
Research Reports on
Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES B: OOO ppp eee rrr aaa ttt iii ooo nnn sss RRR eee sss eee aaa rrr ccc hhh

ISSN 1342-2804

Parallel Implementation of Successive Sparse
SDP Relaxations for Large-Scale Euclidean

Distance Geometry Problems

Sunyoung Kim, Masakazu Kojima
and Makoto Yamashita

November 2012, B–470

B-470 Parallel Implementation of Successive Sparse SDP Relaxations

for Large-Scale Euclidean Distance Geometry Problems

Sunyoung Kim!, Masakazu Kojima†, Makoto Yamashita‡

November 2012

Abstract. The Euclidean distance geometry problem (EDGP) includes locating sensors
in a sensor network and constructing a molecular configuration using given distances in
the two or three-dimensional Euclidean space. When the locations of some nodes, called
anchors, are given, the problem can be dealt with many existing methods. An anchor-
free problem in the three-dimensional space, however, is a more challenging problem and
can be handled with only a few methods. We propose an efficient and robust numerical
method for large-scale EDGPs with exact and corrupted distances including anchor-free
three-dimensional problems. The method is based on successive application of the sparse
version of full semidefinite programming relaxation (SFSDP) proposed by Kim, Kojima,
Waki and Yamashita, and can be executed in parallel. Numerical results on large-scale
anchor-free three-dimensional problems with more than 10000 nodes demonstrate that
the proposed method performs better than the direct application of SFSDP and the
divide and conquer method of Leung and Toh in terms of efficiency and/or effectiveness
measured in the root mean squared distance.

Key words. Euclidean distance geometry problem, molecular conformation, the suc-
cessive sparse SDP relaxations, parallel implementation.

AMS Classification. 90C22, 90C52, 65Y05

! Department of Mathematics, Ewha W. University, 11-1 Dahyun-dong, Sudaemoon-
gu, Seoul 120-750 Korea. The research was supported by NRF 2012-R1A1A2-
038982 and NRF 2010-000-8784.
skim@ewha.ac.kr

† Department of Mathematical and Computing Sciences, Tokyo Institute of Technol-
ogy, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan, and Research and De-
velopment Initiative & JST CREST, Chuo University, 1-13-27, Kasuga, Bunkyo-ku,
Tokyo 112-8551 Japan. This research was supported by Grant-in-Aid for Scientific
Research (B) 22310089 and the Japan Science and Technology Agency (JST), the
Core Research of Evolutionary Science and Technology (CREST) research project.
kojima@is.titech.ac.jp

‡ Department of Mathematical and Computing Sciences, Tokyo Institute of Technol-
ogy, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan.
makoto@is.titech.ac.jp

1

1 Introduction

The Euclidean distance geometry problem (EDGP) of finding the locations of nodes with
a given incomplete distance data is considered with focus on anchor-free 3-dimensional
problems. The EDGP has been one of the problems studied widely in many areas of
applications such as sensor network [2], data visualization [4, 8], multivariate analysis
problems in statistics [21], robotics [29] and machine learning [34]. See also [24] and
the references therein. In particular, the 3-dimensional structure of a molecule in the
protein folding framework with sparse distance data between atoms has been studied
by many researchers [1, 5, 7, 12, 13, 14, 15, 22, 25, 26, 36]. Molecular conformation is
indeed an anchor-free 3-dimensional EDGP. In this paper, no additional information
except the given distances is used to find the configuration of molecules. Thus, we
choose to differentiate molecular conformation and anchor-free 3-dimensional EDGPs.
When describing the EDGP, nodes indicate sensors (or anchors) in the sensor network
localization or atoms in the configuration of molecules.

The EDGP is described in terms of an undirected graph G(N∗, E∗) with a node set
N∗ and an edge set E∗ ⊂ {(p, q) : p, q ∈ N∗, p #= q} in this paper. We assume that the
nodes are placed in the "-dimensional Euclidean space R". In practice, " = 2 and " = 3
are important. For each edge (p, q) ∈ E∗, a (corrupted) Euclidean distance dpq is given,
and (p, q) is identified with (q, p) so that dpq = dpq. The nodes are classified into two
sets, the set A∗ ⊂ N∗ of anchors, whose locations in R" are known, and the set N∗\A∗
of sensors, whose locations in R" are unknown. We denote the known location of each
anchor r ∈ A∗ by a∗

r. The EDGP is to find unknown locations xp (p ∈ N∗\A∗) that
(approximately) satisfy the system of distance equations

‖xp − xq‖ = dpq (p, q) ∈ E∗ with xr = a∗
r (r ∈ A∗).

When the anchor set A∗ is empty as in molecular conformation problems, the locations
of nodes are not uniquely determined. This is because the above distance equations
with A∗ = ∅ is invariant under any parallel transition, rotation and reflection. A precise
formulation of the EDGP is given in Section 2.

Among the methods proposed for the EDGP, the methods based on semidefinite pro-
gramming (SDP) relaxation [1, 2, 3, 16, 18, 22, 33, 35] have shown to be very successful.
But large-scale EDGPs, especially anchor-free 3-dimensional EDGPs, still remain a very
challenging problem, as SDP solvers [6, 32, 30, 31] are very memory-intensive. There
have been attempts to solve large-scale EDGPs by exploiting a structured sparsity that
exist implicitly in their full semidefinite programming (FSDP) relaxations in [2], called
a sparse version of full semidefinite programming relaxation (SFSDP) [16, 18]. When
SFSDP was tested for randomly generated EDGPs in [18], the largest 3-dimensional
problem included 5000 sensors and 500 anchors on a single machine with 4GB memory.
SFSDP works very efficiently and effectively if the degree of each node p ∈ N∗ (the num-
ber of edges incident to each node p ∈ N∗) is large (e.g., greater than 50) and a sufficient
number of anchors (e.g., 10% of sensors) exist. The tested EDGPs in [16, 18] satisfy
these conditions, and it was successful for SFSDP to extract a subgraph with the node
set N∗ that satisfies a structural sparsity characterized as a sparse chordal extension.
The obtained locations of nodes were as accurate as the ones from solving the given

2

FSDP itself. See Section 3.3 of [16] for more details. It is, however, our experience that
a uniformly sparse and large-scale EDGP was difficult to solve by SFSDP.

We say that EDGP is uniformly sparse if the degrees of all nodes p ∈ N∗ of the
associated graph G(N∗, E∗) are uniformly bounded by a small number (e.g., less than 40).
Handling anchor-free problems by SFSDP is more difficult, as we will see in Section 5.1.
We mention that molecular conformation problems in practice are usually uniformly
sparse; for example, the degrees of all nodes are bounded by 32 and the average degree
of all nodes is bounded 14 in the test problems in Section 5.2.

Although FSDP and SFSDP can not handle uniformly sparse EDGPs with increas-
ingly large size, they can be used to solve small-sized subproblems of the EDGP. In the
distributed SDP approach proposed in [1, 3, 22], the graph G(N∗, E∗) was first subdivided
into smaller subgraphs using cluster methods — the divide phase. Then, FSDP com-
bined with the gradient method was used to locate the nodes in each subgraph. Finally, a
stitching algorithm was used to relocate all the nodes so that they could fit into the entire
system of distance equations — the conquer phase. In the recent work in [22], Leung and
Toh proposed an SDP-based divide-and-conquer algorithm, called DISCO, for molecular
conformation. They demonstrated that DISCO could reconstruct the conformation of
large molecules with corrupted distances less than radius 6Ȧ with 20%-30% noise. Test
results were shown for 11 molecules using corrupted distances with 30% noise and the
radius 6Ȧ, and 20% noise and the radius less than 6Ȧ.

The main purpose of this paper is to propose a new method, called the successive
sparse SDP relaxation, for uniformly sparse and large-scale EDGPs. This method utilizes
the efficient property of SFSDP for solving an EDGP with the underlying graph satisfying
a structured sparsity characterized as a sparse chordal extension. Let us sketch the basic
idea of the method for an anchor-free EDGP with a graph G(N∗, E∗). The method
successively applies SFSDP to increasingly large subproblems. See Figure 1. Initially an
(" + 1)-clique (of " + 1 nodes) of the graph G(N∗, E∗) is chosen and their locations are
fixed as an initial (temporary) set of anchors A0, using the system of distance equations
for the initial set of anchors. Initialize t = 0. The following four steps are repeated. (i)
Take a neighborhood Nt of the anchor set to construct a subproblem. We use P(Nt, At) to
denote this subproblem. Nodes that are not fixed in the neighborhood are called sensors.
(ii) Apply SFSDP to P(Nt, At) to roughly estimate the locations of the sensor nodes, (iii)
Refine the locations of both sensors and anchors by a gradient method. (iv) Based on
information available from (ii) and (iii), fix sensors to expand the anchor set At to At+1.
(iv) Increase t by 1, and go back to (i). We repeat these steps until the neighborhood Nt

reaches N∗ and no more sensors can be fixed.

As the iteration of the successive sparse SDP relaxation method proceeds, the anchor
set At gradually expands from the core of the subgraph associated with the subproblem
P(Nt.At), and sensors p ∈ Nt\At are located on its thin boundary. This feature of the
subproblem P(Nt, At) considerably enhances the structural sparsity characterized as a
sparse chordal extension and makes the application of SFSDP to P(Nt, At) quite efficient.
Another important feature of the proposed method is that parallel implementation is
straightforward, thus, the method can be run in parallel to improve the accuracy of
estimated locations of the nodes. Many candidates are available for an initial (" + 1)-
clique to start the proposed method. Therefore, using multiple ("+1)-cliques, an EDGP

3

Figure 1: Subproblems to which SFSDP is successively applied. Both At and Nt expand
until Nt reaches N∗.

can be solved by the method in parallel from those cliques independently. As a result,
multiple estimated locations of the nodes are obtained, and it is possible to compound
them for a more accurate estimate.

A parallel implementation of the successive sparse SDP relaxation method for EDGPs,
which is called passSDP, has been conducted using Matlab. In comparison to SFSDP,
passSDP successfully solves randomly-generated 3-dimensional anchor-free EDGPs with
32000 nodes that could not be handled by SFSDP, as shown in Section 5. For the EDGPs
tested in [22] from the protein data bank, passSDP provides approximate locations with
comparable accuracy to DISCO except for the largest problem 1YGH with 13488 nodes.
The error computed by the root mean square distance attained by passSDP is less than
half of the one attained by DISCO for 1YGH.

In Section 2, we formulate the EDGP after presenting notation and symbols used
throughout the paper. In addition, we introduce a family of subproblems of the EDGP.
SFSDP and the gradient method are applied to these subproblems at each iteration of the
successive sparse SDP relaxation. The successive sparse SDP relaxation method starting
from a single (" + 1)-clique is outlined in Section 3.1, and its parallel implementation,
passSDP in Section 3.2. Section 4 contains technical details of our methods. In Section 5,
we present numerical results on passSDP applied to 3-dimensional randomly-generated
EGDPs and EGDPs from the protein data bank in comparison to SFSDP and DISCO.
In Section 6, concluding remarks are given.

2 Preliminaries

2.1 Notation and symboles

We use the following notation and symbols throughout the paper.

N∗ = a finite set of nonnegative integers = the node set of the EDGP,

" = 2 or 3, the dimension of the space where the nodes are placed,

ρ = an inter-nodes distance range or a radio range, ρ > 0,

Eρ = the set of pairs of nodes p and q (p #= q) with distance not greater than ρ,

where (p, q) ∈ Eρ is identified with (q, p) ∈ Eρ,

dpq = an estimated distance between nodes p and q, (p, q) ∈ Eρ,

4

where dpq = dqp is assumed,

A∗ = the set of given anchors ⊂ N∗,

E∗ = a subset of ⊂ Eρ; E∗ is considered because only partial distances

not greater than ρ are usually available,

G(N,E) = the undirected graph with a node set N ⊂ N∗ and an edge set E ⊂ E∗.

We assume that the location of each node r ∈ A∗ is, denoted by a∗
r, is given. The

unknown location of each node p ∈ N∗\A∗ is denoted by xp. For simplicity, (xp : N)
indicates the locations xp (p ∈ N) for N ⊂ N∗, and (dpq : E) the set of distances dpq

((p, q) ∈ E) for E ⊂ E∗. Each node r ∈ A∗ is called an anchor and each node p ∈ N∗\A∗
a sensor. #A stands for the cardinality of the set A.

2.2 A Euclidean distance geometry problem and a family of its
subproblems

We formulate the EDGP as

minimize
∑

(p,q)∈E∗

∣∣d2
pq − ‖xp − xq‖2

∣∣ subject to xr = a∗
r (r ∈ A∗). (1)

For the description of the successive SDP relaxation method for solving (1), we consider
a family of subproblems of (1). Let

E(N,A) = {(p, q) ∈ E∗ : (p, q) ∈ (N × N) , (p, q) #∈ (A × A)} ,

for every pair of a nonempty N ⊂ N∗ and A ⊂ N . For such a pair (N,A), consider

P(N,A): minimize
∑

(p,q)∈E(N,A)

∣∣d2
pq − ‖xp − xq‖2

∣∣

subject to xr = âr (r ∈ A).

Here A is a set of temporary anchors and N is a neighborhood of A. Temporary anchors
mean nodes fixed to âr (r ∈ A) temporarily at an iteration of the successive SDP relax-
ation method. The concept of neighborhood is crucial for the successive SDP relaxation
method. Indeed, the basic idea of the successive SDP relaxation method for solving (1)
lies on the expansion of a neighborhood N to the entire set of nodes N∗.

After an ("+1)-clique C of G(N∗, E∗) is chosen for A0 in the beginning of the method,
one-step neighborhood is considered. The clique consists of " + 1 nodes q1, q2, . . . , q"+1

such that (qi, qj) ∈ E∗ (1 ≤ i < j ≤ "+1). For the description of a one-step neighborhood
N of A, we use

U(A) =

(
⋃

p∈A

{q ∈ N∗ : (p, q) ∈ E∗}
)

⋃
A.

It is natural that a neighborhood N of A is chosen such that

Um(A) ⊂ N ⊂ Um+1(A) for some m ≥ 0,

5

where U0(A) = A and Um+1(A) = U(Um(A)) (m = 0, 1, . . .).

If we take âr = a∗
r (r ∈ A∗), P(A∗, N∗) coincides with EDGP (1). When the distances

dpq ((p, q) ∈ E∗) are exact, it is possible to consider the following distance equations,

‖xp − xq‖ = dpq ((p, q) ∈ E(N,A)) with xr = âr (r ∈ A), (2)

instead of the minimization problem P(N,A). We note that solving (2) is numerically
unstable compared to solving (1) because of numerical errors contained in the locations
âr (r ∈ A) of the temporary anchors.

3 Successive Application of the Sparse SDP Relax-
ation Method for Parallel Implementation

In the proposed method, the sparse SDP relaxation method (SFSDP) [16, 18] is succes-
sively applied to solve (1), thus, it is called the successive sparse SDP relaxation method.
Multiple cliques of (" + 1) nodes extracted from a given EDGP provide multiple sets of
initial anchors for the method to start. As a result, the method can be implemented in
parallel. The method starting from each set of the initial anchors is outlined in Section 3.1
and its parallel implementation in Section 3.2. Their technical details are presented in
Section 4. In particular, SFSDP is used in Section 3.1 and explained in Section 4.3. Both
of the serial and parallel algorithms, shown in Section 3.1 and Section 3.2 respectively,
include initial steps of preparing ("+1)-cliques. To emphasize the differences between the
serial and parallel algorithms, the algorithms for preparing ("+ 1)-cliques are presented
separately in Algorithms 3.1 and 3.3.

3.1 The successive sparse SDP relaxation method starting from
an ("+ 1) clique

Algorithm 3.1 (Finding an ("+ 1) clique)

Output : an ("+ 1)-clique C and its location (âr : C) for Algorithm 3.2.

Input : N∗, E∗, A∗, (a∗
r : A∗), (dpq : E∗).

Step 1: Create an ("+ 1)-clique C of G(N∗, E∗).

Step 2: Compute (âr = xr : C) that satisfies the distance equations ‖xq − xr‖ =
dqr (q, r ∈ C, q < r).

We need to impose an additional condition on the choice of C to ensure that the convex
hull of (âr : C) forms an "-dimensional simplex. This is discussed in Section 4.1.

Algorithm 3.2

Output : (xp : N∗) if the algorithm succeeds or ∅ otherwise.

Input : N∗, E∗, A∗, (a∗
r : A∗), (dpq : E∗), C, (âr : C).

6

Step 1: Let A0 = C. Initialize the set A0∗ = ∅ of nodes whose locations will be fixed
permanently. (When the EDGP is anchor-free or A∗ = ∅, Step 7 is never carried
out; hence At∗ = ∅ (t = 0, 1, . . .) throughout the iteration. Additional explanation
for cases with A∗ #= ∅ is given following the description of this Algorithm.) Set the
iteration counter t = 0.

Step 2: Choose a neighborhood Nt of At (see Section 4.2 for details). If At∗ #= ∅,
(which indicates that Step 7 has been carried out once), then let âq = a∗

r (q ∈ Nt),
At∗ = Nt

⋂
A∗ and At = At

⋃
At∗. Otherwise let At∗ = ∅.

Step 3: Apply SFSDP to P(At, Nt) and roughly compute locations (xp : Nt\At) (see
Section 4.3 for details).

Step 4: Refine the computed locations (xp : Nt\At) and (âr : At\At∗) by applying the
gradient method to a problem of minimizing errors in the distance equations for
those locations (see Section 4.4 for details).

Step 5: Based on the information from Steps 3 and 4, expand At to At+1. (see
Section 4.5 for details). If it is successful, continue to Step 6. Otherwise, go to
Step 8.

Step 6: Let t = t + 1. If At∗ = ∅ and # (At

⋂
A∗) ≥ " + 1, continue to Step 7.

Otherwise, go to Step 2.

Step 7: Let At∗ = At

⋂
A∗. Perform a nonsingular affine transformation T : R" → R"

that minimizes
∑

p∈At
T

A∗

∥∥T (âp) − a∗
p

∥∥2
.

Let xp = T (xp) (p ∈ Nt). Go to Step 2.

Step 8: If Nt is a proper subset of N∗, then stop (unsuccessful termination). If Nt = N∗,
then there is no need to update At. Terminate the iteration and output (xp : N∗).

Assume that A∗ #= ∅. Before Step 7 is carried out, the locations (xp : Nt) of the nodes
in the neighborhood Nt are computed independently from the known locations (a∗

r : A∗)
of the permanent anchors. When #(At

⋂
A∗) ≥ "+ 1 holds or the temporary anchor set

At whose locations (âr : r ∈ At) have been computed includes at least " + 1 permanent
anchors from A∗, a nonsingular affine transformation T : R" → R" is applied to (xp : Nt)
at Step 7 so that (T (âr) : At

⋂
A∗) can agree with (a∗

r : At

⋂
A∗) as much as possible.

Then the location information a∗
r is used at Step 2 right after Nt includes a permanent

anchor r ∈ A∗.

Figure 2 illustrates the expansions of the set At of temporary anchors and the set Nt

of neighborhood nodes when Algorithm 3.2 is applied to a 3-dimensional EDGP problem
1YGP, which has 13488 sensors and no anchors. More information on this problem is
given in Section 5. The initial sizes of At and Nt are " + 1 = 4 and 252, respectively.
Notice that the sizes of these sets expand slowly in earlier iterations. This is because

7

0 100 200 300 400 500
0

2000

4000

6000

8000

10000

12000

iteration

 a

nc
ho

r
no

de
s,

 #

 n
ei

gh
bo

rh
oo

d
 n

od
es

neighborhood nodes
anchor nodes

Figure 2:

fixing new nodes to expand At to At+1 in Step 5 needs to be carried out very carefully
when the number of temporarily fixed anchors is small. For example, if some nodes
are mistakenly fixed far from their true locations in the earlier iterations, the misplaced
locations affect the subsequent procedure of deciding temporary anchors. To minimize
such misplacement, At is expanded by at most one node until the size of At reaches 100.

In the later iterations of Algorithm 3.2, however, a different strategy can be employed.
If we have many nodes assigned as temporary anchors near the true locations, it is easy at
Step 4 to correct the nodes that have been misplaced at Step 3. Therefore, an aggressive
strategy can be applied to expand At to At+1. We observe in Figure 2 that the size of At

increases rapidly after t passes 100.

The efficiency of Algorithm 3.2 is achieved by small sizes and structured sparsity
of subproblems. That is, small subproblems with structured sparsity result in the SDP
problems whose coefficient matrices are small and have the structured sparsity, and Schur
complement matrix with the structured sparsity. At t = 0, SFSDP is applied to P(N0, A0)
with #N0 = 252 and #A0 = 4. If the resulting SDP problem is written in the equality
input format for SeDuMi, the size of the input matrix A is 1083 × 3965 with only 4112
nonzero elements. Moreover, the Schur complement matrix of size 1083 × 1083 is very
sparse. The Schur complement matrix is a coefficient matrix of the linear system to be
solved at each iteration of the prima-dual interior-point method. The figure on the left
in Figure 3 illustrates a sparse Cholesky factorization of the Schur complement matrix
computed by the Matlab functions symamd (a symmetric minimum degree ordering) and
chol.

Although the size of the sparse SDP relaxation problem at Step 3 gradually increases
as At and Nt expand, the sparsity of its coefficient matrix and the sparsity of its Schur

8

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

900

1000

nz = 9555
0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

0

0.5

1

1.5

2

2.5

3

3.5

4

x 104

nz = 351259

Figure 3: Sparse Cholesky factorization of the Schur complement matrix at t = 0 (left)
and t = 500 (right)

complement matrix are maintained. For example, at t = 500, we have

#A500 = 8304, #N500 = 10496, (3)

the number of nonzeros of the 44670 × 120717 coefficient matrix A = 218557,

the number of nonzeros of the 44670 × 44670 Schur complement matrix = 649534.

The figure on the right in Figure 3 illustrates a sparse Cholesky factorization of the Schur
complement matrix.

The sparse property mentioned above is mainly due to the construction of the problem
P(Nt, At). Consider the underlying network with the node set Nt and the edge set
E(Nt, At). When almost 80% nodes of At are fixed as temporary anchors, they usually
represent a core part of the network. Based on this observation, we categorize the edges
E(Nt, At) into two types: the first type is the edges from those core nodes to nodes
residing near the boundary and the second type is the edges between nodes near the
boundary. Such a graph is very sparse even when both sizes of Nt and At grow, since
any two nodes in a core part are not connected by an edge. The sparsity of the Schur
complement matrix depends mainly on the second type of edges. More precisely, the
subgraph of the node set Nt\At and the edge set {(p, q) ∈ E∗ : p, q ∈ Nt\At} has a sparse
chordal extension, which determines the sparsity of a sparse Cholesky factorization of the
Schur complement matrix. See Section 3.3 of [16].

3.2 Parallel implementation of the successive sparse SDP re-
laxation method

The accuracy of locations (xp : N∗) by Algorithm 3.2 heavily depends on the choice of
("+ 1)-clique C for the initial anchor set A0 and the nodes used for updating At to At+1

at Step 5. We discuss in Section 4.1 how an (" + 1)-clique is chosen to avoid failure at
earlier iterations, and in Section 4.5 how new nodes are fixed as temporary anchors to
update At to At+1.

9

Algorithm 3.2 sometimes fails to output (xp : N∗) and stops at Step 8 before ex-
panding the neighborhood Nt to the entire node set N∗. Or, even if the neighborhood
Nt reaches the entire node set N∗ and the algorithm outputs (xp : N∗) at Step 8, the
obtained locations of the nodes in (xp : N∗) may not be within the desired accuracy.
This can not be avoided even with a careful choice of initial ("+ 1)-clique. To overcome
these difficulties, we use a collection Γ of pairs of ("+1)-cliques C and their locations âr

(r ∈ C), denoted simply by (âr : C). We apply Algorithm 3.2 multiple times to a given
EDGP with Γ using different pairs of (" + 1)-cliques and the corresponding locations.
Then, a collection

{
(xv

p : N∗) : v = 1, 2, . . . , u
}

of estimated locations of the nodes are
obtained.

The collection
{
(xv

p : N∗) : v = 1, 2, . . . , u
}

needs to be compounded to have a more
accurate locations of the nodes without knowing their true locations. We will discuss this
issue in Section 4.6. For simplicity, we denote this collection by Ξ =

{
(xv

p : N∗) : v = 1, 2,
. . . , u}. The notation δb denotes the unit size of collection of estimated locations to which
the compound procedure is applied for the first time. If the compound procedure applied
to some unit or multiple units of collections of estimated locations fails, then another
unit of estimated locations is computed, using modified parameters to control an update
from At to At+1 from different ("+1) cliques. Again, the compound procedure is applied
to the union of the collection and the computed units of estimated locations, as described
in Steps 8 and 9 of Algorithm 3.4.

To execute Algorithm 3.2 in parallel, Algorithm 3.1 is replaced by the following algo-
rithm.

Algorithm 3.3

Output : Γ (a collection of pairs of an ("+ 1)-clique C and their locations (âr : C)).

Input : N∗, E∗, A∗, (a∗
r : A∗), (dpq : E∗).

By applying Algorithm 3.1, create a collection Γ of pairs of an ("+ 1)-clique C and their
locations (âr : C).

Algorithm 3.4 (passSDP, parallel implementation of the successive sparse SDP relax-
ation method)

Output : (xp : N∗) if the algorithm has succeeded, or ∅ otherwise.

Input : N∗, E∗, A∗, (a∗
r : A∗), (dpq : E∗), Γ. u: the number of available resources for

parallel computing

Let Output = ∅, Ξ = ∅ and choose a unit size δb ≥ 4. Let b = δb. While Output = ∅ and
Γ #= ∅, perform Steps 0 – 9.

Step 0: If #Ξ < b and Γ #= ∅, then choose a (â1
r : C), (â2

r : C), . . . , (âu
r : C) from Γ, let

Γ = Γ\{(âv
r : C) : 1 ≤ v ≤ u}, and continue to Step 1. Otherwise go to Step 9.

Steps 1 – 7: Execute Steps 1 – 7 of Algorithm 3.2 on the parallel resources.

Step 8: If Nt = N∗, then let Ξ = Ξ
⋃
{(xv

p : N∗) : 1 ≤ v ≤ u} and go to Step 0.
Otherwise (if Nt is a proper subset of N∗ and any update on Nt is impossible),
choose an (âr : C) from from Γ, let Γ = Γ\(âr : C), and go to Step 1.

10

Step 9: Compound the collection Ξ of estimated locations of the nodes into an accurate
estimate (xp : N∗) (see Section 4.6 for more details). If it is successful, let Output
= (xp : N∗) and terminate. If Γ = ∅, then let Output = ∅ and terminate. Otherwise
let b = b + δb, modify some parameters for updating At to At+1 at Step 5, and go
to Step 0.

Note that Steps 1-8 can be carried out in parallel.

4 Technical Details

4.1 Initialization

We first need to choose an (" + 1)-clique C that geometrically forms an "-dimensional
simplex. For this, we introduce the concept of admissible cliques.

Let C consist of " + 1 nodes i1, i2, . . . , i"+1 ∈ N∗ satisfying the following conditions
(a) and (b). For simplicity, we let C = {1, 2, . . . , "+ 1}.

Condition 4.1

(a) (i, j) ∈ E∗ (1 ≤ i < j ≤ "+ 1).

(b) The system of quadratic equations

d2
ij − ‖xi − xj‖2 = 0 (1 ≤ i < j ≤ "+ 1) (4)

has solutions x1, x2, . . . , x"+1 that form an "-dimensional simplex; x2 −x1, . . . ,
x"+1 − x1 are linearly independent.

We call an (" + 1)-clique admissible if it satisfies (a) and (b). The system of quadratic
equations (4) is an underdetermined system of "("+ 1)/2 equations in "("+ 1) real vari-
ables. If there exists a tuple solution (x1,x2, . . . , x"+1) of (4) that satisfies the conditions
(a) and (b), the following constraints are added to determine the tuple solution uniquely.

[xp]i = 0 (1 ≤ p ≤ i ≤ "), [xp+1]p > 0 (p = 1, . . . , "),

where [xp]i denotes the ith element of xp.

Assume that there exist many admissible cliques. One clique needs to be chosen for
the initial set of temporary anchors A0 among the admissible cliques. It is desirable to
choose a clique from dense parts of the graph G(N∗, E∗), considering the connectivity of
the clique to other nodes of the graph. For each admissible clique C and each positive
integer m, we consider the two numbers:

α(C,m) = #Um(C),

β(C,m) = the number of admissible cliques contained in Um(C).

where m denotes a positive integer. If an admissible clique C results in larger values of
α(C,m) and β(C,m) than those of another admissible clique C ′, the admissible clique

11

C is regarded as a better candidate for the initial set of temporary anchors A0 at Step 1
of Algorithm 3.2. We note that α(C,m) is simpler to compute than β(C,m), taking
less computational time. However, preliminary numerical experiments suggested that
β(C,m) works more effective in providing accurate solutions. In Section 4.6, another
technique combined with β(C,m) is discussed to improve Algorithm 3.4 (passSDP).

4.2 Neighborhood

The size of a neighborhood affects the overall performance. Suppose that ∅ #= At ⊂ N∗
at the beginning of Step 2 of an iteration t ≥ 0. As the size of the neighborhood Nt

increases, more candidates are available in Nt for updating At to At+1 at Step 5. Thus,
taking a large Nt seems to be a better choice for the overall performance, especially
when #At is small at earlier iterations. However, solving the sparse SDP relaxation
problem of P(Nt, At) takes longer computational time as #Nt increases. Considering
these opposite effects by the choice of a neighborhood, the following rules are employed
with the parameters m,κ0,κ1, and κ2 for a neighborhood Nt.

Nt = Um(At) such that #Um−1(At) < #At + κ0 ≤ #Um(At) if #At ≤ κ1,

Nt =

{
Nt−1 if #Nt−1 − #At > max{κ2,κ3#At}
U(At) otherwise,

if #At > κ1
(5)

In the numerical results in Section 5, κ0 = κ1 = 100, κ2 = 200 and κ3 = 0.1 were used.

4.3 SDP relaxation of P(N,A)

For simplicity, we assume that N = {1, 2, . . . , n, n+1, . . . , na}, A = {n+1, n+2, . . . , na}
and set S = N\A. Let

Es = {(p, q) ∈ E∗ : p ∈ S, q ∈ S} , Ea = {(p, r) ∈ E∗ : p ∈ S, r ∈ A} ,

E = E(N,A) = Es

⋃
Ea.

Then, we can rewrite P(N,A) = P(S
⋃

A,A) as

minimize
∑

(p,q)∈Es

(ξ+pq + ξ−pq) +
∑

(p,r)∈Ea

(ξ+pr + ξ−pr)

subject to xT
p xp − 2xT

p xq + xT
q xq + ξ+pq − ξ−pq = dpq ((p, q) ∈ Es),

xT
p xp − 2ârxp + ‖âr‖2 + ξ+pr − ξ−pr = dpr ((p, r) ∈ Ea),

ξ+pq ≥ 0, ξ−pq ≥ 0 ((p, q) ∈ Es), ξ+pr ≥ 0, ξ−pr ≥ 0 ((p, r) ∈ Ea).

Now, we introduce a matrix variable

Y = (x1, x2, . . . , xn)T (x1, x2, . . . , xn), (6)

so that Ypq = xT
p xq ((p, q) ∈ Es). Relaxing the identity (6) into the positive semidefinite

condition
(

Y (x1, x2, . . . , xn)T

(x1, x2, . . . , xn) I

)
+ O, (7)

12

which is equivalent to Y − (x1, x2, . . . , xn)T (x1, x2, . . . , xn) + O, we obtain FSDP, the
full SDP relaxation [1] of P(N,A).

minimize
∑

(p,q)∈Es

(ξ+pq + ξ−pq) +
∑

(p,r)∈Ea

(ξ+pr + ξ−pr)

subject to Ypp − 2Ypq + Yqq + ξ+pq − ξ−pq = dpq ((p, q) ∈ Es),

Ypp − 2âT
r xp + ‖âr‖2 + ξ+pr − ξ−pr = dpr ((p, r) ∈ Ea),

ξ+pq ≥ 0, ξ−pq ≥ 0 ((p, q) ∈ Es), ξ+pr ≥ 0, ξ−pr ≥ 0 ((p, r) ∈ Ea),

the positive semidefinite condition (7).

(8)

Let e denote the 2(#Es + #Ea)-dimensional column vector of ones, ξ the 2(#Es +
#Ea)-dimensional variable column vector of elements ξ+pq, ξ

−
pq ((p, q) ∈ Es), ξ+pr, ξ

−
pr ((p, r) ∈

Ea), and

(
Y XT

X U

)
the variable matrix consisting of an n × n symmetric matrix

Y ∈ Sn, an "× n matrix X = (x1, x2, . . . , xn) and an "× " symmetric matrix U . Then,
the SDP problem (8) can be reformulated as

minimize eT ξ

subject to fT
k ξ + Jk •

(
Y XT

X U

)
= bk (k = 1, 2, . . . ,m),

ξ ≥ 0,

(
Y XT

X U

)
+ O,

(9)

for some 2(#Es+#Ea)-dimensional column vector f k, (n+")×(n+") symmetric matrix

Jk =

(
F k GT

k

Gk Hk

)
and real number bk (k = 1, 2, . . . ,m). We note that the inequalities

fixing U to the "× " identity matrix are included in the equality constraints.

The SDP (9) (equivalently (8)) satisfies a certain structural sparsity, characterized by
a (symbolic) sparse Cholesky factorization of the (aggregated) sparsity pattern matrix
over the coefficient matrices Jk (k = 1, 2, . . . ,m). If we regard the sparsity pattern matrix
as the adjacency matrix of a graph, then the sparse Cholesky factorization corresponds
to a sparse Chordal extension of the graph. SFSDP [17, 18], which is used in Step 3 of
Algorithms 3.2 and 3.4, effectively implements the technique [11, 16, 28] of exploiting
such a structured sparsity. It converts the SDP (9) to a sparse SDP having multiple
smaller-sized variable matrices so that it can be solved more efficiently. See Section 3.3
of [17] for details. We have observed numerically in the last three paragraphs of Section
3.1 that the converted SDP has a very sparse coefficient matrix A in the SeDuMi input
format, and that the Schur complement matrix has a sparse Cholesky factorization. See
also Figures 3.

In the remaining of this subsection, we discuss how the successive sparse SDP re-
laxation method enhances the structured sparsity characterized by a sparse Cholesky

factorization of the sparsity pattern matrix. Let J∗ =

(
F ∗ GT

∗
G∗ H∗

)
denote the sparsity

pattern matrix over the coefficient matrices Jk (k = 1, 2, . . . ,m); the (p, q)th element of
J∗ takes the value 1 if the corresponding element of any of the coefficient matrices Jk

(k = 1, 2, . . . ,m) is nonzero and the value 0 otherwise. Suppose that 1 ≤ p ≤ q ≤ n.

13

0 2000 4000 6000 8000 10000 12000

0

2000

4000

6000

8000

10000

12000

nz = 183912
0 500 1000 1500 2000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

nz = 9326

Figure 4: Sparsity pattern of the adjacency matrices of G(N∗, E∗) on the left and G(S,Es)
with S = Nt\At at t = 500 on the right.

Compare the equalities in (8) with the equality constraints of the SDP (9). We can verify
that the (p, p)th element of F ∗ is 1 if and only if (p, r) ∈ Ea for some r ∈ A (1 ≤ p ≤ n),
and that (p, q)th element of F ∗ is 1 if and only if (p, q) ∈ Es (1 ≤ p < q ≤ n). Since F ∗ is
symmetric, its (q, p)th element is equivalent to its (p, q)th element. Therefore, the matrix
F ∗ coincides with the (node-to-node) adjacency matrix of the graph G(S,Es) except for
the diagonal elements.

At earlier iteration t (say t ≤ κ1 = 100), the set of temporary anchors At as well
as its neighborhood Nt are small. Thus, the size of the problem P(Nt, At) is small. In
this situation, exploiting the sparsity for efficiency is not an important issue. As the
iteration t proceeds, At and Nt gradually expand, and the size of P(Nt, At) becomes
larger. If two nodes in the entire graph G(N∗, E∗) are connected by an edge of E∗, they
should be located within the distance ρ. Hence, G(N∗, E∗) itself as well as its subgraph
G(N,E) are expected to satisfy a structural sparsity if ρ is not too large. Recall that
when #At is larger than κ1 = 100, one-step neighborhood is chosen for Nt as in (5).
Roughly speaking, the nodes in S = Nt\At are located on the boundary of the graph
G(Nt, E(Nt, At)) and the width of the nodes on the boundary is usually thin. The interior
of the graph G(Nt, E(Nt, At)) is occupied by the nodes in At. See Figure 1. Therefore,
G(S,Es) whose adjacent matrix is F ∗ is more likely to satisfy a structural sparsity than
G(N∗, E∗).

Figure 4 illustrates the sparsity patterns of the adjacency matrices of G(N∗, E∗) on
the left and G(S,Es) on the right for the same numerical example used in the last three
paragraphs of Section 3.1 (the 3-dimensional EDGP 1YGP with #N∗ = 13488 and
t = 500). We observe that not only the size #S = 2192 of S is much smaller than
#N∗ = 13488 but also G(S,Es) is much sparser than G(N∗, E∗).

The sparsity of (G∗ H∗) (or (G∗ H∗)T) should also be considered. Since the equalities
fixing U to the "× " identity matrix are included in the equality constraints in (9), H∗
becomes the " × " matrix of 1’s. For every p ∈ S, the pth column of G∗ becomes the
"-dimensional vector of 1’s if (p, r) ∈ Ea for some r ∈ A, and the "-dimensional vector
of 0’s otherwise. Thus, (G∗ H∗) can be fully dense, but its number of rows is always "

14

0 500 1000 1500 2000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

nz = 22487
0 500 1000 1500 2000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

nz = 16561

Figure 5: Sparsity pattern of J∗ on the left and its sparse Cholesky factorization with
symamd on the right.

throughout the iterations, and the rows are located at the lower boundary in the entire
sparsity pattern matrix J∗. As a result, the entire structural sparsity is not much affected
by the sparsity of (G∗ H∗).

The figure on the left in Figure 5 illustrates the sparsity pattern matrix J∗ and the
figure on the right its sparse Cholesky factorization. We observe the sparse Cholesky
factorization of J∗ is as sparse as the adjacency matrix of G(S,Es) shown on the right
figure of Figure 4.

4.4 Gradient method

Algorithm 3.2 refines an approximate solution with a gradient method. We describe
how the solution is refined based on the paper [23]. Assume that a rough approximate

solution (x
sdp
p : p ∈ Nt) has been computed at Step 3 of Algorithm 3.2. When the SDP

relaxation is applied to P(Nt, At), every node r in the set of temporary anchors has been
fixed as âr (r ∈ At). However, there is no guarantee that all the nodes are correctly
located, rather, some may still be placed far from their true locations. Those nodes need
to be relocated.

Since each term
∣∣d2

pq − ‖xp − xq‖2
∣∣ of the objective function of P(Nt, At) is not dif-

ferentiable at (xp,xq) where the distance equation d2
pq − ‖xp − xq‖2 = 0 is satisfied, a

different objective function is considered. More precisely, instead of the minimization
problem P(Nt, At), consider

minimize
∑

(p,q)∈E(Nt,At∗)

(dpq − ‖xp − xq‖)2

subject to xp∗ = âp∗ , xr = a∗
r (r ∈ At∗) if At∗ #= ∅,

where p∗ is a node from A0 that is fixed throughout all the iteration. The gradient method

developed by Toh is applied with the initial point (x
sdp
p : p ∈ Nt) to the problem above

for an approximate solution (x
grad
p : p ∈ Nt).

15

4.5 Fixing new nodes

Let p ∈ Nt\At∗. We use two quantities to decide whether p can belong to At+1. The first

quantity is a deviation from the error in the distance equations evaluated at x
grad
p :

ept =
∑

q : q ∈ Nt, (q, p) ∈ E(Nt, At)

(1 − |dpq − ‖xp − xq‖| /θe) ,

where θe > 0 is a threshold parameter. For the numerical experiments in Section 5,
θe = 0.1ρ was used. For the value of ept, we consider how many edges (q, p) ∈ E(Nt, At)
incident to the node p ∈ Nt\At∗ yield the error |dpq − ‖xp − xq‖| smaller than the thresh-
old value θe > 0. That is, the value becomes larger as the number of such edges increases.
Conversely it becomes smaller (and even negative) as the error |dpq − ‖xp − xq‖| exceeds
θe for more edges (q, p) ∈ E(Nt, At) incident to the node p. The second quantity is the

difference between the location x
sdp
p and its refinement x

grad
p after the gradient method.

If this difference is large, the location x
sdp
p may not be reliable. Let

fpt = 1 −
∥∥∥xgrad

p − xsdp
p

∥∥∥ /θd.

The parameter θd > 0 serves as a threshold value for deciding whether the location x
sdp
p

is reliable. We used θd = 0.4 in the numerical experiments. Since the values eps and fps

(s ≤ t − 1) also need to be considered, we define

fps = eps = 0 if p #∈ Ns (s = 0, 1, . . . , t − 1).

As a measure for the reliability of x
sdp
p , let

hpt =
t∑

s=0

γt−s max {0, (eps + ωfps)} (p ∈ Nt\At∗),

where ω > 0 serves as the weight parameter to combine eps and fps, and γ ∈ (0, 1) as
a decaying parameter. The values of ω = 2 and γ = 0.3 were used in the numerical
experiments. Using hpt (p ∈ Nt) and the threshold value θ > 0, we define the set of

candidates Ãt = {p ∈ Nt\At∗ : hpt ≥ θ} for the nodes of At+1. For instance, θ = 5 was
used in the numerical experiments.

We notice that one of the following three cases can occur:

(i) At\At∗ is a proper subset of Ãt.

(ii) At\At∗ is not a proper subset of Ãt but #Ãt ≥ # (At\At∗) + 1.

(iii) #Ãt ≤ # (At\At∗).

In the case (i), At+1 is the union of At and some nodes from Ãt with large values
hpt. In the case (ii), the nodes contained in (At\At∗) \Ãt have been wrongly fixed. These

16

wrongly fixed nodes are replaced by nodes from Ãt\At with larger value hpt, so that the
inequality

(At+1\At∗) ≥ # (At\At∗) + 1. (10)

holds.

If (iii) is true, not enough nodes in Ãt\At are available to replace (At\At∗) \Ãt and
satisfy the inequality (10). In this case, updating At to At+1 fails and Algorithm 3.2
stops or Algorithm 3.4 is re-executed from Step 1 with a newly chosen (âr : C) from Γ.

In the case of (i) or (ii), it is important to decide how many new nodes are fixed to
update At to At+1 or how # (At\At∗) is increased. For successful implementation, the
fixed nodes should be located near their unknown true locations. In fact, the increase of
(At\At∗) is handled by

(At+1\At∗) = # (At\At∗) + 1

until #At gets 100. However, if this strategy is continued until the end of the iterations,
it is not efficient to solve large EDGPs. For #At > 100, we employ the following strategy
to increase # (At\At∗)

(At+1\At∗) − # (At\At∗) = max
{

1, min
{
α #At, β #Ãt

}}
,

where α > 0 and β > 0 are the parameters to control the increase of # (At\At∗). In our
numerical experiments, α ∈ [0.005, 0.02] and β ∈ [0.02, 0.1] were chosen, depending on
the sparsity of the graph G(N∗, E∗), the noise level of (dpq : E∗), and which of cases (i)
and (ii) occurred in previous and current iterations.

4.6 Compounding the collection of estimated locations into an
accurate estimate

We explain Step 9 of Algorithm 3.4 in detail. Suppose that a collection

Ξ =
{
(xν

p : N∗) : v = 1, 2, . . . , u
}

of estimated locations of the nodes p ∈ N∗ has been computed. Since (xv
p : N∗) are

obtained from an (âv
r : Cv) ∈ Γ, they may be located independently from their true

location. Obviously, it is difficult to directly compare different (xv
p : N∗) and (xw

p : N∗).

For the comparison, we first perform a nonsingular affine transformation T vw : R" → R"

that minimizes
∑

p∈N∗

∥∥T vw(xv
p) − xw

p

∥∥2
.

If Step 7 has been already executed, we can take the identity transformation for T vw.
Then, we compute the relative root mean square distance (RMSD) of (xv

p : N∗) with
respect to (xv

p : N∗) by

Rvw =

 1

#(N∗\A∗)

∑

p∈N∗\A∗

∥∥T vw(xv
p) − xw

p

∥∥2

1/2

(v = 1, 2, . . . , u, w = 1, 2, . . . , u),

17

where Rvv = 0 (v = 1, 2, . . . , u) is assumed.

If the true location (a∗
p : p ∈ N+) is known, the quality of (xv

p : N∗) can be evaluated
by computing an RMSD of (xv

p : N∗) with respect to the true location (a∗
p : p ∈ N+)

Rv∗ =

 1

#(N∗\A∗)

∑

p∈N∗\A∗

∥∥T v∗(x
v
p) − a∗

p

∥∥2

1/2

(v = 1, 2, . . . , u),

where T v∗ denotes a nonsingular affine transformation on R" that minimizes

∑

p∈N∗

∥∥T v∗(x
v
p) − a∗

p

∥∥2
(v = 1, 2, . . . , u).

Although Rv∗ is not available in practice, a large value of Rvw for some v and w indicates
that at least one of Rv∗ and Rw∗ is large. That is, at least one of the estimated locations
(xv

p : N∗) and (xw
p : N∗) must be inaccurate.

We construct a hypothesis: if F is a subset of {1, 2, . . . , u} with #F ≥ 2 and if all
values of Rvw (v, w ∈ F) are small, then all values of Rv∗ (v ∈ F) are expected to be
small. Based on this hypothesis, we describe an algorithm for computing F .

Algorithm 4.2

Output : F ⊂ {1, 2, . . . , u}.
Input : Ξ =

{
(xν

p : N∗) : v = 1, 2, . . . , u
}
.

Step 0 : Choose a lower bound θL and an upper bound θU for threshold values for Rvw

(v = 1, 2, . . . , u, w = 1, 2, . . . , u) such that θL < θU , and a lower bound fL ≥ 2 for
the size of F . Let θ = θL and F = ∅.

Step 1 : If θ > θU , then let Output = F and terminate. Find the maximal F ⊂
{1, 2, . . . , u} satisfying Rvw ≤ θ (v, w ∈ F). If #F ≤ 1, then let F = ∅.

Step 2 : If #F ≥ fL, then let Output = F and terminate. Otherwise, let θ = 2 × θ
and go to Step 1.

For the numerical results in Section 5, θL = 0.5, θU = 1.0 and fL = 3 were used.
These values depend on the radio range, the noise level and the sparsity of an instance
of EDGP.

Suppose that the algorithm is successfully implemented, and outputs F . We discuss
a method to compound estimated locations xv

p (v ∈ F) into a better estimate xp for each

p ∈ N∗\A∗. Let p ∈ N∗\A∗ be fixed. Then, #F points xv
p (v ∈ F) in R" are available

for estimating the true location of the node p. One simple method is to take the mean(∑
v∈F xv

p

)
/#F). This method, however, is not very attractive in the sense that outliers

should be excluded and a geometrically condensed part D of the set
{
xv

p : v ∈ F
}

should
be extracted.

18

For this purpose, we employ a method proposed by Nagano, Kawahara and Aihara
[27] for the size-constrained densest subset problem. Given a positive integer k and
a graph G(V , E) with a node set V = {1, 2, . . . , n}, an edge set E and edge weights
wij > 0 ((i, j) ∈ E), the problem is to find a node subset with size k and maximum
weight, i.e., a subset D of V that maximizes

∑
(i,j)∈D×D wij over the node subsets with

size k, where wij is counted as 0 if (i, j) #∈ E. The method utilizes a minimum norm basis
ξ ∈ Rn with −ξi ≥ 0 (i ∈ V) based on the concept of sub-modular function [9]. For each
i ∈ V , −ξi may be regarded as a score for contribution to a node subset with maximum
weight, which we want compute; particularly, the node i is isolated if −ξi = 0. It was
shown in [27] that D = {i ∈ V : ξi ≤ ξ̄} = {i ∈ V : −ξi ≥ −ξ̄} forms a node subset with
size #D and maximum weight if −ξ̄ ≥ 0 and D #= ∅.

To apply the method by [27] for choosing a condensed part Dp of the set
{
xv

p : v ∈ F
}

for each p ∈ N∗\A∗, we construct a graph Gp of the node set F and the edge set
Ep =

{
(v, w) :

∥∥xw
p − xv

p

∥∥ ≤ δp
}

with the same edge weights wij = 1 ((i, j) ∈ Ep) and

δp =

∑
{q:(p,q)∈E∗} dpq

#{q : (p, q) ∈ E∗}
(1 + σ)γ,

where σ indicates the noise level of dpq and γ > 0 is a parameter. For the numerical
experiments in Section 5, γ = 1/4 was used. Since the size k of Dp is not known in
our case, we decide the size k and a node subset with size k and maximum weight
simultaneously. First, we compute the minimum norm base ξ ∈ R#F of Gp by SFO

[19, 20]. Next, −ξ1,−ξ2, . . . ,−ξ#F ≥ 0 is sorted in the descending order such that −ξ̂1 ≥
−ξ̂2 ≥ . . . ≥ −ξ̂#F ≥ 0, and {xv

p : v ∈ F} is arranged according to the descending order of

−ξ̂i’s as x̂1
p, x̂

2
p, . . . , x̂

#F
p . Then, the set Dp and its size k are decided as follows. Initially,

let Dp = {x̂1
p, x̂

2
p, . . . , x̂

"+1
p }. Then, x̂k

p (k = " + 2, . . . , #F) is added to Dp one by one

until some k ≥ "+ 2 satisfies δave

(∑k
i=1(−ξ̂i)

)
/k > −ξ̂k+1 for the first time or k reaches

#F , where δave > 0 is a parameter. The inequality indicates that the contribution score
−ξ̂k+1 drops below the average of −ξ̂1,−ξ̂2, . . . ,−ξ̂k multiplied by δave. For the numerical
experiments in Section 5, δave = 0.75 was used. Consequently, Dp = {x̂1

p, x̂
2
p, . . . , x̂

k
p} is

obtained. The compounded location xp is computed by
∑

x̂v
p ∈ Dp

x̂v
p/#Dp.

The idea of using the relative RMSD for Ξ can also be applied for comparing estimated
locations of any subset A of N∗. Suppose that an estimated location (xv

p : p ∈ Av
t) of a set

of nodes Av
t has been computed by Algorithm 3.4 (v = 1, 2, . . . , u), where t > 0 denotes

a fixed iteration. We want to determine whether the estimate (xv
p : p ∈ Av

t) involves a
critical error that could not be corrected. If it does, it should be disregarded and the
iteration be restarted from a new (xr : C) ∈ Γ. Let A =

⋂u
v=1 Av

t . Then Algorithm 4.2
is applied with input Ξ =

{
(xv

p : A) : v = 1, 2, . . . , u
}
. If v #∈ F , then (xv

p : p ∈ Av
t) is

disregarded.

In the discussion above, it is implicitly assumed that A =
⋂u

v=1 Av
t contains a sufficient

number of nodes so that Algorithm 4.2 can be effectively applied with Ξ =
{
(xv

p : A) : v
= 1, 2, . . . , u}. In the implementation of Algorithm 3.4, β(C,m) with m = 2 or 3 is
used to choose an initial admissible (" + 1)-clique C. We set the iteration t to be 100,
where Algorithm 4.2 is applied. See Section 4.1. If we start each (xv

p : p ∈ Av
t) from

19

an admissible (" + 1)-clique Cv ⊂ Um(C), then it can be expected that A =
⋂u

v=1 Av
t

contains a sufficient number of nodes because Cv and Cw are located nearby in the graph
G(N∗, E∗). In fact, we observed in the numerical experiments that #A ≥ 80.

4.7 Application of the linear least square method

We describe a technique that considerably improves the successive SDP relaxation method.
This technique works effectively, especially when graph G(N∗, E∗) associated with a given
EDGP becomes dense, say, the average degree of nodes exceeds 20.

Suppose that a temporary anchor set At, its locations (ât : At), and its neighborhood
Nt have been determined at the end of Step 2 of Algorithm 3.2, and Step 3 is executed.
Before applying the sparse SDP relaxation to P(Nt, At), we fix some additional nodes as
temporary anchors.

Let p ∈ Nt\At. We assume that the size of the edge set E({p}, At) is not less than a
fixed positive integer δ ≥ "+ 1. Consider the system of distance equations

‖xp − âr‖2 = d2
pr ((p, r) ∈ E({p}, At)

or equivalently

xT
p xp − 2âT

r xp + ‖â‖2 = d2
pr ((p, r) ∈ E({p}, At)).

Choose q ∈ At from (p, q) ∈ E({p}, At). If xp satisfies the system of quadratic equations
above, then it satisfies the following system of linear equations

2(âq − âr)
T xp = d2

pr − d2
pq − ‖âr‖2 + ‖âq‖2 ((p, r) ∈ E({p}, At\{q})). (11)

Since this linear system is overdetermined and inconsistent in general, a least square
solution xp is computed. We can prove that the least square solution xp converges to
the exact location of the node p if the three conditions are satisfied: (i) âr converges to
the true location a∗

r (r ∈ At), (ii) dpr converges to the exact distance between the true
location a∗

p, (iii) a∗
q − a∗

r (r ∈ At\{q}) are linearly independent. This procedure is much
inexpensive than the SDP relaxation method applied to P(Nt, At), even if the procedure
is applied to all nodes p ∈ Nt\At with #E({p}, At) ≥ δ.

If #At and the chosen δ are sufficiently large (say δ ≥ 10), this procedure for esti-
mating a location of the node p is as accurate as the SDP relaxation method. But if #At

is small or if δ is small (say δ ≤ 7), it is not as effective as the SDP relaxation method.
To decide whether #At is sufficiently large, the same parameter κ1 = 100 as the one for
choosing the neighborhood Nt in (5) can be used. Now, an additional Step based on the
linear least square method is presented.

Step 2a: If #At ≤ κ1, go to Step 3. Let Ât = {p ∈ Nt\At : #E({p}, At) ≥ δ}. For
every p ∈ Ât, compute a least square solution xp = âp of the linear system of

equations (11). Let At = At

⋃
Ât.

This can be included between Steps 2 and 3 of Algorithm 3.2.

20

5 Numerical Experiments

We implemented Algorithm 3.4, which is called passSDP, in Matlab and used Matlab Par-
allel Computing Toolbox for parallel computation using 12 cores. SFSDP [16, 18] is called
by passSDP to formulate a sparse SDP relaxation of the minimization problem Pt(At, Nt)
at each iteration, and SFSDP calls SDPA [10, 37] to solve the SDP relaxation problem.
All the numerical experiments were performed on Opteron 6174 (2.20GHz/12MB L3, 12
cores x 4 = 48 cores) with 256GB (16 x 16GB / 1066MHz) memory.

In Section 5.1, we present numerical results on randomly generated 3-dimensional
problems and compare passSDP with SFSDP [16, 18]. See Section 6.4 of [18] for numerical
results on 3-dimensional anchor-free problems of SFSDP. In Section 5.2, numerical results
on 3-dimensional anchor-free EDGP in [22] are presented and passSDP is compared with
SFSDP and DISCO [22].

For anchor-free problems, the absolute locations of the nodes are not uniquely de-
termined, and only relative locations among the nodes are meaningful. Data for each
test problem consist of a node set N∗, an edge set E∗, distances dpq (p, q) ∈ E∗ with
noise, and true locations (x∗

p : N∗). We note that (x∗
p : N∗) is an instance of the node

locations p ∈ N∗ that satisfies the distance equations
∥∥x∗

p − x∗
q

∥∥ = d∗
pq ((p, q) ∈ E∗),

where d∗
pq denotes an exact distance between the nodes p and q ((p, q) ∈ E∗). Note

that (T (x∗
p) : N∗) is a solution for any nonsingular affine transformation T on R" which

represents a reflection, a rotation and a parallel transfer. Therefore, we apply a nonsin-
gular affine transformation T : R" → R", provided by a Matlab program procrustes.m
[1, 22], which minimizes

∑
p∈N∗

‖T (xp) − x∗
p‖2, before comparing the computed location

(xp : N∗) with the true location (x∗
p : N∗) given as data. The accuracy of the computed

solution is measured by the RMSD between (T (xp) : N∗) and (x∗
p : N∗):

(
1

#N∗

∑

p∈N∗

‖T (xp) − x∗
p‖2

)1/2

. (12)

For the randomly generated problems with anchors reported in Section 5.1, the identity
transformation for T is used for the computation of the RMSD because the nonsingular
affine transformation T : R" → R" was already applied at Step 7 of Algorithm 3.2.

To describe numerical results in tables, we use the following notation.

N∗ : the set of nodes.
A∗ : the set of anchors.
E∗ : the set of edges (p, q) for which estimated distances dpq are given, where

each (p, q) ∈ E∗ is identified with (q, p).
Ave.deg : the average degree of nodes = 2#E∗/#N∗.
Ξ : the collection of estimated locations at Step 8 of Algorithm 3.4

from which an output estimated location is compounded.
Trials : the number of outermost loops in Algorithm 3.4 or the number of ("+ 1)-cliques

(âr : C) chosen from Γ at Step 0 of Algorithm 3.4; Trials ≥ #Ξ.
Ave.Iter. : the average of the number of iterations for generating each estimated location

(xp : N∗) ∈ Ξ at Step 8 of Algorithm 3.4 over the collection Ξ.

21

Cpd : RMSD of the estimated location compounded from the collection Ξ
at Step 8 of Algorithm 3.4 (with respect to the exact location).

Best : the smallest RMSD of the estimated locations contained in Ξ.
Wst : the largest RMSD of the estimated locations contained in Ξ.
Ave : the average of RMSDs of the estimated locations contained in Ξ.
eTime : the total execution time of passSDP, SFSDP or DISCO in seconds.

5.1 Comparison to SFSDP on randomly generated problems

For n = 1000, 2000, 4000, 8000, 16000, and 32000, numerical test problems are generated
as follows. Let N∗ = {1, 2, . . . , n}. Distribute n nodes x∗

p (p ∈ N∗) randomly in the unit
cube [0, 1]3. We take ρ = (15/n)(1/3) and ρ = (10/n)(1/3) for the inter-node distance
range. This means that each cube with the size ρ and the volume ρ3 contains 15 nodes
and 10 nodes on average, respectively. Let Eρ =

{
(p, q) ∈ N∗ × N∗ :

∥∥x∗
p − x∗

q

∥∥ ≤ ρ
}
.

We take three sparsity level η = 1.0, 0.8, 0.6. If η = 1, then we set E∗ = Eρ. Otherwise,
we select a subset E∗ of Eρ such that #E∗/#Eρ ≈ η satisfies. A corrupted distance dpq

for each (p, q) ∈ E∗ is computed such that

dpq = max {0.1, (1 + σξpq)}
∥∥x∗

p − x∗
q

∥∥ ,

where ξpq is chosen from the standard normal distribution N (0, 1) and the noise level
σ = 0.2 is used.

passSDP SFSDP
#N∗ #Ξ Ave. Rmsd eTime Rmsd eTime
(#A∗, Ave.deg) (Trials) Iter. Cpd Best Wst (sec) (sec)
1000 (100, 46.9) 12 (12) 104.7 1.9e-2 1.9e-2 1.9e-2 126 3.8e-2 23
1000 (0, 46.9) 12 (12) 123.0 2.1e-2 2.1e-2 2.1e-2 229 3.7e-2 419
2000 (200, 50.1) 12 (12) 114.3 1.4e-2 1.4e-2 1.4e-2 170 3.6e-2 25
2000 (0, 50.1) 12 (12) 126.4 1.6e-2 1.6e-2 1.6e-2 305 2.6e-1 8558
4000 (400, 51.8) 12 (12) 120.2 1.1e-2 1.1e-2 1.1e-2 379 4.2e-2 48
4000 (0, 51.8) 12 (12) 132.2 1.3e-2 1.3e-2 1.3e-2 516 - -
8000 (800, 54.0) 12 (12) 118.3 8.4e-3 8.4e-3 8.5e-3 712 2.3e-2 387
8000 (0, 54.0) 12 (12) 141.3 9.9e-3 9.9e-3 1.0e-2 930 - -
16000 (1600, 55.8) 12 (12) 118.8 6.5e-3 6.5e-3 6.6e-3 2306 1.6e-2 6263
16000 (0, 55.8) 12 (12) 142.9 7.4e-3 7.4e-3 7.4e-3 2570 - -
32000 (3200, 57.4) 12 (12) 120.6 5.0e-3 5.0e-3 5.0e-3 8037 - -
32000 (0, 57.4) 12 (12) 152.3 5.7e-3 5.7e-3 7.61e-3 9342 - -

Table 1: Radio range ρ = (15/#N∗)(1/3). Sparsity level = 1.0. With Setp 2a (see
Section 4.7).

In Table 1, the performance of passSDP is compared with SFSDP for the test problems
with highest density among all the test problems in Section 5. The sparsity of test
problem is measured by Ave.deg = 2#E∗/#N∗. Ave.deg is ranges from 50 to 60 in

22

Table 1. In the other tables, it is less than 40. SFSDP is expected to work efficiently
on dense problems by extracting a subgraph of G(N∗, E∗), which has a sparse chordal
extension. The efficiency of SFSDP improves as the number of anchors increases. See
Section 3.3 of [16]. Indeed, we observe in Table 1 that SFSDP solved the problems with
1000, 2000, 4000, 8000 nodes and 10 % anchors very efficiently, and its execution time is
shorter than that of passSDP. As the number of nodes increases more that 8000, however,
passSDP solved the test problems more efficiently, even the problems with 10 % anchors.

Table 1 shows that the locations computed by passSDP are more accurate than those
by SFSDP. While executing passSDP for the numerical results in Table 1, there was no
failure at Step 5 of Algorithm 3.4 because #Ξ = Trials in every problem. Notice that
the values of Cpd Rmsd, Best Rmsd and Wst Rmsd coincide with each other or very
similar. We confirm the stability of Algorithm 3.4 for solving the test problems.

passSDP SFSDP
#N∗ #Ξ Ave. RMSD eTime RMSD eTime
(#A∗, Ave.deg) (Trials) Iter. Cpd Best Wst (sec) (sec)
1000 (100, 32.5) 12 (12) 122.7 2.3e-2 2.3e-2 2.3e-2 150 5.0e-2 36
1000 (0, 32.5) 12 (12) 129.1 2.8e-2 2.7e-2 6.2e-2 154 2.4e-1 1366
2000 (200, 34.3) 12 (12) 116.8 1.7e-2 1.7e-2 1.8e-2 160 3.7e-2 149
2000 (0, 34.3) 12 (12) 135.7 1.9e-2 1.9e-2 2.2e-2 254 2.4e-2 12462
4000 (400, 35.4) 12 (12) 130.0 1.3e-2 1.3e-2 1.3e-2 324 2.6e-2 1259
4000 (0, 35.4) 12 (12) 147.4 1.5e-2 1.4e-2 6.6e-2 549 - -
8000 (800, 36.7) 12 (12) 136.0 9.5e-3 9.5e-3 9.5e-3 802 - -
8000 (0, 36.7) 12 (12) 162.2 1.1e-2 1.1e-2 5.0e-2 1331 - -
16000 (1600, 37.7) 12 (12) 135.5 7.3e-3 7.3e-3 7.3e-3 2027 - -
16000 (0, 37.7) 12 (12) 172.0 8.6e-3 8.5e-3 3.1e-1 4208 - -
32000 (3200, 38.7) 12 (12) 132.2 5.7e-3 5.7e-3 5.9e-3 8277 - -
32000 (0, 38.7) 12 (12) 181.9 6.6e-3 6.6e-3 2.5e-2 11939 - -

Table 2: Radio range ρ = (10/#N∗)(1/3). Sparsity level η = 1.0. Step 2a was executed.

For Table 2, we used a smaller radio range ρ = (10/#N∗)(1/3) than the one for Table 1
to see how SFSDP and passSDP perform for problems with sparser graph G(N∗, E∗).
We observe from Table 2 that passSDP remains to work efficiently and effectively on
the problems, and Ave. Iter., RMSD and eTime increased slightly. However, eTime by
SFSDP increased considerably.

For the numerical experiments reported in Table 2, we incorporated Step 2a in Sec-
tion 4.7. Table 3 shows numerical results on the same set of test problems as in Table 2
solved by passSDP without Step 2a. Comparing Tables 2 and 3, we confirm that Step 2a
enhances the numerical efficiency of passSDP and that slightly accurate RMSDs were
obtained by eliminating Step 2a.

In Tables 4 and 5, test problems with increased sparsity were solved by passSDP
with Step 2a. All the problems were solved successfully. Ave. Iter., RMSD and eTime
increased slightly, except for the largest problem with 32000 nodes and no anchors. We

23

passSDP
#N∗ #Ξ Ave. Rmsd eTime
(#A∗, Ave.deg) (Trials) Iter. Cpd Best Wst Ave (sec)
1000 (100, 32.5) 12 (12) 137.5 2.25e-2 2.25e-2 3.11e-2 2.32e-2 337
1000 (0, 32.5) 12 (12) 147.8 2.66e-2 2.66e-2 3.72e-2 2.81e-2 385
2000 (200, 34.2) 12 (12) 141.2 1.63e-2 1.62e-2 1.71e-2 1.65e-2 543
2000 (0, 34.2) 12 (12) 162.0 1.92e-2 1.88e-2 2.05e-2 1.94e-2 745
4000 (400, 35.4) 12 (12) 160.4 1.25e-2 1.25e-2 1.27e-2 1.26e-2 1140
4000 (0, 35.4) 12 (12) 177.5 1.45e-2 1.45e-2 2.17e-2 1.51e-2 1570
8000 (800, 36.7) 12 (12) 174.2 9.37e-3 9.36e-3 9.39e-3 9.37e-3 2727
8000 (0, 36.7) 12 (12) 199.6 1.17e-2 1.13e-2 4.14e-2 2.02e-2 3920
16000 (1600, 37.7) 12 (12) 173.9 7.34e-3 7.33e-3 7.45e-3 7.38e-3 6888
16000 (0, 37.7) 12 (12) 213.2 8.53e-3 8.53e-3 9.08e-3 8.64e-3 12792
32000 (3200, 38.7) 12 (12) 185.4 5.68e-3 5.67e-3 5.94e-3 5.71e-3 34992
32000 (0, 38.7) 12 (12) 259.0 6.62e-3 6.62e-3 7.50e-2 1.46e-2 102356

Table 3: Radio range ρ = (10/#N∗)(1/3). Sparsity level = 1.0. Without Step 2a.

passSDP
#N∗ #Ξ Ave. Rmsd eTime
(#A∗, Ave.deg) (Trials) Iter. Cpd Best Wst Ave (sec)
8000 (800, 29.3) 12 (12) 150.8 1.08e-2 1.08e-2 1.34e-2 1.17e-2 821
8000 (0, 29.3) 12 (12) 188.8 1.52e-2 1.49e-2 2.42e-1 3.83e-2 1663
16000 (1600, 30.2) 12 (12) 169.4 8.40e-3 8.40e-3 8.58e-3 8.47e-3 2700
16000 (0, 30.2) 12 (12) 231.8 1.04e-2 1.04e-2 3.37e-1 6.17e-2 7763
32000 (3200, 31.0) 12 (12) 187.0 6.53e-3 6.36e-3 7.11e-3 6.69e-3 11189
32000 (0, 31.0) 12 (12) 291.2 7.97e-3 7.73e-3 3.01e-1 8.15e-2 31037

Table 4: Radio range ρ = (10/#N∗)(1/3). Sparsitty level η = 0.8. Step 2a was executed.

passSDP
#N∗ #Ξ Ave. RMSD eTime
(#A∗, Ave.deg) (Trials) Iter. Cpd Best Wst Ave (sec)
8000 (800, 22.0) 12 (12) 161.4 1.31e-2 1.31e-2 1.35e-2 1.32e-2 856
8000 (0, 22.0) 12 (12) 214.0 1.63e-2 1.59e-2 4.52e-1 9.65e-2 3679
16000 (1600, 22.6) 12 (12) 171.2 1.00e-2 1.00e-2 1.03e-2 1.01e-2 2361
16000 (0, 22.6) 12 (12) 226.8 1.22e-2 1.22e-2 1.87e-2 1.40e-2 8022
32000 (3200, 23.2) 12 (12) 180.3 7.77e-3 7.76e-3 7.79e-3 7.78e-3 8824
32000 (0, 23.2) 12 (12) 321.7 1.36e-2 1.24e-2 2.34e-1 5.26e-2 46093

Table 5: Radio range ρ = (10/#N∗)(1/3). Sparsitty level η = 0.6. Step 2a was executed.

24

tried to solve test problems with the sparsity level η = 0.4, but no satisfactory numerical
results were obtained.

5.2 Euclidean distance geometry problems from molecular con-
firmation

The test problems in this section are from [22]; they consists of 13 molecular confirmation
problems from the Protein Data Bank (PDB). We generated the input data including
a node set N∗, an edge set E∗, exact node locations (x∗

p : N∗), and distances dpq with
noise ((p, q) ∈ E∗) by DISCO [22]. We can choose one of the two noise models, normal
and uniform noise models with the noise level parameter ν, and the sparsity level that
approximately determines #E∗/#Eρ, where ρ = 6Ȧ is fixed, in DISCO [22]. In the
numerical experiments, the normal noise model was tested with the noise level ν =
0.0, 0.1 and 0.2, and the 30% sparsity level such that #E∗/#Eρ ≈ 0.3. See Section 5.2
of [22] for more details on the test problems.

The performance of SFSDP [16, 18] is compared in Table 6 with passSDP for smaller
size problems with the number of nodes up to 1534. The parameter pars.minDegree
controls the degrees of the nodes in the subgraph chosen for constructing a sparse SDP
relaxation in SFSDP. See Section 4.1 of [16]. The default value for pars.minDegree is
5 (= " + 2). Table 6 includes the results on SFSDP(dense), the dense SDP relaxation
[2], for the 3-dimensional problem. We see from Table 6 that SFSDP(dense) worked
better than SFSDP with minDeg = 5 and SFSDP with minDeg = 7 both in the quality
of estimated locations and execution time. These problems are too sparse for SFSDP
to extract a sparse subproblem. The RMSDs of passSDP are comparable to the ones of
SFSDP(dense) in all the problems except 1GM2. The execution time of SFSDP(dense)
is much shorter than that of passSDP for the first three problems with 166, 402 and 558
nodes, and comparable for the next two problems with 814 and 1003 nodes. For the
largest problem 1F39 with 1534 nodes in Table 6, passSDP is much faster.

Tables 7, 8 and 9 display the numerical results by passSDP and DISCO [22] on the
test problems with the noise levels ν = 0.0, 0.1, 0.2, respectively. The RMSDs obtained
by passSDP are comparable to the ones by DISCO except the largest problem 1YGP
with 13488 nodes. For this problem, passSDP provided the estimated locations with
much higher accuracy than DISCO in all tables. We also observe that passSDP is more
than 10 times slower than DISCO for the smaller sized problems, and passSDP takes
about 3 to 5 times longer than DISCO for the large-sized problems.

Ave. deg. of the test problems in this subsection ranges from 10 to 14, while Ave.
deg. of the test problems in Section 5.1 is from 20 to 60. Therefore, the problems in
Section 5.2 are much sparser and more difficult to solve than the ones in Section 5.1.
In fact, passSDP encountered failures at Step 5 when it tried to solve the test problems
1RGS with noise level 0.0, 0.1 and 0.2, and RMSD Wst and RMSD Ave became larger
than 2 in some of the test problems in Tables 7, 8 and 9. We note that the method
described in Section 4.6 for compounding a more accurate estimation of location from
Ξ worked successfully to produce an estimated location with RMSD Cpd comparable to
RMSD Best.

25

Problem SFSDP SFSDP SFSDP(dense) passSDP
#N∗ minDeg = 5 minDeg = 7 RMSD eTime RMSD eTime
(A.deg) ν RMSD eTime RMSD eTime (sec) Cpd (sec)
1GM2 0.0 0.36 9 0.71 39 5.0e-4 5 0.05 327
166 0.1 2.98 8 0.74 29 0.39 23 0.36 343
(13.5) 0.2 3.02 10 0.81 36 0.81 15 0.87 352
1PTQ 0.0 4.24 235 1.55 1029 0.57 95 0.75 936
402 0.1 7.13 246 1.11 877 0.70 90 0.84 895
(10.8) 0.2 3.06 295 1.41 1033 1.00 81 1.19 1133
1HOE 0.0 1.75 659 1.75 3014 0.23 205 0.51 1143
558 0.1 1.66 776 1.74 3095 0.48 202 0.67 802
(11.0) 0.2 1.17 831 1.13 2497 0.84 191 0.95 1152
1PHT 0.0 10.0 2245 - - 0.87 2380 0.82 1789
814 0.1 9.88 2455 - - 0.92 2916 0.90 3597
(12.8) 0.2 9.87 2310 - - 1.31 2906 0.93 802
1AX8 0.0 12.5 9464 - - 0.52 2846 0.74 1147
1003 0.1 - - - - 0.78 3580 1.18 3116
(11.2) 0.2 - - - - 1.28 2215 1.14 4408
1F39 0.0 - - - - 0.63 11460 0.49 1635
1534 0.1 - - - - 0.81 7987 0.80 1459
(11.1) 0.2 - - - - 1.16 10414 1.25 2173

Table 6: Noise level = 0.0.

passSDP DISCO
Problem #Ξ Ave. RMSD eTime RMSD eTime
(#N∗, Ave.deg) (Trials) Iter. Cpd Best Wst Ave (sec) (sec)
1GM2 (166,13.5) 12 (12) 112.8 0.05 0.04 0.06 0.05 327 0.10 23
1PTQ (402,10.8) 12 (12) 177.1 0.75 0.69 0.77 0.75 936 0.34 34
1HOE (558,11.0) 12 (12) 191.6 0.51 0.36 0.59 0.50 1143 0.12 89
1PHT (814,12.8) 12 (12) 204.8 0.82 0.82 0.98 0.86 1789 0.92 110
1AX8 (1003,11.2) 12 (12) 225.8 0.74 0.73 1.11 0.90 1147 0.76 152
1F39 (1534,11.1) 12 (12) 250.2 0.49 0.47 1.31 0.59 1634 0.56 404
1RGS (2015,11.2) 9 (12) 290.8 0.59 0.60 7.04 2.00 2634 0.54 385
1KDH (2923,11.8) 12 (12) 300.5 0.64 0.60 11.01 1.58 2677 0.56 638
1BPM (3672,12.3) 12 (12) 323.3 0.35 0.35 4.89 0.78 2881 0.40 858
1TOA (4292,12.1) 12 (12) 377.6 0.49 0.45 15.37 3.88 6160 0.46 1665
1MQQ (5681,12.7) 12 (12) 362.3 0.24 0.25 0.30 0.27 4045 0.35 1660
1I7W (8629,12.3) 12 (12) 493.3 0.46 0.41 30.79 6.15 8976 0.70 3402
1YGP (13488,12.6) 12 (12) 520.0 0.32 0.33 7.11 0.91 24299 1.93 7411

Table 7: Noise level = 0.0.

26

passSDP DISCO
Problem #Ξ Ave. RMSD eTime RMSD eTime
(#N∗, Ave.deg) (Trials) Iter. Cpd Best Wst Ave (sec) (sec)
1GM2 (166,13.5) 12 (12) 112.0 0.36 0.36 0.43 0.37 343 0.36 20
1PTQ (402,10.8) 12 (12) 172.1 0.84 0.78 0.88 0.83 895 0.52 31
1HOE (558,11.0) 12 (12) 179.0 0.67 0.66 0.77 0.71 802 0.42 81
1PHT (814,12.8) 12 (12) 198.3 0.90 0.84 1.52 1.09 3597 0.82 98
1AX8 (1003,11.2) 12 (12) 211.2 0.93 0.93 2.20 1.47 802 0.76 153
1F39 (1534,11.1) 12 (12) 236.8 0.80 0.78 0.87 0.81 1459 0.77 388
1RGS (2015,11.2) 7 (12) 258.3 0.80 0.81 8.30 3.09 945 0.73 392
1KDH (2923,11.8) 12 (12) 278.7 0.85 0.79 15.04 3.45 2377 0.71 642
1BPM (3672,12.3) 12 (12) 290.7 0.56 0.53 0.95 0.64 1622 0.54 1031
1TOA (4292,12.1) 12 (12) 300.2 0.65 0.63 18.39 2.38 2519 0.60 1595
1MQQ (5681,12.7) 12 (12) 316.1 0.45 0.45 0.79 0.51 3185 0.47 1656
1I7W (8629,12.3) 12 (12) 345.7 0.73 0.73 18.90 3.78 4683 0.90 3558
1YGP (13488,12.6) 12 (12) 374.5 0.50 0.50 1.40 0.81 7727 1.54 8048

Table 8: Noise level = 0.1.

passSDP DISCO
Problem #Ξ Ave. RMSD eTime RMSD eTime
(#N∗, Ave.deg) (Trials) Iter. Cpd Best Wst Ave (sec) (sec)
1GM2 (166,13.5) 12 (12) 137.2 0.87 0.86 1.10 0.93 352 0.92 20
1PTQ (402,10.8) 12 (12) 223.5 1.19 1.19 1.30 1.22 1133 1.01 35
1HOE (558,11.0) 10 (12) 240.9 0.95 0.94 1.13 1.00 1152 0.79 77
1PHT (814,12.8) 12 (12) 263.9 1.18 1.23 2.16 1.46 3116 1.18 95
1AX8 (1003,11.2) 19 (24) 414.9 1.08 1.14 5.03 2.02 4408 1.30 150
1F39 (1534,11.1) 12 (12) 331.4 1.25 1.27 1.81 1.43 2173 1.17 375
1RGS (2015,11.2) 6 (24) 368.7 1.16 1.20 9.61 4.35 2540 1.09 352
1KDH (2923,11.8) 12 (12) 402.6 1.36 1.18 1.41 1.32 3844 1.03 633
1BPM (3672,12.3) 24 (24) 669.5 1.01 1.01 1.83 1.25 12883 0.94 828
1TOA (4292,12.1) 12 (12) 447.1 1.04 1.04 1.33 1.12 5123 0.88 1621
1MQQ (5681,12.7) 12 (12) 477.3 0.82 0.81 1.27 0.96 7615 0.77 1606
1I7W (8629,12.3) 12 (12) 529.6 1.16 1.19 17.34 2.67 11240 1.39 3289
1YGP (13488,12.6) 12 (12) 583.7 0.86 0.86 1.10 0.94 21803 1.78 7466

Table 9: Noise level = 0.2.

27

6 Concluding Remarks

We have proposed the numerical method for solving EDGPs including anchor-free 3-
dimensional problems. The proposed method can be executed in parallel, using the
multiple cliques as initial sets of anchors. As a result, the multiple sets of estimated
locations of nodes are obtained and their accuracy is improved by the compounding
procedure. Numerical results in Section 5 show that the proposed method outperforms
SFSDP for uniformly sparse EDGPs, and produces comparable results to DISCO for
molecular conformation test problems. For the largest problem 1YGP, the results by
proposed method are more accurate.

The results obtained by the proposed method for the the molecular conformation
problem with 20 % sparsity are not very accurate. Our future goal is to improve the
algorithm so that the accuracy of the estimated locations of the problems with 20 %
sparsity can be within the desired accuracy. In addition, it would be interesting to
combine the divide and conquer method with the proposed method to tackle more difficult
and large-scale problems.

Acknowledgments

The authors would like to thank Professor Kim-Chuan Toh for Matlab programs pro-
cruste.m and refinepositions.m.

References

[1] P. Biswas, K.C. Toh, and Y. Ye. A distributed SDP approach for large scale noisy
anchor-free graph realization with applications to molecular conformation, SIAM J.
Sci. Comput., 30 (2008) 1251–1277.

[2] P. Biswas and Y. Ye. Semidefinite programming for ad hoc wireless sensor network
localization, in Proceedings of the third international symposium on information
processing in sensor networks, ACM press, New York (2004) 46–54.

[3] P. Biswas and Y. Ye. A distributed method for solving semidefinite programs arising
from Ad Hoc Wireless Sensor Network Localization, in Multiscale Optimization
Methods and Applications, Springer, New York (2006) 69–84.

[4] I. Borg and P. Groenen, Modern Multidimensional Scaling, second ed. Springer, New
York (2010).

[5] G.M. Crippen and T.F. Havel. Distance Geometry and molecular Conformation,
Wiley, New York (1988).

[6] CSDP Homepage, https://projects.coin-or.org/Csdp/

[7] Q. Dong and Z. Wu. A geometric build-up algorithm for solving the molecular dis-
tance geometry problems with sparse distance data, J. Global Optim., 26 (2003)
321–333.

28

[8] B. Everitt and S. Rabe-Hesketh. The Analysis of Proximity Data, Arnold, London
(1997).

[9] S. Fujishige. Submodular Functions and Optimization, 2nd ed, Elsevier, New York
(2005).

[10] K. Fujisawa, M. Fukuda, K. Kobayashi, M. Kojima, K. Nakata, M. Nakata and M.
Yamashita. SDPA (SemiDefinite Programming Algorithm) User’s Manual — Version
7.0.5, Research Report B-448, Dept. of Mathematical and Computing Sciences,
Tokyo Institute of Technology, Tokyo (2008).

[11] M. Fukuda, M. Kojima, K. Murota and K. Nakata. Exploiting sparsity in semidef-
inite programming via matrix completion I: General framework, SIAM J. Optim.,
11 (2000) 647–674.

[12] W. Glunt, T. Hayden, S. Hong, and J. Wells. An alternating projection algorithm for
computing the nearest euclidean distance matrix, SIAM J. Math. Anal. and Appl.,
11 (1990) 589–600.

[13] I. G. Grooms, R. M. Lewis, and M. W. Trosset. Molecular embedding via a second-
order dissimilarity parameterized approach, SIAM J. Sci. Comput., 31 (2009) 2733–
2756.

[14] T. F. Havel, I. D. Kuntz, and G. M. Crippen. The combinatorial distance geometry
approach to the calculation of molecular conformation, J. of Theor. Biol., 104 (1983)
359–381.

[15] T. F. Havel. A evaluation of computational strategies for use in the determination of
protein structure from distance constraints obtained by nuclear magnetic resonance,
Progress is Biophysics and Molecular Bio., 56 (1991) 43–78.

[16] S. Kim, M. Kojima and H. Waki. Exploiting sparsity in SDP relaxation for sensor
network localization, SIAM J. Optim., 20 (2009) 192–215.

[17] S. Kim, M. Kojima, M. Mevissen, and M. Yamashita. Exploiting Sparsity in Lin-
ear and Nonlinear Matrix Inequalities via Positive Semidefinite Matrix Completion,
Math. Program., 129 (2011) 33–68.

[18] S. Kim, M. Kojima, H. Waki, and M. Yamashita. SFSDP: a Sparse Version of Full
SemiDefinite Programming Relaxataion for Sensor Network Localization Problems,
ACM Trans. Math. Softw., 38 (2012) 4.

[19] A. Krause. SFO: A Toolbox for Submodular Function Optimization, J. Mach. Learn.
Res. , 3 (2010) 1141–1144.

[20] A. Krause, and C. Guestrin Near-optimal observation selection using submodular
functions, in AAAI’07 Proceedings of the 22nd national conference on Artificial
intelligence, 2 (2007)1650–1654.

29

[21] S. Lele. Euclidean distance matrix analysis (EDMA): Estimation of mean form and
mean form difference, Math. Geol., bf 25 (1993) 573–602.

[22] N.-H. Z. Leung and K.-C. Toh. An SDP-based divide-and-conquer algorithm for
large scale noisy anchor-free graph realization, SIAM J. Sci. Comput., 31 (2009)
4351–4372.

[23] T.-C. Lian, T.-C. Wang, and Y. Ye. A gradient search method to round the semidefi-
nite programming relaxation solution for ad hoc wireless sensor network localization,
Technical report, Dept. of Management Science and Engineering, Stanford Univer-
sity (2004).

[24] L. Liberti, C. Lavor, N. Maculan and A. Mucherino. Euclidean Distance Geometry
and Applications, arXiv:1205.0349 [q-bio.QM], May 3, 2012.

[25] J. J. Moré, Z. Wu. Global continuation for distance geometry problems, SIAM J.
Optim., 7 (1997) 814–836.

[26] J. J. Moré, Z. Wu. Distance geometry optimization for protein structures, J. Global
Optim., 15 (1999) 219–234.

[27] K. Nagano, Y. Kawahara and K. Aihara (2011) “Size-constrained submodular mini-
mization through minimum norm base,” Proceedings of the 28th International Con-
ference on Machine Learning (ICML 2011), 977–984.

[28] K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima and K. Murota. Exploiting sparsity
in semidefinite programming via matrix completion II: Implementation and numer-
ical results, Math. Program., 95 (2003) 303–327.

[29] J. Nielsen and B. Roth. On the kinematic analysis of robotic mechanisms, Internat.
J. Robotics Res., 18 (1999) 1147–1160.

[30] SDPA Homepage, http://sdpa.indsys.chuo-u.ac.jp/sdpa/.

[31] SDPT3 homepage, http://www.math.nus.edu.sg/∼mattohkc/sdpt3.html

[32] SeDuMi Homepage, http://sedumi.mcmaster.ca.

[33] A. M. So and Y. Ye. Theory of semidefinite programming for sensor network local-
ization, Math. Program., 109 (2007) 367–384.

[34] K. Q. Weinberger, F. Sha, and L. K. Saul. Learning a kernel matrix for nonlinear di-
mensionality reduction, in Proceedings of the Twenty-First International Conference
on Machine Learning (ICML ’04), ACM Press, New York (2004) 839–846.

[35] Z. Wang, S. Zheng, S. Boyd, and Y. Ye. Further relaxations of the SDP approach
to sensor network localization, SIAM J. Optim., 19 (2008) 655–673.

[36] D. Wu and Z. Wu. An updated geometric build-up algorithm for solving the molec-
ular distance geometry problems with sparse distance data, J. Global Optim., 37
(2007) 661–673.

30

[37] M. Yamashita, K. Fujisawa, M.Fukuda, K. Kobayashi, K. Nakata and M. Nakata.
Latest development in the SDPA family for solving large-scale SDPs. In: M. F. Anjos,
J. B. Lasserre (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization,
Springer, New York (2012) 687–713.

31

