
Research Reports on

Mathematical and

Computing Sciences

Department of
Mathematical and
Computing Sciences

Tokyo Institute of Technology

SERIES B: Operations Research

ISSN 1342-2804

User Manual for SFSDP: a Sparse versions of

Full SemiDefinite Programming Relaxation

for Sensor Network Localization Problems

Sunyoung Kim, Masakazu Kojima,

Hayato Waki, and Makoto Yamashita

August 2008

Revised January 2010, B–449

User Manual for SFSDP: a Sparse Version of Full SemiDefinite Programming
Relaxation for Sensor Network Localization Problems

Sunyoung Kim⋆, Masakazu Kojima†, Hayato Waki‡, and Makoto Yamashita♯

August 2008, Revised January 2010

Abstract.

SFSDP is a Matlab package for solving sensor network localization problems. The pack-
age contains four functions, SFSDP.m, SFSDPplus.m, generateProblem.m, test SFSDP.m,
and some numerical examples. The function SFSDP.m is a Matlab implementation of the
semidefinite programming (SDP) relaxation proposed in the recent paper by Kim, Kojima
and Waki for sensor network localization problems, as a sparse version of the full semidefi-
nite programming relaxation (FSDP) by Biswas and Ye. To improve the efficiency of FSDP,
SFSDP.m exploits the aggregated and correlative sparsity of a sensor network localization
problem. The function SFSDPplus.m analyzes the input data of a sensor network localiza-
tion problem, solves the problem, and displays graphically computed locations of sensors.
The function generateProblem.m creates numerical examples of sensor network localization
problems with representative anchor locations. The function test SFSDP.m is for numerical
experiments using SFSDPplus.m with test problems generated by generateProblem.m. The
package SFSDP and this manual are available at

http://www.is.titech.ac.jp/∼kojima/SFSDP

Key words.

Sensor network localization problems, Semidefinite programming relaxation, Sparsity ex-
ploitation, Matlab software package.

⋆ Department of Mathematics, Ewha W. University, 11-1 Dahyun-dong, Sudaemoon-
gu, Seoul 120-750 Korea. S. Kim’s research was supported by KOSEF 2009-007-
1314. skim@ewha.ac.kr

† Department of Mathematical and Computing Sciences, Tokyo Institute of Tech-
nology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan. M. Kojima’s re-
search was supported by Grant-in-Aid for Scientific Research (B) 19310096. ko-
jima@is.titech.ac.jp

‡ Department of Computer Science, The University of Electro-Communications
1-5-1 Chofugaoka, Chofu-shi, Tokyo, Japan. H. Waki’s research was supported by
Grant-in-Aid for JSPS Fellows 20003236. hayato.waki@jsb.cs.uec.ac.jp

♯ Department of Mathematical and Computing Sciences, Tokyo Institute of Tech-
nology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552 Japan. M. Yamashita’s
research was supported by Grant-in-Aid for Young Scientists (B) 21710148.
Makoto.Yamashita@is.titech.ac.jp

1 Introduction

For a network of n sensors, where n > m, a sensor network localization problem is to locate
m sensors that fit the given distances if a subset of distances and some sensors of known
position (called anchors) are provided. Various approaches [1, 6, 7, 10, 11, 19] have been
proposed for the problem to approximate the solutions. Full semidefinite programming
relaxation (FSDP) was introduced by Biswas and Ye in [2], and a number of solution
methods based on SDP relaxation have followed [3, 4, 5, 15, 20].

We introduce a Matlab package SFSDP for solving sensor network localization problems
by SDP relaxation. The main function SFSDP.m of the package is an implementation of the
SDP relaxation proposed in the recent paper by Kim, Kojima and Waki [12]. SFSDP.m is
intended to improve the efficiency of Biswas and Ye’s FSDP [2] by exploiting the sparsity, the
aggregated and correlative sparsity [9, 14, 13], of sensor network problems. The quality of
obtained solution by SFSDP.m remains equivalent to that by FSDP. As a result, SFSDP.m
can handle larger-sized sensor network problems, e.g., up to 6000 sensors in 2-dimensional
case, than FSDP.

SFSDP.m can solve the problem with exact and noisy distances. To describe a form
of the sensor network localization problem that can be solved by SFSDP.m, we consider a
problem with m sensors and ma (= n − m) anchors. Let ρ > 0 be a radio range, which
determines the set N ρ

x of pairs of sensors p and q such that their unknown (Euclidean)
distance dpq is not greater than ρ, and the set N ρ

a of pairs of a sensor p and an anchor r
such that their distance dpr does not exceed ρ;

N ρ
x = {(p, q) : 1 ≤ p < q ≤ m, ∥x̄p − x̄q∥ ≤ ρ},

N ρ
a = {(p, r) : 1 ≤ p ≤ m,m + 1 ≤ r ≤ n, ∥x̄p − ar∥ ≤ ρ},

}
(1)

where x̄p denotes unknown location of sensor p and ar known location of anchor r. Let N x

be a subset of N ρ
x and and N a a subset of N ρ

a. For ℓ-dimensional problem, an ℓ×m matrix
variable X = (x1, . . . , xm) ∈ Rℓ×m denotes location of the sensors. SFSDP.m can solve the
problem of ℓ = 2 or 3. By introducing zero objective function and the distance equations
as constraints, we have the following form of the sensor network localization problem with
exact distances.

minimize 0
subject to d2

pq = ∥xp − xq∥2 (p, q) ∈ N x,
d2

pr = ∥xp − ar∥2 (p, r) ∈ N a.

 (2)

When the distance involves noise, the following problem is considered.

minimize
∑

(p,q)∈N x

(
ϵ+
pq + ϵ−pq

)
+

∑
(p,r)∈N a

(
ϵ+
pr + ϵ−pr

)
subject to d̂2

pq = ∥xp − xq∥2 + ϵ+
pq − ϵ−pq (p, q) ∈ N x,

d̂2
pr = ∥xp − ar∥2 + ϵ+

pr − ϵ−pr (p, r) ∈ N a,
ϵ+
pq ≥ 0, ϵ−pq ≥ 0, (p, q) ∈ N x,

ϵ+
pr ≥ 0, ϵ−pr ≥ 0, (p, r) ∈ N a.


(3)

Here ϵ+
pq + ϵ−pq (or ϵ+

pr + ϵ−pr) indicates 1-norm error in the estimated distance d̂pq between

sensors p and q (or an estimated distance d̂pr between sensor p and anchor r, respectively).

1

Input SNL
Problem

test SFSDP.m

SFSDPplus.m

SFSDP.m

Print Info,
Draw Figures

Solution,
Distance Matrix

SFSDP

generateProblem.m

Figure 1: The structure of SFSDP

When a sensor network problem of the form (2) or (3) has many equality constraints
that may be redundant, the resulting SDP relaxation problem can be too large to solve. To
deal with such a problem, SFSDP.m replaces N x and N a by smaller subsets of them, N ′

x

and N ′
a, respectively, before applying the sparse SDP relaxation to the problem (2) or (3).

Then, the resulting SDP relaxation problem becomes smaller and sparser. This process is a
key for solving large scale sensor network localization problems efficiently by SFSDP.m. See
Section 4.1 of [12] for more details. We assume that either (i) (noisy) distance information
is available between a fairly large number of sensors and anchors in the original problem
(2) or (3) to extract a smaller-sized subproblem satisfying the sparsity (the aggregated and
correlative sparsity) or (ii) the original problem itself is sparse. If we take N ρ

x and N ρ
a

(or their subsets large enough) for N x and N a, respectively, the assumption (i) is usually
satisfied. We should note, however, that SFSDP.m may fail to solve the problem efficiently
if neither (i) nor (ii) is satisfied.

Edge-based SDP (ESDP) and node-based SDP (NSDP) relaxations were introduced in
[20] to improve the computational efficiency of the original Biswas-Ye SDP relaxation FSDP.
These SDP relaxations are further relaxations of FSDP, hence, they are theoretically weaker
than FSDP. SFSDP.m, however, is shown to be equivalent to FSDP in [12].

The structure of the package SFSDP is shown in Figure 1. In addition to SFSDP.m, the
package includes three functions, SFDPplus.m, generateProblem.m, and test SFDP.m. The
function SFDPplus.m is designed for users who want to solve their own sensor network lo-
calization problems. Users can use SFSDP.m via SFSDPplus.m or SFSDP.m directly. After
analyzing input data of a given problem, SFSDPplus.m solves the problem by SFSDP.m,
and displays graphically computed locations of sensors. Users can call either of SFSDP.m
and SFDPplus.m from their own Matlab function that can provide necessary input data.

2

SFSDP.m calls SDPA [8], available at [17], or SeDuMi [18], available at [16], to solve SDP
relaxation problems. For larger problems, using SDPA requires much less computational
time. See Appendix.

The other two functions generateProblem.m and test SFDP.m are for users interested in
numerical experiments using SFDPplus.m. The function generateProblem.m creates numer-
ical examples of sensor network localization problems with representative anchor locations.
The function test SFSDP.m is for numerical experiments on SFSDPplus.m applied to test
problems generated by generateProblem.m. We discuss in detail input and output for the
functions SFSDP.m, SFSDPplus.m, generateProblem.m and test SFSDP.m in Section 4.

2 Sample Run Using SDPA

The usage of SFSDPplus.m, SFSDP.m, generateProblems.m, and test SFSDP.m is described
in this section.

2.1 SFSDPplus.m

We show how SFSDPplus.m can be executed with an illustrative example. A small problem
of 3 sensors and 4 anchors in the two dimensional space is generated with the following
xMatrix0 and distanceMatrix0. Assume that the sensors are located at (0.3, 0.4), (0.3, 0.6),
and (0.7, 0.6) and the anchors are at (0, 0), (0, 1), (1, 0), and (1, 1). Then, we prepare input
data and parameters as follows:

>> sDim= 2; noOfSensors= 3; noOfAnchors= 4;

>> pars.free= 0; pars.eps= 1.0000e-05; pars.minDegree= 4; pars.objSW = 1;

>> pars.noisyFac= 0;

The size of xMatrix0 is sDim× (noOfSensors + noOfAnchors) matrix and its elements are:

>> xMatrix0

xMatrix0 =

0.3000 0.3000 0.7000 0 0 1.0000 1.0000

0.4000 0.6000 0.6000 0 1.0000 0 1.0000

The first three columns of xMatrix0, which indicate the true location of sensors, can be
omitted for general cases where the locations of sensors are unknown.

The distance information is stored in a matrix called distanceMatrix0. The size of
distanacneMatrix0 is noOfSensors × (noOfSensors + noOfAnchors), and the (p, q)th com-
ponent of distanceMatrix0 indicates the distance between sensors p and q, or equivalently,
between xMatrix0(:,p) and xMatrix0(:,q). Note that distanceMatrix0 is upper triangular;
distanceMatrix0(p, q) = 0 if p ≥ q.

3

>> distanceMatrix0

distanceMatrix0 =

0 0.219579 0.414739 0.501646 0.756645 0 0

0 0 0.356155 0.629003 0.471282 0 0

0 0 0 0 0 0.647147 0.468894

Then, issue a command:

>>[xMatrix,info,pars,distanceMatrix] = SFSDPplus(sDim,noOfSensors,...

noOfAnchors,xMatrix0,distanceMatrix0,pars);

Then, the following is displayed on the screen.

sDim = 2, noOfSensors = 3, noOfAnchors = 4

the number of dist. eq. between two sensors = 3

the number of dist. eq. between a sensor & an anchor = 6

the min., max. and ave. degrees over sensor nodes = 4, 4, 4.00

+0.0000e+00 <= x(1) <= +1.0000e+00

+0.0000e+00 <= x(2) <= +1.0000e+00

the max. radio range = 6.7082e-01, the estimated noisy factor = 8.3330e-02

SFSDP --- A Sparse version of FSDP (Biswas and Ye)

Sunyoung Kim, Masakazu Kojima, Hayato Waki and Makoto Yamashita

Version 1.22, January 2010

sDim = 2, noOfSensors = 3, noOfAnchors = 4

pars: SDPsolver = sdpa, eps = 1.00e-07

pars: sparseSW = 1, minDegree = 4, edgeSelectionSW = 1

pars: objSW = 1, noisyFac = 8.3e-02, regTermFactor = 0.00

the number of dist. eq. used in SFSDP between two sensors = 3

the number of dist. eq. used in SFSDP between a sensor & an anchor = 6

the min., max. and ave. degrees over sensor nodes = 4, 4, 4.00

elapsed time for generating an SDP relaxation problem = 0.09

-SeDuMi Wrapper for SDPA Start-

Note: pars information [4th argument] is not used

Free Variables are divided into positive and negative part of LP cone

Converted to SDPA internal data / Starting SDPA main loop

Converting optimal solution to Sedumi format

-SeDuMi Wrapper for SDPA End-

elapsed time for retrieving an optimal solution = 0.01

elapsed time for SDP solver = 0.07

mean error in dist. eq. = 1.34e-02, max. error in dist. eq. = 7.29e-02

rmsd = 6.21e-02

see Figure 101

elapsed time for a gradient method = 0.06

mean error in dist. eq. = 1.57e-02, max. error in dist. eq. = 4.56e-02

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O : Sensor true locations vs * : the ones computed by SFSDP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O : Sensor true locations vs * : the ones computed by SFSDP + the refinepositions funct. by K. Toh

Figure 2: An example with three sensors and four anchors. Before and after the refinement
using the gradient method.

rmsd = 4.67e-02

see Figure 103

Figure 2 is displayed at the end of execution. In Figure 2 and throughout, a circle
indicates the true location of a sensor, ⋆ the computed location of a sensor, and a line segment
a difference between the true and computed location. The input data and parameters of this
example are stored in the file examples/example1.mat of the package, and can be loaded by

>> load example1.mat

instead of specifying them from the command window.

Next, we consider a 2-dimensional problem with 500 sensors and 100 anchors placed
randomly in the region [0, 1] × [0, 1] and noisy distances. As in practical applications, we
assume that the locations of the sensors are not known. For instance, suppose that xMatrix0
includes only 100 locations of anchors. To solve the problem, the following command can
be used after loading the data stored in the file d2n01s500a100ns.mat, which is included in
the directory examples of the package.

>> load d2n01s500a100ns.mat;

>>[xMatrix,info,pars,distanceMatrix] = SFSDPplus(sDim,noOfSensors,...

noOfAnchors,xMatrix0,distanceMatrix0,pars);

only anchor locations are given

sDim = 2, noOfSensors = 500, noOfAnchors = 100

the number of dist. eq. between two sensors = 8171

the number of dist. eq. between a sensor & an anchor = 3000

the min., max. and ave. degrees over sensor nodes = 24, 167, 38.68

no location for sensors is given

SFSDP --- A Sparse version of FSDP (Biswas and Ye)

5

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

* : the sensor locations computed by SFSDP
−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

* : the sensor locations computed by SFSDP + the refinepositions funct. by K. Toh

Figure 3: A 2-dimensional problem with 500 sensors (no information on their location) and
100 anchors and noisy distance. Before and after the refinement using the gradient method.

Sunyoung Kim, Masakazu Kojima, Hayato Waki and Makoto Yamashita

Version 1.22, January 2010

sDim = 2, noOfSensors = 500, noOfAnchors = 100

pars: SDPsolver = sdpa, eps = 1.00e-05

pars: sparseSW = 1, minDegree = 4, edgeSelectionSW = 1

pars: objSW = 1, noisyFac = 1.0e-01, regTermFactor = 0.00

the number of dist. eq. used in SFSDP between two sensors = 976

the number of dist. eq. used in SFSDP between a sensor & an anchor = 3000

the min., max. and ave. degrees over sensor nodes = 8, 112, 9.90

elapsed time for generating an SDP relaxation problem = 0.52

-SeDuMi Wrapper for SDPA Start-

Note: pars information [4th argument] is not used

Free Variables are divided into positive and negative part of LP cone

Converted to SDPA internal data / Starting SDPA main loop

Converting optimal solution to Sedumi format

-SeDuMi Wrapper for SDPA End-

elapsed time for retrieving an optimal solution = 0.07

elapsed time for SDP solver = 1.66

mean error in dist. eq. = 2.93e-04, max. error in dist. eq. = 9.63e-02

see Figure 101

elapsed time for a gradient method = 0.71

mean error in dist. eq. = 1.99e-04, max. error in dist. eq. = 6.36e-02

see Figure 103

Figure 3 is displayed at the end of execution. After obtaining a solution with SFSDP.m,
SFSDPplus.m refines the solution using the function refineposition.m, which is a Matlab
implementation of the gradient method provided by Prof. Kim-Chuan Toh. The figure on
the right of Figure 3 is attained after applying the function.

6

We solve the same problem with information on the location of sensors to see how
accurately the computed locations of sensors approximates the true locations of sensors.
Note that we load d2n01s500a100.mat instead of d2n01s500a100ns.mat.

>> load d2n01s500a100.mat;

>>[xMatrix,info,pars,distanceMatrix] = SFSDPplus(sDim,noOfSensors,...

noOfAnchors,xMatrix0,distanceMatrix0,pars);

sDim = 2, noOfSensors = 500, noOfAnchors = 100

the number of dist. eq. between two sensors = 8171

the number of dist. eq. between a sensor & an anchor = 3000

the min., max. and ave. degrees over sensor nodes = 24, 167, 38.68

+1.5003e-03 <= x(1) <= +9.9912e-01

+9.7480e-04 <= x(2) <= +9.9948e-01

the max. radio range = 3.0000e-01, the estimated noisy factor = 9.9337e-02

SFSDP --- A Sparse version of FSDP (Biswas and Ye)

Sunyoung Kim, Masakazu Kojima, Hayato Waki and Makoto Yamashita

Version 1.22, January 2010

sDim = 2, noOfSensors = 500, noOfAnchors = 100

pars: SDPsolver = sdpa, eps = 1.00e-05

pars: sparseSW = 1, minDegree = 4, edgeSelectionSW = 1

pars: objSW = 1, noisyFac = 1.0e-01, regTermFactor = 0.00

the number of dist. eq. used in SFSDP between two sensors = 976

the number of dist. eq. used in SFSDP between a sensor & an anchor = 3000

the min., max. and ave. degrees over sensor nodes = 8, 112, 9.90

elapsed time for generating an SDP relaxation problem = 0.38

-SeDuMi Wrapper for SDPA Start-

Note: pars information [4th argument] is not used

Free Variables are divided into positive and negative part of LP cone

Converted to SDPA internal data / Starting SDPA main loop

Converting optimal solution to Sedumi format

-SeDuMi Wrapper for SDPA End-

elapsed time for retrieving an optimal solution = 0.08

elapsed time for SDP solver = 1.66

mean error in dist. eq. = 2.93e-04, max. error in dist. eq. = 9.63e-02

rmsd = 2.27e-02

see Figure 101

elapsed time for a gradient method = 0.21

mean error in dist. eq. = 1.99e-04, max. error in dist. eq. = 6.36e-02

rmsd = 7.76e-03

see Figure 103

Figure 4 is displayed at the end of execution.

We see that solving the same problem with and without the information on the location
of sensors results in differences between Figures 3 and 4, and the two output displays.

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

O : Sensor true locations vs * : the ones computed by SFSDP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

O : Sensor true locations vs * : the ones computed by SFSDP + the refinepositions funct. by K. Toh

Figure 4: A 2-dimensional problem with 500 sensors (information available on their location)
and 100 anchors and noisy distance. Before and after the refinement using the gradient
method.

2.2 SFSDP.m

SFSDP.m can be called as follows with the same data as in the previous example. Notice
that the output of SFSDP.m is different from SFSDPplus.m, in particular, no figures are
shown at the end of execution.

>> load d2n01s500a100.mat;

>>[xMatrix,info,pars,distanceMatrix] = SFSDP(sDim,noOfSensors,...

noOfAnchors,xMatrix0,distanceMatrix0,pars);

SFSDP --- A Sparse version of FSDP (Biswas and Ye)

Sunyoung Kim, Masakazu Kojima, Hayato Waki and Makoto Yamashita

Version 1.22, January 2010

sDim = 2, noOfSensors = 500, noOfAnchors = 100

pars: SDPsolver = sdpa, eps = 1.00e-05

pars: sparseSW = 1, minDegree = 4, edgeSelectionSW = 1

pars: objSW = 1, noisyFac = 1.0e-01, regTermFactor = 0.00

the number of dist. eq. used in SFSDP between two sensors = 976

the number of dist. eq. used in SFSDP between a sensor & an anchor = 3000

the min., max. and ave. degrees over sensor nodes = 8, 112, 9.90

elapsed time for generating an SDP relaxation problem = 0.39

-SeDuMi Wrapper for SDPA Start-

Note: pars information [4th argument] is not used

Free Variables are divided into positive and negative part of LP cone

Converted to SDPA internal data / Starting SDPA main loop

Converting optimal solution to Sedumi format

-SeDuMi Wrapper for SDPA End-

elapsed time for retrieving an optimal solution = 0.06

8

2.3 Generating a problem

For numerical experiments, users can generate a sensor network localization problem using
the function generateProblem.m provided in the SFSDP package. After determining the
values of parameter needed for generateProblem.m, the function generateProblem.m can be
called. Then, it returns xMatrix0 and distanceMatrix0 as output. For example,

>> sDim = 2; noisyFac = 0.0; radiorange = 0.3; noOfSensors = 1000;

>> anchorType = 2; noOfAnchors = 100; randSeed = 2001;

>> [xMatrix0,distanceMatrix0] = generateProblem(sDim,noisyFac,...

radiorange,noOfSensors,anchorType,noOfAnchors,randSeed);

In addition, if users specify parameters such that

>> pars.free= 0; pars.eps= 1.0e-05; pars.minDegree= 4; pars.objSW = 0;

>> pars.noisyFac= 0.0;

they can solve the problem with the command

>>[xMatrix,info,pars,distanceMatrix] = SFSDPplus(sDim,noOfSensors,...

noOfAnchors,xMatrix0,distanceMatrix0,pars);

Or they can save the input data and parameters in a file such that

>> save(’example2.mat’,’sDim’,’noOfSensors’,’noOfAnchors’,’xMatrix0’,...

’distanceMatrix0’,’pars’);

The description of input data and parameters in detail is given in Section 4.

2.4 test SFSDP.m

The function test SFSDP.m is included in the package SFSDP for numerical experiments.
It can be used as

>> test_SFSDP(sDim,noisyFac,radiorange,noOfSensors,anchorType,...

noOfAnchors,randSeed);

For a 2-dimensional problem with noisyFac = 0.3, radiorange=0.3, 500 sensors, anchorType=2,
100 anchors, and randomSeed=2009, which is the same problem as the second example in
Section 2.1,

>> test_SFSDP(2,0.1,0.3,500,2,100,2009);

elapsed time for generating a sensor network problem = 0.12

sDim = 2, noOfSensors = 500, anchorType = 2, noOfAnchors = 100

radiorange = 3.00e-01, noisyFac = 1.00e-01, randSeed = 2009

9

the number of dist. eq. between two sensors = 25397

the number of dist. eq. between a sensor & an anchor = 10861

the min., max. and ave. degrees over sensor nodes = 55, 174, 123.31

sDim = 2, noOfSensors = 500, noOfAnchors = 100

the number of dist. eq. between two sensors = 25397

the number of dist. eq. between a sensor & an anchor = 10861

the min., max. and ave. degrees over sensor nodes = 55, 174, 123.31

+3.0829e-03 <= x(1) <= +9.9940e-01

+2.7934e-03 <= x(2) <= +9.9797e-01

the max. radio range = 3.0000e-01, the estimated noisy factor = 9.9976e-02

SFSDP --- A Sparse version of FSDP (Biswas and Ye)

Sunyoung Kim, Masakazu Kojima, Hayato Waki and Makoto Yamashita

Version 1.22, January 2010

sDim = 2, noOfSensors = 500, noOfAnchors = 100

pars: SDPsolver = sdpa, eps = 1.00e-07

pars: sparseSW = 1, minDegree = 4, edgeSelectionSW = 1

pars: objSW = 1, noisyFac = 1.0e-01, regTermFactor = 0.00

the number of dist. eq. used in SFSDP between two sensors = 991

the number of dist. eq. used in SFSDP between a sensor & an anchor = 3000

the min., max. and ave. degrees over sensor nodes = 8, 129, 9.96

elapsed time for generating an SDP relaxation problem = 0.39

-SeDuMi Wrapper for SDPA Start-

Note: pars information [4th argument] is not used

Free Variables are divided into positive and negative part of LP cone

Converted to SDPA internal data / Starting SDPA main loop

Converting optimal solution to Sedumi format

-SeDuMi Wrapper for SDPA End-

elapsed time for retrieving an optimal solution = 0.06

elapsed time for SDP solver = 1.76

mean error in dist. eq. = 6.78e-05, max. error in dist. eq. = 4.13e-02

rmsd = 3.00e-02

see Figure 101

elapsed time for a gradient method = 0.51

mean error in dist. eq. = 6.63e-05, max. error in dist. eq. = 4.60e-02

rmsd = 3.91e-03

see Figure 103

The Figure 4 is displayed at the end.

For 3-dimensional problem, noisyFac = 0.1, radiorange=0.5, 500 sensors, anchorType=2,
noOfAnchors=50, and randomSeed=2009, we issue a command:

>> test_SFSDP(3,0.1,0.5,500,2,50,2009);

Then, on the screen the following is displayed.

10

elapsed time for generating a sensor network problem = 0.11

sDim = 3, noOfSensors = 500, anchorType = 2, noOfAnchors = 50

radiorange = 5.00e-01, noisyFac = 1.00e-01, randSeed = 2009

the number of dist. eq. between two sensors = 33089

the number of dist. eq. between a sensor & an anchor = 6885

the min., max. and ave. degrees over sensor nodes = 41, 276, 146.13

sDim = 3, noOfSensors = 500, noOfAnchors = 50

the number of dist. eq. between two sensors = 33089

the number of dist. eq. between a sensor & an anchor = 6885

the min., max. and ave. degrees over sensor nodes = 41, 276, 146.13

+3.0829e-03 <= x(1) <= +9.9401e-01

+2.7934e-03 <= x(2) <= +9.9940e-01

+4.8920e-03 <= x(3) <= +9.9575e-01

the max. radio range = 4.9999e-01, the estimated noisy factor = 9.9806e-02

SFSDP --- A Sparse version of FSDP (Biswas and Ye)

Sunyoung Kim, Masakazu Kojima, Hayato Waki and Makoto Yamashita

Version 1.22, January 2010

sDim = 3, noOfSensors = 500, noOfAnchors = 50

pars: SDPsolver = sdpa, eps = 1.00e-07

pars: sparseSW = 1, minDegree = 5, edgeSelectionSW = 1

pars: objSW = 1, noisyFac = 1.0e-01, regTermFactor = 0.00

the number of dist. eq. used in SFSDP between two sensors = 990

the number of dist. eq. used in SFSDP between a sensor & an anchor = 3819

the min., max. and ave. degrees over sensor nodes = 5, 168, 11.60

elapsed time for generating an SDP relaxation problem = 0.48

-SeDuMi Wrapper for SDPA Start-

Note: pars information [4th argument] is not used

Free Variables are divided into positive and negative part of LP cone

Converted to SDPA internal data / Starting SDPA main loop

Converting optimal solution to Sedumi format

-SeDuMi Wrapper for SDPA End-

elapsed time for retrieving an optimal solution = 0.07

elapsed time for SDP solver = 2.24

mean error in dist. eq. = 2.79e-04, max. error in dist. eq. = 1.49e-01

rmsd = 6.60e-02

see Figure 101

elapsed time for a gradient method = 1.08

mean error in dist. eq. = 1.81e-04, max. error in dist. eq. = 9.22e-02

rmsd = 1.06e-02

see Figure 103

Figure 5 is shown at the end of execution.

11

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5: Before and after the refinement using the gradient method

3 Sample Run Using SeDuMi

There are two ways to call SeDuMi [18] from SFSDP instead of SDPA to solve SDP relax-
ation problems. As an example, we consider ’d2n01s500a100.mat’.

>> load d2n01s500a100.mat;

One way is to specify

>> pars.SDPsolver = ’sedumi’;

The other way is to modify the MATLAB program SFSDP.m; replace the line

SDPsolverDefault = ’sdpa’;

by

SDPsolverDefault = ’sedumi’;

In both cases, we issue a command:

>>[xMatrix,info,pars,distanceMatrix] = SFSDPplus(sDim,noOfSensors,...

noOfAnchors,xMatrix0,distanceMatrix0,pars);

4 Input, Output and Parameters

4.1 Input

As we can see in the following commands,

12

Variable name Description
sDim The dimension of the space where sensors and anchors are located

(2 or 3).
noOfSensors The number m of sensors.
noOfAnchors The number ma of anchors located in the last ma columns of

xMatrix0.
xMatrix0 sDim×n matrix of the location of sensors and anchors in the

sDim-dimensional space, where n is the total number of sensors
and anchors, and anchors are placed in the last ma columns.
Or, sDim×ma matrix of anchors in the sDim-dimensional space,
where ma denotes the number of anchors.
If noOfAnchors = 0, then xMatrix0 can be [].

distanceMatrix0 The sparse (and noisy) distance matrix between sensors and
anchors; distanceMatrix0(p, q) = (noisy) distance between a pair of
sensors (p, q) ∈ N x and distanceMatrix0(p, r) = (noisy) distance
between a pair of sensor and an anchor (p, r) ∈ N a. See (2) and (3).
Note that distanceMatrix0 is upper triangular, i.e.,
distanceMatrix0(p.q) = 0 if p >= q.

pars Control parameters in constructing an SDP relaxation problem
and solving it by SeDuMi or SDPA. See Section 4.3 for more detail.

Table 1: Input for SFSDPplus.m and SFSDP.m

>>[xMatrix,info,pars,distanceMatrix] = SFSDPplus(sDim,noOfSensors,...

noOfAnchors,xMatrix0,distanceMatrix0,pars);

>>[xMatrix,info,pars,distanceMatrix] = SFSDP(sDim,noOfSensors,...

noOfAnchors,xMatrix0,distanceMatrix0,pars);

input arguments for SFSDPplus.m and SFSDP.m are sDim = the dimension of the space
where sensors and anchors are placed, noOfSensors = the number of sensors, noOfAnchors
= the number of anchors, xMatrix0 = the location matrix of sensors and anchors, dis-
tanceMatrix0 = the distance matrix, and pars involving some of parameters described in
Table 1.

When using test SFSDP.m as

>> test_SFSDP(sDim,noisyFac,radiorange,noOfSensors,anchorType,...

noOfAnchors,randSeed);

the required input is sDim = the dimension of the space where sensors and anchors are
placed, noisyFac = noisy factor, radiorange = radio range, noOfSensors = the number of
sensors, anchorType = anchor type, noOfAnchors = the number of anchors, and randSeed
= a random seed. If sDim= 2, sensors and anchors will be located randomly in [0, 1]× [0, 1].
If sDim= 3, sensors and anchors will be located randomly in [0, 1] × [0, 1] × [0, 1]. If the
value σ of noisyFac is 0, it means that the problem does not contain noise in distances.
Otherwise, a value σ > 0 indicates that noise with the standard normal distribution N(0, σ)

13

exists in estimated distances. More precisely, noisy distance d̂pq and d̂pr are given such that

d̂pq = max{(1 + ξpq), 0.1}dpq ((p, q) ∈ N x),

d̂pr = max{(1 + ξpr), 0.1}dpr ((p, r) ∈ N a).

Here ξpq and ξpr denote random numbers chosen from the standard normal distribution
N(0, σ), dpq the true distance between sensors p and q, and dpr the true distance between
sensor p and anchor r. The 4th argument noOfSensors in the input field of test SFSDP.m
is the number of sensors. A value for anchorType decides how anchors are located as shown
in Table 2. The 6th argument noOfAnchors of input is the number of anchors, and the 7th

AnchorType Position

0 Anchors placed at the grid points on the boundary and interior of [0, 1]sDim

1 Anchors placed at the grid points in the interior of [0, 1]sDim

2 Anchors placed randomly in [0, 1]sDim

3 sDim+1 anchors on the origin and the coordinate axis
4 sDim+1 anchors near the center
10 No anchor

Table 2: Types of anchors

argument randSeed is a random seed for a random distribution of sensors and anchors if
anchorType = 2. For instance,

>> test_SFSDP(2,0.0,0.2,500,0,4,2009);

The above command has input of the dimension of the space = 2, noisy factor 0.0 (i.e., no
noise), radio range = 0.2, the number of sensors = 500, anchor type = 0, the number of
anchors = 4, and random seed = 2009.

4.2 Output

As we have seen so far, the common output arguments of SFSDP and SFSDPplus.m are
xMatrix, info, pars and distanceMatrix. Among these arguments, xMatrix, info and dis-
tanceMatrix are explained in Table 3. The last argument pars involves control parameters
used in constructing an SDP relaxation problem and solving it by SeDuMi or SDPA. See
Section 4.3 for more detail.

4.3 Parameters

The parameters for SeDuMi, SDPA, SFSDPplus.m, and SFSDP.m are provided in the fields
of pars as shown in Table 4.

14

5 Numerical Results

We report some numerical results to show how large problems SFSDP can solve using SDPA
or SeDuMI. Numerical experiments were performed on 2×2.8GHz Quad-Core Intel Xeon
with 4GB memory. In Table 5 and 6, “time for building SDP” denotes the elapsed time for
building the SDP relaxation problem in seconds, “SDP.time” the elapsed time for solving
the SDP relaxation problem by SDPA or SeDuMi and “rmsd” the root mean square distance(

1

n

n∑
p=1

∥xp − x̂p∥2

)1/2

,

where xp and x̂p denote the true and computed location of the sensor p.

6 Concluding Remarks

We have described the structure and usage of the Matlab package SFSDP.

The sensor network localization problem has a number of applications where compu-
tational efficiency is an important issue. SDP approach has been known to be effective
in locating sensors, however, solving large-scale problems with this approach has been a
challenge.

From numerical results in [12], SFSDP demonstrates computational advantages over
other methods. These come from utilizing the aggregated and correlative sparsity of the
problem, which reduces the size of SDP relaxation. We hope to improve the performance
of SDP relaxation, in particular, for the case when the original problem does not provide
enough distance information between sensors.

Acknowledgments

The authors would like to thank Professor Yinyu Ye for the original version of FSDP, and
Professor Kim Chuan Toh for Matlab programs refineposition.m and procrustes.m, and for
helpful comments.

References

[1] A. Y. Alfakih, A. Khandani, and H. Wolkowicz (1999) “Solving Euclidean matrix
completion problem via semidefinite programming,” Comput. Opt. and Appl., 12, 13-
30.

[2] P. Biswas and Y. Ye (2004) “Semidefinite programming for ad hoc wireless sensor net-
work localization,” in Proceedings of the third international symposium on information
processing in sensor networks, ACM press, 46-54.

15

[3] P. Biswas and Y. Ye (2006) “A distributed method for solving semidefinite programs
arising from Ad Hoc Wireless Sensor Network Localization,” in Multiscale Optimization
Methods and Applications, 69-84, Springer.

[4] P. Biswas, T.-C. Liang, T.-C. Wang, Y. Ye (2006) “Semidefinite programming based
algorithms for sensor network localization,” ACM Transaction on Sensor Networks, 2,
188-220.

[5] P. Biswas, T.-C. Liang, K.-C. Toh, T.-C. Wang, and Y. Ye (2006) “Semidefinite
programming approaches for sensor network localization with noisy distance measure-
ments,” IEEE Transactions on Automation Science and Engineering, 3, pp. 360–371.

[6] L. Doherty, K. S. J. Pister, and L. El Ghaoui (2001) “Convex position estimation in
wireless sensor networks,” Proceedings of 20th INFOCOM, 3, 1655-1663.

[7] T. Eren, D. K. Goldenberg, W. Whiteley, Y. R. Wang, A. S. Morse, B. D. O. Anderson
(2004), and P. N. Belhumeur “Rigidity, computation, and randomization in network
localization,” in Proceedings of IEEE Infocom.

[8] K. Fujisawa, M. Fukuda, K. Kobayashi, M. Kojima, K. Nakata, M. Nakata and M.
Yamashita (2008), “SDPA (SemiDefinite Programming Algorithm) User’s Manual —
Version 7.0.5,” Research Report B-448, Dept. of Mathematical and Computing Sci-
ences, Tokyo Institute of Technology, Oh-Okayama, Meguro, Tokyo 152-8552, Japan.

[9] M. Fukuda, M. Kojima, K. Murota and K. Nakata (2000) “Exploiting sparsity in
semidefinite programming via matrix completion I: General framework,” SIAM J. on
Optimi., 11, 647-674.

[10] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S.Wicker (2002)
“An empirical study of epidemic algorithms in large scale multihop wireless network,”
March.

[11] A. Howard, M. Matarić and G. Sukhatme (2001) “Relaxation on a mesh: a formal-
ism for generalized localization,” In IEEE/RSJ International conference on intelligent
robots and systems, Wailea, Hawaii, 1055-1060.

[12] S. Kim, M. Kojima and H. Waki (2009) “ Exploiting sparsity in SDP relaxation for
sensor network localization,” SIAM J. on Optim., 20, (1) 192-215.

[13] K. Kobayashi, S. Kim and M. Kojima, (2008) Correlative sparsity in primal-dual
interior-point methods for LP, SDP and SOCP, Applied Mathematics and Optimization,
58 (1) 69-88.

[14] K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima and K. Murota (2003) “Exploiting
sparsity in semidefinite programming via matrix completion II: Implementation and
numerical results,” Mathematical Programming, 95, 303-327.

[15] J. Nie (2009) “Sum of squares method for sensor network localization,” Comput. Opt.
and Appl., 43, No. 2, 151-179.

16

[16] SeDuMi Homepage, http://sedumi.mcmaster.ca

[17] SDPA Homepage, http://sdpa.indsys.chuo-u.ac.jp/sdpa/

[18] J. F. Strum, “SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones,” Optimization Methods and Software, 11 & 12 (1999) 625-653.

[19] P. Tseng, (2007) “Second order cone programming relaxation of sensor network local-
ization,” SIAM J. on Optim., 18, 156-185.

[20] Z. Wang, S. Zheng, S. Boyd, and Y. Ye (2008) “Further relaxations of the SDP approach
to sensor network localization,” SIAM J. on Optim., 19 (2) 655-673.

17

xMatrix sDim × n matrix of the location of sensors and anchors computed in
the sDim dimensional space, where n is the total number of sensors
and anchors, and anchors are placed in the last ma columns.

info information on execution of SFSDP and/or SFSDPplus, which includes
eTimeBuildSDP : elapsed time for building the SDP problem,
eTimeSolveSDP : elapsed time spent in the SDP solver,
eTimeConvSDP : elapsed time for conversion,
eTimeAddBounds : elapsed time for adding bounds,
eTimeRetSolution : elapsed time for retrieving sensors’ locations.
eTimeGradMethod : elapsed time for a refinement of the SDP solution

by the gradient method,
“info” also includes information from SeDuMi or SDPA output. See
SeDuMi user guide [16] or SDPA user guide [8].

distanceMatrix The distance matrix used in the construction of an SDP whose
description is similar to that of input distnceMatrix0 given in Table 1.
More precisely, the output values represent the distances dpq

((p, q) ∈ N x) and dpr ((p, r) ∈ N a) in the problem (2) (or the noisy

distances d̂pq ((p, q) ∈ N x) and d̂pr ((p, r) ∈ N a) in the problem (3)).

Table 3: Output of SFSDP.m and SFSDPplus.m

18

Parameters to choose an SDP solver
pars.SDPsolver = ’sdpa’ to apply SDPA (default).

= ’sedumi’ to apply SeDuMi.

Parameters for SeDuMi
pars.eps, pars.free, pars.fid See SeDuMi user guide [16].

Parameters for SFSDP.m
pars.minDegree A positive integer greater than sDim, which is used

for selecting subsets N ′
x and N ′

a from N x and N a

to reduce the size of the problem (2) or (3). If it is
increased, a stronger relaxation but longer cpu time
is expected. If it is equal to or larger than 100, then no
reduction is conducted. The default value is sDim + 2.
See Section 4.1 of [12] for more details.

pars.objSW = 0 to solve the noise-free problem (2).
= 1 to solve the problem (3) involving noise.
= 2 to solve the noise-free problem (2) with no anchor

small number of anchors; a regularization term is
minimized subject to the constraint of the noise-free
problem (2).

= 3 to solve a problem involving noise with no anchor or
a small number of anchors; a regularization term is
added to the objective function of (3).

pars.noisyFac = [] if noisyFac σ is not specified or unknown.
= σ if noisyFac σ is known; used to bound the

error ϵ+
pq and ϵ−pq.

Parameters for SFSDPplus.m
pars.analyzeData = 1 to analyze the input data (default).

= 0 no information on the input data.

Table 4: Parameters

#Sensors Time for Using SDPA Using SeDuMi Time for
building SDP SDP.time rmsd SDP.time rmsd gradient method

1000 0.4 16.4 6.7e-03 38.4 6.7e-03 2.3
2000 1.2 43.3 5.4e-03 126.1 5.3e-03 9.1
4000 3.9 63.3 7.9e-03 316.2 1.5e-02 17.1
6000 8.9 102.8 6.3e-03 1061.8 6.9e-03 24.4

Table 5: Numerical results on 2-dimensional problems with randomly generated n sensors
in [0, 1] × [0, 1], 4 anchors at the corner of [0, 1] × [0, 1], radiorange = 0.1, and noisyFac =
0.1

19

#Sensors Time for Using SDPA Using SeDuMi Time for
building SDP SDP.time rmsd SDP.time rmsd gradient method

1000 0.5 28.1 2.1e-02 56.1 2.5e-02 9.7
2000 1.4 50.8 2.7e-02 138.1 2.7e-02 5.1
3000 2.6 56.3 2.7e-02 246.6 2.7e-02 7.1
4000 4.1 75.4 2.6e-02 294.1 2.6e-02 8.3

Table 6: Numerical results on 3-dimensional problems with randomly generated n sensors
in [0, 1]3, 8 anchors at the corner of [0, 1]3, radiorange = 0.3, and noisyFac = 0.1

20

