∈ N1+n(E , 0) if and only if X ∈
∑r

p=1 N1+n(2Cp, 0).

Proof. See [15] and [1] for assertions (i) and (ii), respectively. Assertions (iii) and (iv) are
straightforward.

Assertion (ii) may be regarded as a dual of (i) since

S1+N
+ (E , 0) =

(
S1+n

+ (E , ?)
)∗

(by (i) of Lemma 6.1)

=

(
r∩

p=1

S1+n
+ (2Cp, ?)

)∗

(by (i))

= cl

(
r∑

p=1

S1+n
+ (2Cp, 0)

)
=

r∑
p=1

S1+n
+ (2Cp, 0).

Note that the closeness of the cone
∑r

p=1 S1+n
+ (2Cp, 0) can be proved easily.

We employ the convex cone D(E) = S1+n
+ (E , ?)∩N1+n(E , ?) for COP (1) with K = D(E)

as a sparse DNN relaxation of QOP (20).
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Lemma 6.3.

(i) D(E) =
r∩

p=1

({
X ∈ S1+n : (Xij : 2Cp) is doubly nonegative

})
, and D(E) is closed.

(ii) D(E)∗ = S1+n
+ (E , 0) + N1+n(E , 0) =

r∑
p=1

(
S1+n

+ (2Cp, 0) + N1+n(2Cp, 0)
)
, and D(E)∗ is

closed.

Proof. (i) By Lemma 6.2,

D(E) = S1+n
+ (E , ?) ∩ N(E , ?)

=
r∩

p=1

(
S1+n

+ (2Cp, ?) ∩ N1+n(2Cp, ?)
)

=
r∩

p=1

({
X ∈ S1+n : (Xij : 2Cp) is doubly nonegative

})
.

The closeness of D(E) follows from the above identity.

(ii) By definition, Lemmas 6.1, 6.2 and assertion (i),

D(E)∗ =
(
S1+n

+ (E , ?) ∩ N1+n(E , ?)
)∗

= cl
(
S1+n

+ (E , 0) + N1+n(E , 0)
)

= S1+n
+ (E , 0) + N1+n(E , 0)

=
r∑

p=1

(
S1+n

+ (2Cp, 0) + N1+n(2Cp, 0)
)
.

We need to prove the closeness of S1+n
+ (E , 0) + N1+n(E , 0) for the third identity above.

Suppose that Xs = Y s + Zs, Y s ∈ S1+n
+ (E , 0), Zs ∈ N1+n(E , 0) (s = 1, 2, . . . ) and

Xs → X as s → ∞ for some X ∈ S1+n. We will prove that X = Y + Z for some
Y ∈ S1+n

+ (E , 0) and Z ∈ N1+n(E , 0), so that X ∈ S1+n
+ (E , 0) + N1+n(E , 0). First we show

that the sequence {Y s} ⊂ S1+n
+ (E , 0) is bounded. Assume on the contrary that there is a

subsequence of {Y s} along which ‖Y s‖ diverges. We may assume without loss of generality
that Y s/‖Y s‖ → Y for some nonzero Y ∈ S1+n

+ (E , 0) as s → ∞. Then N1+n(E , 0) 3
Zs/‖Y s‖ = Xs/‖Y s‖ − Y s/‖Y s‖ → −Y as s → ∞. Since N1+n(E , 0) is closed, we
obtain −Y ∈ N1+n(E , 0), which implies all the diagonal elements of Y ∈ S1+n

+ (E , 0) vanish.
Therefore Y = O, which is a contradiction. Thus {Y s} is bounded. As a result {Zs} is
also bounded. From here, the required result follows.

By the construction of E , it follows that

O 6= H0 ∈ S1+n
+ (E , 0) ∩ N1+n(E , 0) ⊂ D(E)∗,

Qk ∈ S1+n
+ (E , 0) + N1+n(E , 0) = D(E)∗ (k = 1, 2, . . . , m).

Thus, the closed convex cone K = D(E) satisfies Conditions (I) and (II). COP (1) with
K = D(E) can be introduced consistently as a sparse DNN relaxation of QOP (20) and
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COP (6) with K = D(E) as a Lagrangian-DNN relaxation of QOP (20). Since Conditions
(I) and (II) are satisfied for K = D(E), Lemmas 2.1, 2.2 and 2.3 can be applied for K = D(E).
In particular, we obtain the relation(

ηd(λ, D(E)) = ηp(λ, D(E))
)
↑= ζd(D(E)) ≤ ζp(D(E)). (29)

A slight modification is necessary to ensure that Condition (III) holds. Assume that
the set {u ∈ Rn

+ : Au + b = 0} is bounded as in (iii) of Lemma 5.1, and that 0 ∈ Cp

(p = 1, 2, . . . , r). Then, for each p = 1, 2, . . . , r, a positive number γp can be chosen such
that

∑
i∈Cp\{0} ui + vp = γp for every u ∈ {u ∈ Rn

+ : Au + b = 0}, where vp ≥ 0 is the
slack variable. For simplicity of notation, we assume that the nonnegative slack variable
vp has already been included in the variables ui (i ∈ Cp\{0}) (p = 1, 2, . . . , r). Then, the
linear constraints

∑
i∈Cp\{0} ui − γp = 0 (p = 1, 2, . . . , r) can be added to QOP (18) without

changing its feasible region. For each p = 1, 2, . . . , r, let

gp = (gp
0, g

p
1, . . . , g

p
n) ∈ R1+n, where gp

i =


−γp if i = 0,
1 if i ∈ Cp\{0},
0 otherwise,

Gp = gp(gp)T ∈ S1+n.

Then, the linear constraints added to QOP (18) can be rewritten as quadratic constraints

U =

(
1
u

)(
1
u

)T

∈ ∆1, 〈Gp, U〉 = 0 (p = 1, 2, . . . , r).

We assume that the quadratic constraints above have already been included in the
QOP (20). Now we prove that the feasible region F (D(E)) of COP (1) with K = D(E)
is bounded. Notice that adding those quadratic constraints would not affect the results
obtained up to this point, including Lemmas 6.1, 6.2, 6.3, and the identity (29), because
Gp ∈ S1+n

+ (2Cp, 0) (p = 1, 2, . . . , r) by construction. Assume on the contrary that ‖Xs‖ →
∞ as s → ∞ for some sequence {Xs} ⊂ F (D(E)). Then ‖(Xij : 2Cp)‖ → ∞ as s → ∞ for
some p ∈ {1, 2, . . . , r}. For Xs ∈ F (D(E)), we have that

Xs ∈ D(E), 〈H0, Xk〉 = 1, 〈Gp, Xs〉 = 0 (s = 1, 2, . . . ).

Hence,

(Xs
ij : 2Cp) is doubly nonnegative,

Xs
00 = 1, 〈(Gp

ij : 2Cp), (Xs
ij : 2Cp)〉 = 0 (s = 1, 2, . . . ).

We may assume without loss of generality that (Xs
ij : 2Cp)/

∥∥(Xs
ij : 2Cp)

∥∥ converges to
some doubly nonnegative (Dij : 2Cp) 6= O as s → ∞. Thus, dividing the identities above
by
∥∥(Xs

ij : 2Cp)
∥∥ and taking the limit as s → ∞, we obtain that

O 6= (Dij : 2Cp) is doubly nonnegative,

D00 = 0, 〈(Gp
ij : 2Cp), (Dij : 2Cp)〉 = 0 (s = 1, 2, . . . ).
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Since (Dij : 2Cp) is positive semidefinite and D00 = 0, we see that D0i = Di0 = 0, i ∈ Cp.
Thus, we obtain that

O 6= (Dij : 2(Cp\{0})) is doubly nonnegative,

0 =
〈
(Gp

ij : 2(Cp\{0})), (Dij : 2(Cp\{0}))
〉

=
∑

(i,j)∈2Cp\{0}

Dij.

This is a contradiction to O 6= D. Thus we have shown that the feasible region F (D(E)) of
COP (1) with K = D(E) is bounded, and that Condition (III) holds. By applying Lemma 2.5
with K = D(E), we obtain the identity ζp(D(E)) = ζd(D(E)) in addition to (29).

6.2 A brief discussion on the applications of the bisection and the
1-dimensional Newton methods

We recall that the computation of the metric projection of each G ∈ V onto K, which is
assumed in Condition (V), is the key to apply the bisection and the 1-dimensional Newton
methods presented in Section 4 to the primal-dual pair of Lagrangian-conic relaxation prob-
lems (6) and (7). See also Remark 4.1. We will transform the problems with K = D(E) to
ones with a closed convex cone onto which the metric projection can easily be constructed
below.

Since the variables Xij ((i, j) 6∈ E) are redundant in both of the equality constraints
and the cone constraint X ∈ D(E) of the primal COPs (1), (3) and (6) with K = D(E),
those variables can be eliminated from the primal COPs. On the other hand, all matrices
Qk (k = 0, 1, . . . , m), H0, H1 and the cone D(E)∗ are contained in S1+n(E , 0) in the dual
COPs (2), (4) and (7) with K = D(E). This implies that the coordinates H0

ij, H1
ij, Qk

ij (k =
0, 1, 2, . . . , m) ((i, j) 6∈ E) are redundant in the inclusion constraints of the dual COPs.
Furthermore, whether X ∈ S1+n belongs to S1+n

+ (E , ?) can be determined by checking
whether its sub matrices (Xij : (i, j) ∈ 2Cp) (p = 1, 2, . . . , r) are all positive semidefinite
(Lemma 6.3). We note that some elements may appear in a pair of these submatrices, i.e.,
2Cp ∩ 2Cq 6= ∅ for some p, q.

Let

SCp =
{
Y p = (Y p

ij : (i, j) ∈ 2Cp) : Y p
ij = Y p

ji ∈ R
}

(p = 1, 2, . . . , r),

SCp

+ =
{
Y p ∈ SCp : positive semidefinite

}
(p = 1, 2, . . . , r),

SE =
r∏

p=1

SCp =
{
Y = (Y 1,Y 2, . . . , Y r) : Y p ∈ SCp (p = 1, 2, . . . , r)

}
,

SE
+ =

r∏
p=1

SCp

+ =
{

Y = (Y 1, Y 2, . . . , Y r) : Y p ∈ SCp

+ (p = 1, 2, . . . , r)
}

,

LE =
{
Y = (Y 1,Y 2, . . . , Y r) ∈ SE : Y p

ij = Y q
ij if (i, j) ∈ 2Cp ∩ 2Cq

}
,

K1 = SE
+,

K2 =

{
Y = (Y 1,Y 2, . . . , Y r) ∈ SE :

Y p
ij ≥ 0 (i, j) ∈ 2Cp

(p = 1, 2, . . . , r)

}
∩ LE .
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Each Y ∈ SE may be regarded as a block diagonal matrix with diagonal blocks Y 1,Y 2, . . . , Y r.

We use 〈Ũ , Y 〉 =
∑r

p=1〈Ũ
p
, Y p〉 for the inner product of Ũ = (Ũ

1
, Ũ

2
, . . . , Ũ

r
), Y =

(Y 1,Y 2, . . . , Y r) ∈ SE .

We now associate each X ∈ S1+n(E , ?) with X̃ = (X̃
1
, X̃

2
, . . . , X̃

r
) ∈ SE by

X̃
p

= (Xij : (i, j) ∈ 2Cp) (p = 1, 2, . . . , r).

This correspondence yields that X ∈ D(E) if and only if X̃ ∈ K1 ∩ K2. It is also possible

to choose Q̃
0
, H̃

0
, H̃

1
∈ SE such that

〈Q̃
0
, X̃〉 = 〈Q0, X〉, 〈H̃

0
, X̃〉 = 〈H0, X〉 and 〈H̃

0
, X̃〉 = 〈H0, X〉.

Consequently, we obtain the following primal-dual pair of COPs, which are equivalent to
the primal-dual of COPs with K = D(E).

ζ̃p(λ) = inf

{
〈Q̃

0
+ λH̃

1
, X̃〉

∣∣∣∣∣ X̃ = (X̃
1
, X̃

2
, . . . , X̃

r
) ∈ K1 ∩ K2,

〈H̃
0
, X̃〉 = 1

}
(30)

ζ̃d(λ) = sup
{

y0

∣∣∣ Q̃0
+ λH̃

1
− H̃

0
y0 ∈ K∗

1 + K∗
2

}
. (31)

Then the metric projections Πi from SE onto Ki (i = 1, 2) are expressed as

Πi(X̃) = (Πi1(X̃), Πi2(X̃), . . . , Πir(X̃)) (i = 1, 2),

Π1p(X̃) = the metric projection of X̃
p
∈ SCp onto SCp

+ (p = 1, 2, . . . , r),(
Π2p(X̃)

)
ij

= max

{∑
p∈P (i,j) X̃

p

ij

#P (i, j)
, 0

}
((i, j) ∈ 2Cp, p = 1, 2, . . . , r),

where P (i, j) = {p : (i, j) ∈ 2Cp} ((i, j) ∈ E). We refer to [13, 23] for details on the conver-
sion from the primal-dual pair (6) and (7) with K = D(E) to the primal-dual pair (30) and
(31), and [6, 19] for numerical methods for computing the metric projection onto K = K1∩K2

from those onto Π1 and Π2.

7 Concluding remarks

We have provided a unified framework expressed in a primal-dual pair of COPs. It provides
a convenient and effective tool to develop the theory and methods originated from the com-
pletely positive programming relaxation of QOPs. By imposing the copositivity condition
on the primal-dual pair of COPs, equivalent but simpler primal-dual pair of COPs and their
Lagrangian-conic relaxations have been derived. We have investigated theoretical properties
of the three primal-dual pairs of COPs and the conditions which yield the equivalence for
the optimal values of the COPs. When the cone K involved in the first primal-dual pair of
COPs is nonconvex, we have provided a necessary and sufficient condition for the equiva-
lence between the primal COP and its convexification, i.e., the COP obtained by replacing
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the cone K by its convex hull. This result has been applied to a class of linearly constrained
QOPs with complementarity constraints.

In our recent paper [19], some promising numerical results were reported on the Lagrangian-
DNN relaxation for QOPs using a bisection method. But any sparsity was not utilized
there. In the current paper, we have proposed the sparse Lagrangian-DNN relaxation for
the same class of QOPs, and the 1-dimensional Newton method for solving the primal-dual
pair of Lagrangian-conic relaxation problems (6) and (7). If exploiting sparsity and the
1-dimensional Newton method are implemented, we could expect to solve large scale QOPs
more efficiently. We hope to present numerical results for this subject in the future.
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