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Abstract.
The solution methods based on semidefinite programming (SDP) relaxations for sensor network
localization (SNL) problems can not handle very large-sized SNL problems. We present a contin-
uation method using the gradient descent method to efficiently solve large-sized SNL problems.
We first formulate the problem as an unconstrained optimization problem and then apply the
continuation on the distance information with the continuation parameter. We show numerically
that the continuation method provides an approximate solution efficiently with comparable accu-
racy to that of SFSDP, a Matlab software package, which showed better performance than other
SDP-based methods for solving various types of the problems. Numerical results are presented to
illustrate the performance of the proposed method in comparison with SFSDP.
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1 Introduction

Sensor network localization problems (SNL) has attracted considerable research interests for a
broad spectrum of applications using wireless sensor networks. The SNL problem is to estimate
the locations of m sensors of unknown positions using given distances and some sensors of known
positions (called anchors) in a sensor network of n sensors, where n > m. Finding the solutions
of this problem is known to be NP-hard in general [14]. Thus, approximating the solution of this
problem has been dealt with from many angles [1, 6, 7, 10].

Among many approaches for SNL problems, the semidefinite programming (SDP) relaxation
method proposed by Biswas and Ye in [2] has received a plenty of attention in the field of optimiza-
tion. We will call this relaxation SDP relaxation method as the full SDP relaxation method and
abbreviate it as FSDP. An advantages of FSDP is that it can provide approximate solutions with
accuracy. It can solve small to medium-sized SNL problems. Recent studies [3, 4, 5, 15, 20, 22, 16]
have been directed to improving the efficiency of solving larger-sized problems. The main diffi-
culty of solving large-sized SNL problems by FSDP is from the fact that the SDP relaxation of the
SNL problem is solved by one of the SDP solvers based on the primal-dual interior-point method
[8, 19, 21]. Since handling large-scale SDPs by these software packages still remains a computa-
tional challenge, large-sized SDPs induced from the SNL problems can not be solved with SDP
solvers. As a result, further relaxations of FSDP were proposed: the second-order cone program-
ming (SOCP) relaxation proposed by [20], edge-based SDP (ESDP) and node-based SDP (NSDP)
relaxations in [22]. Although the ESDP and NSDP relaxations attain better accuracy than the
SOCP relaxation, the quality of the solutions by ESDP and NSDP is weaker than that of the
original FSDP. They showed, however, computationally, the quality of the solution is comparable
to that of FSDP. Recently, a further relaxation of ESDP was proposed in [16] and demonstrated
to solve the SNL problems of increased size.

Another method based on the SDP relaxation was introduced by exploiting the sparsity of the
SNL problem by Kim, Kojima and Waki [11, 12, 13]. This method, which we call a sparse version
of the Biswas and Ye’s SDP relaxation FSDP and abbreviate it as SFSDP, maintains the same
theoretical property as FSDP, while providing the approximate solutions much faster. In fact, the
performance of SFSDP is better than other methods proposed for the SNL problems in terms of
the solution quality and the size of the SNL problems. It was shown in [13] that 2-dimensional
problems with 20,000 sensors, and 3-dimensional problems with 5,000 sensors and 250 anchors
could be solved efficiently using a machine with 16GB memory.

We note that the primal-dual interior-point method for the SDP relaxation employs a second-
order method such as Newton’s method and solving the Schur complement equation is the most
time-consuming part of the primal-dual interior-point method. When much larger-sized SNL
problems needs to be solved, numerical methods based on a first-order method can be considered
for efficiency. This motivates us to study solving the SNL problems using the continuation method
with the gradient method.

The conventional continuation method is used in general for tracing a solution u(t) of a system
of nonlinear equation F (u, t) = 0 with the parameter changing from 0 to 1. Here F is a mapping
from Rn × [0, 1] into Rn. The SNL problem of finding the locations of sensors using the given
distances can be expressed with the distance equations. The number of distance equations is usually
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larger than the number of unknowns, resulting an overdetermined system of nonlinear equations.
Thus, we derive an unconstrained minimization problem with the parameter t changing 0 to 1 from
the overdetermined system: For F : Rn × [0, 1] → Rr with r > n, we minimize

∑r
i=1(Fi(u, t))2

in u ∈ Rn. With initial distances and locations of sensors simply computed at t = 0, we form
a continuation from the initial distances to the given distances of the SNL problem. Our goal
is to find the locations of sensors corresponding to the given distances by applying a first order
method at each t ∈ [0, 1]. In particular, the gradient method is applied to the minimization
of

∑r
i=1(Fi(u, t))2 in u ∈ Rn as t varies from 0 to 1. Although there is no guarantee for the

continuation method to attain a global minimizer of the SNL problem, the numerical solutions
from the continuation method at t = 1 measured by the root mean squared distance (RMSD) show
comparable accuracy to other methods for SNL problems. The continuation method can also be
used to refine the approximate solution obtained by the other approaches.

The continuation method has computational advantages over SDP-based methods such as
FSDP, SFSDP, and ESDP methods and the SOCP relaxation. First, it can efficiently solve much
larger-sized problems. Second, the obtained approximate solution still have relatively good ac-
curacy, although they can not be more accurate than the ones from the SDP-based methods in
theory. Third, much less memory is required since the gradient method does not need to store
large matrices.

We show in Section 5 that much larger-sized SNL problems can be solved with the continuation
method than the methods based on the SDP relaxation. For instance, the approximate solutions
of the SNL problems with 20,000 sensors in 2-dimensions and 10,000 sensors in 3-dimensions can
be obtained with a PC with 4 GB. In [13], the largest size of the SNL problems that could be
solved using a PC with 16GB is 20,000 in 2-dimensions and 5,000 in 3-dimensions. Numerical
experiments demonstrate that the continuation method requires less the CPU time for most of
test problems, except for the problems with a very small number of anchors.

This paper is organized as follows. In Section 2, preliminary materials of the SNL problem are
presented. The continuation method is described in Section 3. In Section 4, we present methods
for selecting initial locations of sensors. In addition, computational issues regarding step sizes and
stopping conditions are discussed. Section 5 includes numerical results in comparison with SFSDP.
We conclude in Section 6.

2 Preliminaries

We describe a SNL problem with m sensors and ma (= n − m) anchors. A radio range ρ > 0
determines the set N ρ

x for pairs of sensors p and q and the set N ρ
a for pairs of a sensor p and an

anchor r. More precisely,

N ρ
x = {(p, q) : 1 ≤ p < q ≤ m, ‖xp − xq‖ ≤ ρ},

N ρ
a = {(p, r) : 1 ≤ p ≤ m, m + 1 ≤ r ≤ n, ‖xp − ar‖ ≤ ρ},

}
where xp ∈ R` denotes the unknown location of sensor p and ar ∈ R` the known location of anchor
r.
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Let D ∈ Rm×n be the distance matrix and its (p, q)th element dpq denote the distance between
the sensors xp and xq or the sensor xp and the anchor aq :

dpq =


‖xp − xq‖ + ε′pq if (p, q) ∈ N ρ

x and p < q

‖xp − aq‖ + ε′pq if (p, q) ∈ N ρ
a and p < q

0 otherwise,
(1)

where ε′pq = 0 for the problem with exact distances and ε′pq means noise in the distances for the
problem with noise. Note that D is upper triangular and the number of zero elements in D
increases as ρ becomes smaller.

2.1 SNL problems with exact distances

The system of distance equations for the problem with exact distances is expressed as

d2
pq = ‖xp − xq‖2, (p, q) ∈ N x, d2

pr = ‖xp − ar‖2, (p, r) ∈ N a, (2)

where N x is a subset of N ρ
x and N a a subset of N ρ

a.

Using the system of equations (2), we can formulate the SNL problem as an unconstrained
optimization problem:

minimize
∑

(p,q)∈N x

|‖xp − xq‖2 − d2
pq| +

∑
(p,r)∈N a

|‖xp − ar‖2 − d2
pr|. (3)

Note that the objective function of (3) is not smooth. This problem is reformulated as a mini-
mization of a linear objective function subject to quadratic equality constraints to which we can
apply an SDP relaxation [2].

The problem considered in [15] was

minimize
∑

(p,q)∈N x

(‖xp − xq‖2 − d2
pq)

2 +
∑

(p,r)∈N a

(‖xp − ar‖2 − d2
pr)

2. (4)

Since the objective function of (4) is smooth, a local method such as the gradient method can
be applied. The degree of the objective function is 4, which requires more work than (3) if the
methods based on SDP relaxation is used.

Alternatively, the SNL problem can be formulated as

minimize f(X) :=
∑

(p,q)∈N x

(‖xp − xq‖ − dpq)2 +
∑

(p,r)∈N a

(‖xp − ar‖ − dpr)2, (5)

where we denote X = (x1, . . . , xm) ∈ R`×m. Note that this mapping f is continuously differen-
tiable on the open dense subset

Ξ =
{

X = (x1, . . . ,xm) ∈ R`×m :
xp 6= xq (1 ≤ p < q ≤ m)
xp 6= ar (1 ≤ p ≤ m < r ≤ n)

}
.

This model was used to refine the solutions obtained by the SDP relaxation of (3) in [2], with the
gradient method. It was mentioned in [2] that it provided more accurate numerical solutions than
(4). Based on this observation, we consider solving the SNL problem formulated as (5).
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2.2 SNL problems with noisy distance data

For the problems with noise, an estimated distance dpq in (1) contains noise ε′pq between sensors
p and q (or an estimated distance dpr includes ε′pr between sensor p and anchor r). Then, the
same form of the problem (5) can be considered for noisy problems, only difference is that dpq and
dpr contain noise. In the subsequent sections, we mainly discuss with the problem (5) with exact
distances, however, the discussion can be applied to the SNL problems with noise similarly.

3 Continuation with the Gradient Method

The SNL problem is to find X ∈ R`×m that minimizes (5) with the given distance matrix D
described in (1). Let D0 be an initial distance matrix, with which we can compute the location
of sensors easily. We employ a continuation method for the SNL problem with the give distance
matrix D as follows: Let

D̂(t) = (1 − t)D0 + tD, (6)

where t is a continuation parameter 0 ≤ t ≤ 1. Note that D̂(t) becomes the distance matrix while
performing the continuation with t. More precisely, let d̂pq(t) and d̂pr(t) indicate the (p, q)th and
(p, r)th element of D̂(t), and d0

pq and d0
pr the (p, q)th and (p, r)th element of D0, respectively.

Then, (6) means

d̂pq(t) = (1 − t)d0
pq + tdpq (p, q) ∈ N x, d̂pr(t) = (1 − t)d0

pr + tdpr (p, r) ∈ N a,

for 0 ≤ t ≤ 1.

Since t changes from 0 to 1, we discretize the interval [0, 1] with some positive integer τ ≥ 1.
Let ∆t = 1

τ . Then, the interval [0, 1] can be discretized uniformly, i.e., t0 = 0, t1 = t0 + ∆t, t2 =
t1 + ∆t, . . . , tτ = 1. For each value of t, we consider solving

minimize h(X, t) =
∑

(p,q)∈N x

(‖xp − xq‖ − d̂pq(t))2 +
∑

(p,r)∈N a

(‖xp − ar‖ − d̂pr(t))2. (7)

Obviously, when t = 1, D̂(t) becomes D, thus, solving (7) returns to the original SNL problem
(5).

For the brief description of the gradient method applied to the problem (7), we let Xk =
[xk

1, x
k
2, . . . ,x

k
m] ∈ R`×m. The superscript k in Xk denotes kth iteration of the gradient method.

We first choose an initial approximation X0 to X. For each iteration k (k = 1, 2, . . .),

Xk+1 = [xk
1 − sk∇x1h(Xk, t), xk

2 − sk∇x2h(Xk, t), . . . , xk
m − sk∇xmh(Xk, t)]

is computed where sk denotes a step length. The iteration continues until it satisfies one of the
stopping conditions:

|h(Xk, t) − h(Xk+1, t))|/(1 + |h(Xk, t))| < ε (8)

for a given tolerance ε, or the number of iterations exceeds the given maximum number of iterations.

To implement the continuation method for (7) with the gradient method, an initial guess for
X at t0 = 0 (i = 0), denoted as X0, and an initial distance matrix D0 should be first decided. We
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discuss the computation of the initial guesses in Section 4. Then, the gradient method is applied
to the problem

minimize h(X, t1)

with X0. If one of the stopping conditions described in (8) is satisfied, an approximate minimizer
X̃1 is obtained. Similarly, for each i (i = 1, . . . , τ − 1), the gradient method is applied to the
problem

minimize h(X, ti+1) (9)

using X̃i as the initial matrix. We then obtain the approximate minimizer X̃i+1 from (9).

Since the continuation method does not include a predictor scheme, an approximate minimizer
X̃i at ti is directly used as the initial point for the corrector to compute Xi+1 at ti+1, the gradient
method. The trajectory of the approximate local minimizers of h(X, t) for 0 ≤ t ≤ 1 may not
exist, and even when it exists, it may not move forward in the direction t, creating a jump in the
values of X̃i and X̃i+1 for some i (0 ≤ i < τ). However, in our numerical experiments shown in
Section 5, we have not encountered this situation, and have successfully found Xτ .

4 The Algorithm and Computational Issues

The algorithm of the proposed continuation method for (7) consists of the following steps. An
initial guess X0

0 for X denotes the initial matrix for the continuation method and the gradient
method at the start of the continuation method. The algorithm is described in a way that the
continuation from t = 0 to t = 1 can be applied more that once.

Algorithm 4.1.

Step 1. Take an initial guess X0
0 and D0 for D to start the continuation method. Set t0 = 0.

Choose τ ≥ 1 and compute the step size ∆t = 1/τ . Decide the maximum number of the
outer iteration (maxIt), and a tolerance ε for the gradient method. Set OuterIteration = 1
and t1 = ∆t.

Step 2. Inner iteration:

For i = 0, . . . , τ − 1

a. Compute D̂ by (6) at ti+1.

b. Apply the gradient method to (9) with ε and X0
i to obtain X̃i+1.

c. X0
i+1 ← X̃i+1.

d. ti+2 ← ti+1 + ∆t.

end

Step 3. If OuterIteration ≥ maxIt, then stop.

Step 4. X0
0 ← X̃τ , and determine D0 for OuterIteration+1 and ∆t. Set t0 = 0 and t1 = ∆t.

OuterIteration ← OuterIteration +1. Repeat from Step 2.
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4.1 Iterative refinements

The continuation method described in Algorithm 4.1 can be used iteratively to refine the approx-
imate solution by taking the outer iteration of Steps 2–4 until it satisfies a stopping condition,
for instance, the difference in ‖X‖’s from two consecutive outer iterations is smaller than a given
tolerance. We note that increasingly larger values of ∆t, or even ∆t = 1, can be used from the
second outer iteration.

The efficiency of this iterative refinement greatly depends on the maximum number of iterations
and the prescribed tolerance for the gradient method during the inner iteration since it is called
repeatedly. In the early stage of iterations where initial X0

i is a very rough approximation, a large
value for the maximum number of iterations and a small tolerance for the gradient method can
very much slow the whole process. In addition, those choices of the values do not always guarantee
a very accurate minimizer at the final stage. In the numerical experiments presented in Section
5, we used a smaller number of maximum iteration, e.g., 200 - 300, for the gradient method in
the early stage of the continuation method and a larger number, 3000, when t is close to 1. For
tolerance, 1.e-4 was used for 0 < t < 1 and the values of 1.e-8 to 1.e-12 were used when t is close
to 1 in the experiments for Section 5. We compare two values of tolerance for 0 < t < 1 in the
subsequent section.

4.2 Construction of initial X0
0

Initial matrices for D0 and X0
0 can be determined in various ways for the Step 1 of the Algorithm

4.1. We describe three methods, among the methods experimented for the numerical experiments,
and compare the results.

The simplest method to choose initial X0
0, not using any information from the given distance

matrix D, may be generating with random numbers. In this case, D0 can be computed using X0
0.

We can not expect much accuracy in the early steps of the continuation method with randomly
generated X0

0.

For the second method to compute an initial X0
0, we use the distance information given in D.

Let D̃ ∈ Rn×n and its element be defined by

d̃pq =
{

dpq if (1 ≤ p < q ≤ m) or (1 ≤ p ≤ m, m + 1 ≤ q ≤ n)
‖ap − aq‖ if (m + 1 ≤ p, q ≤ n)

Let
S = D̃ + D̃

T
+ (n + 1)I.

We apply the symmetric reverse Cuthill-McKee permutation (SYMRCM) to S. As a result, an
array of indices I is obtained. I(j) contains a value from 1 to n for 1 ≤ j < n. We denote X0

0(I(j))
to indicate the I(j)th sensor in X0

0. The idea of generating X using the SYMRCM is based on
that the array I indicates the sensors located nearby. That is, X0

0(I(j)) and X0
0(I(j + 1)) for

(1 ≤ j < n − 1) are located nearby. We generate initial points for the locations of sensors X0
0

using random numbers r = (r1, . . . , r`) ∈ R`, where each element of r is in the interval (0, 1), and
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then, arrange the initial points according to I. More precisely, let η be a integer from 0 to n − 1
and η = (η, . . . , η) ∈ R`, and δ a small number. The elements of X0

0 is computed by

X0
0(I(k)) = η/m + δr (η = (η, . . . , η) ∈ R`, η = 0,1,2, . . . ,m − 1),

and D0 is computed using X0
0.

The third method to obtain an initial X0
0 is applying a local method such as the gradient

method to (7). In particular, we set all elements of X to the center point of all anchors, and then
apply the gradient method once with this initial X. Then, we obtain an approximate minimizer
from the gradient method and use the approximate minimizer as the initial guess X0

0, and D0 is
computed from X0

0 for the Algorithm 4.1.

The performance of the continuation method may depend on the methods to generate initial
matrices X0

0. Table 1 compares the initial matrices generated randomly, by the SYMRCM, and by
one application of the gradient method using an initial guess of the center point of the anchors. We
used the continuation method for the 2-dimensional test problems with n = 3, 000, ma = 300, 150,
ρ = 0.1,

√
10/m, and noisy factor σ = 0.0, 0.1, and 0.2. We used ε = 1.e-12 and the maximum

number of iterations 250 as the stopping conditions for the gradient method. Details on generating
test problems are described in Section 5. Numerical experiments were performed on 2.8GHz Quad-
Core Intel Xeon with 4GB memory.

The root mean square distance (RMSD) is computed by 1
m

m∑
p=1

‖xp − ap‖2

1/2

, (10)

where xp denotes the computed location of the pth sensor and ap true location of the pth sensor,
to measure the accuracy of computed locations of m sensors.

We observe that the initial matrices obtained by the gradient method lead to slightly more
accurate solutions for most of the problems with shorter elapsed time than the initial matrices
randomly generated or by SYMCRM. The problems with 5000 sensors are also tested and similar
results were obtained. Based on these results, the gradient method was used to generate X0

0 in
the subsequent numerical experiments.

4.3 Step size ∆t

The continuation method starts with rough estimations of X and D as described in the previous
section. Although a small-sized step is necessary to gradually refine the approximations to X
during the continuation process, it would be time-consuming as the gradient method needs to be
applied whenever t is updated. We have tested whether it is more efficient to solve the problem
(7) with a step size ∆t < 1 and ∆t = 1.

The 2-dimensional SNL problems are solved by the continuation method with the initial ma-
trices computed by the third method in Section 4.2 with ∆t = 0.01, 0.1 and 1. Table 2 and Figure
1 show that the continuation method with ∆t = 1 on average results in larger RMSDs than the
continuation method with ∆t = 0.1. Similar results are obtained for other test problems shown in
Section 5. We also observe that a smaller step size ∆t = 0.01 does not greatly improve the quality
of the obtained solution for most of problems, although it takes much longer elapsed time.
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Random X0
0 SYMRCM Initial Gradient

Test Problems E.Time E.Time E.Time
m, ma ρ σ Total RMSD Total RMSD Total RMSD

m = 3000, 0.100 0.0 18.3 4.5e-08 22.8 4.6e-08 6.5 1.7e-07
ma of m 0.1 18.7 2.2e-03 24.0 2.2e-03 6.1 2.1e-03

= 300 0.2 21.1 3.5e-03 18.7 3.5e-03 5.4 4.2e-03√
10/m 0.0 9.5 1.4e-08 9.2 1.9e-08 8.0 1.9e-07

≈ 0.058 0.1 8.8 1.7e-03 10.8 1.7e-03 8.4 1.7e-03
0.2 8.7 3.5e-03 8.9 3.5e-03 8.2 3.5e-03

m = 3000, 0.100 0.0 23.8 7.5e-03 19.6 7.5e-03 9.0 1.7e-07
ma = 150 0.1 22.8 8.3e-03 18.1 7.6e-03 8.6 2.2e-03

0.2 21.6 8.7e-03 25.5 3.8e-03 8.1 4.4e-03√
10/m 0.0 29.0 1.0e-06 26.9 4.2e-07 19.5 4.0e-07

≈ 0.058 0.1 13.2 1.3e-02 15.0 2.9e-03 11.6 2.7e-03
0.2 12.0 9.8e-03 14.7 4.8e-03 10.8 4.3e-03

Table 1: Comparison on initial matrices X0
0 generated randomly, by the SYMCRM, and by the

gradient method for the continuation method to solve 2-dimensional problems with 3000 sensors.
The continuation step 0.1 is used, a tolerance for the gradient is 1.e-4 during the continuation,
1.e-12 at the final step t = 1. E.Time means “elapsed time”.
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Figure 1: The number of anchors is 5 % of 5000 sensors. The anchors are distributed randomly.
The radio range is 0.045, and the noisy factor 0.0. The locations of the sensors obtained with
∆t = 1 on the left and ∆t = 0.1 on the right. A circle denotes the true location of a sensor, ? the
computed location of a sensor, and a line segment error between the true and computed location.

9



Step size 0.01 1 0.1
Test problems E.Time E.Time E.Time
m, ma ρ σ Total RMSD Total RMSD Total RMSD

m = 3000, 0.100 0.0 34.9 7.8e-08 4.5 2.1e-02 6.5 1.7e-07
ma of m 0.1 32.5 2.1e-03 5.5 2.0e-02 6.1 2.1e-03

= 300 0.2 29.8 4.6e-03 3.9 2.0e-02 5.4 4.2e-03√
10/m 0.0 37.4 1.8e-07 17.8 1.6e-02 8.0 1.9e-07

≈ 0.058 0.1 38.4 1.7e-03 15.9 1.4e-02 8.4 1.7e-03
0.2 37.5 3.4e-03 11.5 1.6e-02 8.2 3.5e-03

m = 3000, 0.100 0.0 41.5 1.6e-07 7.1 2.6e-02 9.0 1.7e-07
ma = 150 0.1 37.4 2.2e-03 10.1 3.1e-02 8.6 2.2e-03

0.2 36.4 4.4e-03 6.4 3.0e-02 8.1 4.4e-03√
10/m 0.0 122.7 8.4e-07 16.3 2.8e-02 19.5 4.0e-07

≈ 0.058 0.1 52.5 2.7e-03 25.1 2.9e-02 11.6 2.7e-03
0.2 56.6 4.3e-03 17.9 3.0e-02 10.8 4.3e-03

m = 5000, 0.100 0.0 65.8 1.7e-08 5.8 2.0e-08 10.9 1.6e-08
ma = 500 0.1 58.9 2.1e-03 3.5 2.1e-03 7.8 2.1e-03

0.2 51.7 4.2e-03 4.5 4.2e-03 8.2 4.2e-03
randomly

√
10/m 0.0 94.5 9.9e-08 18.6 1.1e-02 14.5 1.1e-07

distributed ≈ 0.045 0.1 83.3 1.2e-03 31.0 1.2e-02 14.4 1.4e-03
0.2 81.0 2.5e-03 19.8 1.1e-02 15.4 2.6e-03

m = 5000, 0.100 0.0 68.0 2.6e-08 9.5 8.3e-03 12.9 3.9e-08
ma = 5% of m 0.1 51.7 2.1e-03 16.1 1.8e-02 12.0 2.1e-03

= 250 0.2 57.9 4.3e-03 19.4 9.2e-03 15.6 4.3e-03
randomly

√
10/m 0.0 79.6 4.5e-07 32.3 2.1e-02 18.5 4.8e-07

distributed ≈ 0.045 0.1 82.4 1.4e-03 40.1 2.1e-02 17.6 1.4e-03
0.2 82.3 2.7e-03 28.5 2.3e-02 18.2 3.0e-03

Table 2: Comparison of the step size to solve 2-dimensional problems. A tolerance for the gradient
is 1.e-4 during the continuation, 1.e-12 at the final step t = 1. E.Time means “elapsed time”.
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4.4 Stopping conditions for the gradient method

The continuation method presented in this section is based on the repeated use of the gradient
method. Thus, it is important to choose appropriate stopping conditions for the gradient method
to enhance the overall performance. Recall that the gradient method stops when the number of
iterations reaches the maximum number of iterations or the difference between the two objective
values of the recent iterations satisfy the condition (8). In the numerical experiments, different
values of the maximum number of iterations, if they were larger than, for instance, 500 for t < 1,
did not yield much difference in the numerical results. However, values for the tolerance did affect
the results as shown in Table 3, which compares two choices of the tolerance, 1.e-4 and 1.e-6, for the
gradient method in the continuation process for 0 < t < 1. The test problems are 2-dimensional
SNL problems with 3000 and 5000 sensors. At t = 1, we set the value of the tolerance to be 1.e-12
for the both cases. We observe that choosing 1.e-6 for the tolerance takes much longer elapsed
time than 1.e-4 for similar accuracy.

In the gradient method, a simple step size control is included as described in [5].

4.5 Selecting edges

The minimum number of edges incident to a sensor to determine the locations of all sensors with
exact distances is ` + 1. If there exist more edges than ` + 1 for a sensor, some of the edges can
be eliminated for computational efficiency. This technique was implemented in SFSDP [12] using
the parameter “minDegree” and described in [13]. Consider input sets N x ⊂ N ρ

x and N a ⊂ N ρ
a.

These input sets N x and N a can be directly used as N x and N a in (2). Then, the number of
elements of N x and N a is the number of distance equations in (2). Alternatively, if subsets of N x

and N a are used in (2), the number of distance equations is reduced. Choosing subsets of N x and
N a has been implemented using the minimum degree denoted by “minDegree”. In general, more
accurate locations of sensors are obtained in longer computational time as the sizes of N x ⊂ N x

and N a ⊂ N a increase. For details, we refer to [13].

5 Numerical Experiments

We compare the continuation method with SFSDP using SDPA [18] that was shown to be more
efficient than ESDP in [13] and SFSDP using SeDuMi [17]. SNL problems in 2- and 3-dimensions
are tested with initial matrices generated by the third method in Section 4. We show that the con-
tinuation method works efficiently than SFSDP for most of test problems, except for the problems
with a very small number of anchors. The accuracy is comparable to that of SFSDP. We show
that one of the advantages of the continuation method is that it can handle larger-sized problems
than the methods based on the SDP relaxation.

Numerical experiments were performed on 2.8GHz Quad-Core Intel Xeon with 4GB memory.
We note that the experiments on very large-sized problems in [13] were performed on 2.8GHz
Quad-Core Intel Core i7 with 16GB memory. In this paper, we only use the machine with 4GB
memory. All programs were implemented in Matlab and matrix multiplications in the gradient
method were executed by C++ routines.
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Test problems \ ε 1.e-6 1.e-4
m, ma ρ σ E.Time RMSD E.Time RMSD

m = 3000, 0.100 0.0 12.4 6.1e-08 6.5 1.7e-07
ma of m 0.1 11.4 2.1e-03 6.1 2.1e-03

= 300 0.2 11.1 4.2e-03 5.4 4.2e-03
randomly

√
10/m 0.0 15.7 1.0e-07 8.0 1.9e-07

distributed ≈ 0.058 0.1 14.9 1.7e-03 8.4 1.7e-03
0.2 14.6 3.4e-03 8.2 3.5e-03

m = 3000, 0.100 0.0 17.0 1.7e-07 9.0 1.7e-07
ma = 5% of m 0.1 17.4 2.2e-03 8.6 2.2e-03

= 150 distributed 0.2 15.6 4.4e-03 8.1 4.4e-03
randomly

√
10/m 0.0 28.5 9.9e-07 19.5 4.0e-07

≈ 0.058 0.1 17.5 2.1e-03 11.6 2.7e-03
0.2 18.2 4.2e-03 10.8 4.3e-03

m = 5000, 0.100 0.0 21.7 1.4e-08 10.9 1.6e-08
ma = 500 0.1 17.5 2.1e-03 7.8 2.1e-03

0.2 18.2 4.2e-03 8.2 4.2e-03
randomly

√
10/m 0.0 32.7 1.3e-07 14.5 1.1e-07

distributed ≈ 0.045 0.1 32.8 1.4e-03 14.4 1.4e-03
0.2 34.4 2.5e-03 15.4 2.6e-03

m = 5000, 0.100 0.0 24.7 1.1e-07 12.9 3.9e-08
ma = 5% of m 0.1 27.7 2.1e-03 12.0 2.1e-03

= 250 distributed 0.2 30.5 4.3e-03 15.6 4.3e-03
randomly

√
10/m 0.0 44.5 5.1e-07 18.5 4.8e-07

≈ 0.045 0.1 41.1 1.4e-03 17.6 1.4e-03
0.2 29.4 2.7e-03 18.2 3.0e-03

Table 3: Comparison of tolerances for the gradient method in the continuation method to solve
2-dimensional problems with 3000 and 5000 sensors and anchors distributed randomly.
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The 2-dimensional test problems were generated with sensors and anchors distributed randomly
in [0, 1]2. The radio range was varied from 0.058 to 0.2 and the noisy factor from 0.0 to 0.2. Two
types of the values for the radio ranges were chosen as in [13]. More precisely, the first type is to
choose the values of the radio range independent of the number of the sensors. The second type
is to choose the value of the radio range so that each square of size ρ in [0, 1]2 contains on average
10 randomly generated sensors.

The 3-dimensional test problems were generated randomly with 3000 to 10000 sensors in [0, 1]3

with two kinds of radio ranges, independent and dependent on the number of the sensors so that
each cube of size ρ in [0, 1]3 contains on average 15 randomly generated sensors.

With the noisy factor changing from 0.0 to 0.2, the distances were perturbed to create problems
with noise:

d̄pq = max{(1 + σδpq), 0.1}dpq ((p, q) ∈ N ρ
x),

d̄pr = max{(1 + σδpr), 0.1}dpr ((p, r) ∈ N ρ
a),

(11)

where σ ≥ 0 denotes noisy factor, and δpq and δpr are chosen from the standard normal distribution
N(0, 1), and dpq and dpr indicate the exact distances in (1), i.e., ε′pq = ε′pr = 0. As in [2, 3, 4, 20, 22],
the root mean square distance (RMSD) defined in (10) is used to measure the accuracy of locations
of m sensors computed by the continuation method and SFSDP.

In the description of the numerical results, “CM” means the continuation method, “SYMRCM”
the symmetric reverse Cuthill-McKee permutation, and “E.Time” elapsed time. For SFSDP,
total E.Time indicates the elapsed time for generating SDP relaxation, solving SDP using SDPA,
and refining the approximated solution from SDPA by the gradient method. When SFSDP was
implemented, the value 4 and 5 were used for the minimum degree of a sensor node of 2-dimensional
and 3-dimensional problems, respectively. For details on the minimum degree, we refer to [13].

5.1 Two-dimensional Problems

To show how the continuation method gradually finds the solution, we first display the computed
solution by the continuation method when t = 0.1, t = 0.7 in Figure 2, and t = 1 in Figure 3 for
the problem with 5000 sensors, 250 anchors, noisy factor 0.1, and radio range 0,1. We observe
that the approximate solution is computed with accuracy as t approaches to 1.

In Tables 4, we compare the numerical results by the continuation method with SFSDP. It
shows that the continuation method obtains more accurate solutions than SFSDP for all test
problems, taking shorter elapsed time except for some problems with exact distances.

The continuation method can solve the SNL problems with 20,000 sensors as shown in Table 5,
which could not be handled by SFSDP due to out-of-memory error using the same machine with
4GB memory.

As discussed in Section 4, the problems with a small number of anchors are sometimes difficult
to deal with for lack of distance information. Table 6 displays the numerical results for the 2-
dimensional problems with 4 anchors placed at the corners. We observe that the continuation
method does not perform well for the problems with a very small number of anchors. This is
because the distance information between the anchors and the sensors is scarce to proceed with
the continuation method.
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Figure 2: The number of anchors is 5 % of the number of sensors. The anchors are distributed
randomly. The radio range is 0.1 and the noisy factor is 0.1. The locations of the sensors at t = 0.1
on the left and t = 0.7 on the right. A green circle denotes the true location of a sensor, a red ? the
computed location of a sensor, a blue diamond an anchor, and a blue line segment error between
true and computed location.
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Figure 3: The locations of the sensors at t = 1.
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Test problems RMSD E.time RMSD
m, ma ρ σ SFSDP CM

m = 3000, 0.100 0.0 2.3e-7 36.9 6.5 1.7e-07
ma of m 0.1 2.3e-3 95.8 6.1 2.1e-03

= 300 0.2 4.8e-3 98.8 5.4 4.2e-03
randomly

√
10/m 0.0 4.0e-6 43.5 8.0 1.9e-07

distributed ≈ 0.058 0.1 1.9e-3 88.2 8.4 1.7e-03
0.2 4.4e-3 88.9 8.2 3.5e-03

m = 3000, 0.100 0.0 1.3e-6 37.9 9.0 1.7e-07
ma = 5% of m 0.1 2.5e-3 88.6 8.6 2.2e-03

= 150 distributed 0.2 5.2e-3 91.8 8.1 4.4e-03
randomly

√
10/m 0.0 9.5e-6 60.8 19.5 4.0e-07

≈ 0.058 0.1 4.5e-3 112.0 11.6 2.7e-03
0.2 5.8e-3 115.7 10.8 4.3e-03

m = 5000, 0.100 0.0 2.7e-7 94.7 10.9 1.6e-08
ma = 500 0.1 2.2e-3 244.7 7.8 2.1e-03

0.2 4.5e-3 241.4 8.2 4.2e-03
randomly

√
10/m 0.0 4.4e-6 111.8 14.5 1.1e-07

distributed ≈ 0.045 0.1 3.4e-3 219.1 14.4 1.4e-03
0.2 4.7e-3 230.9 15.4 2.6e-03

m = 5000, 0.100 0.0 5.9e-7 93.6 12.9 3.9e-08
ma = 5% of m 0.1 2.5e-3 229.8 12.0 2.1e-03

= 250 distributed 0.2 4.8e-3 231.3 15.6 4.3e-03
randomly

√
10/m 0.0 1.5e-4 156.1 18.5 4.8e-07

≈ 0.045 0.1 5.1e-3 283.0 17.6 1.4e-03
0.2 6.3e-3 281.7 18.2 3.0e-03

Table 4: Comparison between the continuation method and SFSDP with SDPA to solve 2-
dimensional problems with 3000 and 5000 sensors and anchors distributed randomly. Initial X0

is generated by applying the gradient method once. The continuation step is 0.1, the tolerance for
the gradient is 1.e-4 during the continuation, and 1.e-12 at t = 1. The value of minDegree is 4 for
SFSDP and 40 for CM.
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Test problems CM
m, ma ρ σ E.Time RMSD

ma = 10% of m 0.1 0.0 161.6 5.8e-08
= 2000 distributed 0.1 75.4 1.9e-03

randomly 0.2 53.5 3.8e-03
0.022 0.0 25.5 1.9e-07

0.1 81.5 6.3e-04
0.2 86.0 1.3e-03

ma = 5% of m 0.1 0.0 125.7 5.8e-08
= 1000 distributed 0.1 53.7 1.9e-03

randomly 0.2 50.7 3.8e-03
0.022 0.0 92.6 2.1e-03

0.1 94.4 2.4e-03
0.2 96.1 2.4e-03

Table 5: The continuation method to solve 2-dimensional problems with 20000 sensors. Initial X0

is generated by applying the gradient method once. The continuation step is 0.1, the tolerance for
the gradient is 1.e-4 during the continuation, and 1.e-12 at t = 1. The value of minDegree is 40.

Test problems RMSD E.time RMSD
m, ma ρ σ SFSDP CM

m = 3000, 0.100 0.0 6.7e-6 74.2 286.3 7.5e-04
ma = 4 at corners 0.1 5.6e-3 177.9 266.4 3.7e-03

0.2 9.3e-3 176.7 237.8 7.1e-03√
10/m 0.0 7.6e-5 206.6 97.3 6.7e-02

≈ 0.058 0.1 7.1e-3 297.2 85.4 5.7e-02
0.2 1.1e-2 312.4 98.3 7.5e-02

Table 6: Comparison between the continuation method and SFSDP with SDPA to solve 2-
dimensional problems with 3000 sensors and 4 anchors. Initial X0 is generated by applying the
gradient method once. The continuation step is 0.1, the tolerance for the gradient is 1.e-4 during
the continuation, and 1.e-12 at t = 1. The value for “minDegree” for CM is 70.
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5.2 Three-dimensional Problems

We solved the 3-dimensional test problems in [13] to compare the performance of the continuation
method with SFSDP. The numerical results in [13] are shown in Table 7 for the problems with
randomly distributed anchors. We see that CM obtains the solutions much faster than SFSDP
and the accuracy of the approximate solutions obtained by the continuation method is higher than
that by SFSDP in all test problems. Note that the continuation method could solve problems with
5000 sensors, 0.144 radio range while SFSDP failed to solve those due to out-of-memory error. We
confirm that one of the advantages of the continuation method is less memory requirement.

Test problems RMSD E.time RMSD
m, ma ρ σ SFSDP CM

m = 3000, 0.250 0.0 9.8e-07 48.1 52.6 3.2e-07
ma = 10% of m 0.1 9.5e-03 138.2 12.5 7.5e-03

= 300 0.2 1.7e-02 144.7 12.6 1.5e-02
distributed (15/m)1/3 0.0 2.9e-06 87.3 25.8 6.2e-07
randomly ≈ 0.171 0.1 7.0e-03 164.4 18.3 6.2e-03

0.2 1.6e-02 162.0 17.9 1.2e-02
m = 3000, 0.250 0.0 1.2e-06 51.1 18.1 7.6e-08

ma = 5% of m 0.1 1.0e-02 134.2 16.2 7.6e-03
=150 0.2 1.9e-02 142.0 16.3 1.5e-02

distributed (15/m)1/3 0.0 6.3e-06 301.0 40.5 9.9e-07
randomly ≈ 0.171 0.1 1.8e-02 312.5 29.8 6.5e-03

0.2 2.7e-02 315.8 36.7 1.4e-02
m = 5000, 0.250 0.0 4.2e-07 112.2 31.6 1.0e-07

ma = 10% of m 0.1 7.9e-03 337.8 15.3 7.5e-03
=500 0.2 1.6e-02 331.8 13.8 1.5e-02

distributed (15/m)1/3 0.0 2.1e-06 295.4 34.1 9.2e-08
randomly ≈ 0.144 0.1 5.8e-03 445.8 24.5 5.2e-03

0.2 1.2e-02 452.2 23.8 1.0e-02
m = 5000, 0.250 0.0 7.7e-07 117.3 52.0 5.7e-08

ma = 5% of m 0.1 8.3e-03 337.8 22.7 7.4e-03
= 250 0.2 1.7e-02 348.9 23.8 1.5e-02

distributed (15/m)1/3 0.0 34.5 1.2e-07
randomly ≈ 0.144 0.1 Out-of-memory 27.8 5.3e-03

0.2 28.1 1.1e-02

Table 7: Numerical comparison between the continuation method and SFSDP with SDPA to solve
3-dimensional problems. The value of minDegree for SFSDP and CM is 5 and 50, respectively.

Test results for the problems with 10000 sensors are displayed in Table 8. It shows that the
continuation method is successful in solving 3-dimensional large-sized problems without taking
long elapsed time.

Figures 4 and 5 exhibit how the continuation method works as t varies from 0 to 1 for 3-
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CM
Test problems E.time

m, ma ρ σ Total RMSD
ma = 10% of m 0.25 0.0 48.6 1.6e-07

= 1000 distributed 0.1 33.9 7.4e-03
randomly 0.2 24.7 1.5e-02

ma = 5% of m 0.25 0.0 75.2 1.1e-07
= 500 distributed 0.1 69.4 7.6e-03

randomly 0.2 57.1 1.5e-02
ma = 1% of m 0.25 0.0 37.8 1.1e-06

= 100 distributed 0.1 55.4 7.4e-03
randomly 0.2 31.3 1.5e-02

ma = 10% of m 0.171 0.0 50.7 2.7e-08
= 1000 distributed 0.1 34.5 5.1e-03

randomly 0.2 25.5 1.0e-02
ma = 5% of m 0.171 0.0 101.2 3.7e-07

= 500 distributed 0.1 96.9 5.4e-03
randomly 0.2 88.6 1.1e-02

ma = 1% of m 0.171 0.0 66.2 5.2e-08
= 100 distributed 0.1 49.3 5.2e-03

randomly 0.2 65.2 1.0e-02

Table 8: The continuation method to solve 3-dimensional problems with 10000 sensors. The
prescribed tolerance for the gradient method is 1.e-4 during the continuation, and 1.e-12 at t = 1.
The value of minDegree is 50.

18



0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4: A 3-dimensional problem with 5000 sensors, ρ = 0.25, and σ = 0.1. The locations of
sensors at t = 0.1 on the left and t = 0.7 on the right. A circle denotes the true location of
a sensor, ? the computed location of a sensor, and a line segment error between the true and
computed location.
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Figure 5: A 3-dimensional problem with 5000 sensors, ρ = 0.25, and σ = 0.1 at t = 1. A circle
denotes the true location of a sensor, ? the computed location of a sensor, and a line segment
between the true and computed location.
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dimensional problems.

6 Concluding Remarks

We have proposed the continuation method for the SNL problems to efficiently solve larger-sized
SNL problems than the methods based on the SDP relaxation. The SNL problem has been
formulated as an unconstrained problem and solved by the continuation method. In this framework
of the continuation method, the gradient method is repeatedly applied by changing the distance
matrix using the continuation parameter t from 0 to 1.

For the SNL problems, the continuation method performs more efficiently than SFSDP with
SDPA, which was shown to be faster than available methods, as shown in Section 5, except for the
problems with a very few anchors. The accuracy obtained by the continuation method is higher
than that by SFSDP for the most of the tested problems with more anchors than 4. In particular,
the memory requirement is smaller than SFSDP, as a result, much larger-sized problems can be
solved.

If the SNL problem has a very few anchors, then the accuracy of the solutions obtained by
the continuation method was not as good as that by SFSDP. For this kind of the SNL problems,
the locations of the sensors that satisfy the distance equations with high accuracy can be used as
additional anchors. More specifically, we regard those sensors as anchors, change the number of
sensors and anchors, and modify the distance matrix D. This will be studied in the future.
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