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Abstract.
Second order cone program (SOCP) formulations of convex optimization problems are studied. We
show that various SOCP formulations can be obtained depending on how auxiliary variables are
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1 Introduction

We consider second order cone program (SOCP) approaches for convex optimization problems.
SOCPs have received plenty of attention in recent studies of optimization for their wide appli-
cability and computational efficiency [1, 11, 6, 7, 14]. SOCP can be viewed as a special case of
semidefinite programming (SDP) in the sense that second order cone inequalities can be repre-
sented as linear matrix inequalities. The computational efforts for solving SDPs are, however,
known to be far greater than for SOCPs. It is thus recommended to use SOCP formulation for
computational complexity concerns when an optimization problem can be formulated as both an
SDP and an SOCP [1].

Formulating optimization problems as SOCPs provides computational advantages: it can be
solved in polynomial-time, and the number of iterations required to find a solution is not much
affected by a choice of initial points in practice. Nesterove and Nemirovski [13, 14] and Lobo et el.
[11] showed that many kinds of problems could be cast as SOCPs. They introduced second order
cone representable functions or sets for convex optimization problems that can be formulated as
SOCPs. When an optimization problem is formulated as an SOCP, its representation is not unique.
The computational complexity for solving the SOCPs thus varies depending on the formulation.

Sparsity has been utilized in various ways for solving large-sized problems and studied exten-
sively. The correlative sparsity was introduced to handle the sparsity of polynomial optimization
problems (POPs) in [19]. An n×n symmetric matrix R, correlative sparsity pattern (csp) matrix,
is constructed for the representation of the correlative sparsity of a POP with each element Rij of
the csp matrix R either 0 or ⋆ for a nonzero value. The importance of the correlative sparsity lies
on the fact that applying sparse Cholesky factorization to the csp matrix R provides no fill-ins.

In the implementation of interior-point methods for SOCP, the sparsity of the Schur com-
plement matrix was exploited by splitting the matrix into sparse and dense parts, factorizing the
sparse part, and applying low-rank update to the dense part [4, 16]. From this, we see that the com-
putational efficiency of solving SOCPs will be improved if the sparse part of the Schur complement
matrix contains less nonzero elements. In recent work [9], it is shown that if optimization prob-
lems have the correlative sparsity, then the same sparsity pattern exists in the Schur complement
matrix in primal-dual interior point methods for LP, SOCP and SDP. However, SOCP formulation
of a convex optimization problem is not unique. SOCP formulations that increase computational
efficiency in solving the Schur complement equation have potential to perform better when solving
large-sized problems.

The objective of this paper is to find SOCP formulations that increase the computational
efficiency in solving the Schur complement equation. For this purpose, we define second order
cone inequality (SOCI) representable sets and functions. We then investigate various SOCP for-
mulations in terms of correlative sparsity, and show that different ways of formulating convex
optimization problems with SOCI representable functions as SOCPs result in the same sparsity
pattern in the sparse part of the Schur complement matrix for the original variables. The differ-
ence lies on the auxiliary variables introduced to transform the convex optimization problem to an
SOCP and how they create nonzero elements in the sparse part of the Schur complement matrix.
We show that an efficient SOCP formulation can be obtained by minimizing the number auxiliary
variables.

SOCPs formulated from optimization problems can be solved by several available software
packages based on primal-dual interior-point methods such as SeDuMi [15], MOSEK [12], SDPT3
[17]. Convex optimization problems with sparsity can also be solved with LANCELOT, which takes
advantage of sparsity from the partial separability of optimization problems. The partial sepa-
rability was introduced in connection with the efficient implementation of quasi-Newton methods
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for solving large unconstrained optimization [5]. The Hessian matrix of the problems with partial
separability is sparse, and the LANCELOT optimization package [2] makes efficient use of this
sparsity. We compare the numerical results by SeDuMi for SOCP formulations with those from
the LANCELOT.

This paper is organized as follows: after introducing a brief description of an SOCI repre-
sentable set or function, notation, and basic definitions, the restricted hyperbolic constraint are
included in Section 2. Section 3 contains SOCP formulations of convex optimization problems.
Section 4 includes the discussion on the correlative sparsity of various SOCP formulations and how
efficient SOCP formulations can be obtained, based on SeDuMi’s handling of the Schur complement
matrix. Section 5 contains numerical experiments for unconstrained and constrained optimization
problems. For constrained problems, the description of generating constrained test problems using
existing functions from CUTEr [3] is included. Numerical results obtained using SeDuMi are com-
pared with LANCELOT for various sparse optimization problems. Finally, Section 6 is devoted
to concluding remarks.

2 Preliminaries

2.1 Notation and definition

Let Q be the second order cone defined as

Q =

{
x = (x1, x2, . . . , xn) ∈ Rn| x1 ≥

(
n∑

i=2

x2
i

)
, x1 ≥ 0

}
.

For every x ∈ Rn, x≽S0 denotes the second order cone (or quadratic cone) inequality, i.e.,
x≽S0 if and only if x1 ≥

(∑n
i=2 x2

i

)1/2 and x1 ≥ 0. We use x = (x1, x2) = (x1, x2, . . . , xn). We
also let Q′ be the Cartesian product of several second order cones, i.e., Q′ = Qk1 ×Qk2 · · · × Qkm

where Qki
⊂ Rki is a second order cone. If

∑m
i=1 ki = n and x ∈ Q′, x can be expressed as

(x1, x2, . . . , xm) where xi ∈ Qki
. Since Qki

is a second order cone in Rki , x ∈ Q′ indicates that
each subvector xi (i = 1, 2, . . . ,m) of x satisfies the inequality

xi1 ≥

 ki∑
j=2

x2
ij

1/2

and xi1 ≥ 0,

where xi = (xi1, xi2, . . . , xiki
) (1 ≤ i ≤ m). For every x = (x1, x2, . . . , xm) ∈ Rn, x≽S0

also denotes a product of multiple second order cone inequalities, i.e., x≽S0 if and only if xi1 ≥(∑ki
j=2 x2

ij

)1/2
and xi1 ≥ 0 (i = 1, 2, . . . ,m) . Throughout the paper, for every convex subset K of

Rn, we let F(K) the set of real valued functions defined on an open neighborhood of K, F+(K) =
{f ∈ F(K) : f(x) ≥ 0 for every x ∈ K}, F++(K) = {f ∈ F(K) : f(x) > 0 for every x ∈ K},
Aff(K) = {f ∈ F(K) : f is affine on K}. Here we say that f is affine on K if f((1 − λ)x + λy) =
(1 − λ)f(x) + λf(y) for every x ∈ K, y ∈ K and λ ∈ [0, 1].

We call a subset C of Rn second order cone inequality (SOCI) representable if there exists an
affine map F : R bm+n → Sq for which C = {z ∈ Rn : F (y, z)≽S0 for some y ∈ R bm} holds. Every
SOCI representable subset of Rn is convex. We assume that the entire n-dimensional space Rn

is SOCI representable. In what follows, K denotes a fixed convex subset of Rn which is SOCI
representable; hence K = {x ∈ Rn : F K(y, x)≽S0 for some y ∈ R bm}, where F K : R bm+n → Sq is
an affine map.
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For every subset K of Rn and every f ∈ F(K), let

epi(f,K) =
{
(t, x) ∈ R1+n : t − f(x) ≥ 0 and x ∈ K

}
(the epigraph of f restricted to K).

Define

Sepi(K) = {f ∈ F(K) : epi(f,K) is SOCI representable}.

In addition, for f ∈ Sepi(K) or f ∈ Shyp(K), we call f an SOCI representable function.
When K = Rn, we often omit K and use the symbols F, F+, F++, Aff, epi(f), and Sepi for

F(K), F+(K), F++(K), Aff(K), epi(f,K), and Sepi(K), respectively.
We note that the discussion of SOCI representable functions and sets in [11, 13, 14] deals

with general concepts and representation. In this paper, we are more interested in computational
efficiency of various SOCPs formulated from SOCI representable functions.

2.2 The restricted hyperbolic constraint

When formulating a problem as a second order cone, we frequently use the restricted hyperbolic
constraint:

zT z ≤ uv, u ≥ 0, v ≥ 0 ⇔
(

u + v, u − v, 2z
)T ≽S0,

where u ∈ R, v ∈ R and z ∈ Rp.

3 SOCP formulation

We consider solving the following convex optimization problem by formulating it as an SOCP. Let
K = Rn.

min f0(x) subj. to fj(x) ≤ 0 (j = 1, 2, . . . , m̃). (1)

If fj ∈ Sepi, then (1) can be represented as an SOCP by introducing auxiliary variables.
As mentioned in Section 2, fj ∈ Sepi implies that epi(fj) can be represented as an SOCI; there

exists an affine map F j : R bm+1+n → Sq for which

epi(fj ,K) = {(t, x) ∈ R1+n : F j(z, t,x)≽S0 for some z ∈ R bm}

holds. Thus, an inequality fj(x) ≤ 0 can be written as

F j(z, 0,x)≽S0 for some z ∈ R bm. (2)

When a given optimization problem (1) described by SOCI representable functions is trans-
formed into the form of SOCP, we need to introduce auxiliary variables, for instance z in (2), for
affine maps. This transformation of an SOCI representable function is not unique as we see in the
following.

Let us consider
min f0(x) =

∑
i∈I

fi(x)2
Pi (3)

where Pi = {0, 1, 2, 3, . . .} and fi ∈ Aff (i ∈ I). Let

I0 = {i : pi = 0}, I1 = {i : pi = 1}, I2 = {i : pi ≥ 2}, I = I0 ∪ I1 ∪ I2.
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Then, (3) can be written as

min
∑
i∈I0

fi(x) +
∑
i∈I1

fi(x)2 +
∑
i∈I2

t2i subj. to fi(x)2
(Pi−1) ≤ ti (i ∈ I2),

or equivalently,

min
∑
i∈I0

fi(x) + s subj. to
∑
i∈I1

fi(x)2 +
∑
i∈I2

t2i ≤ s, fi(x)2
(Pi−1) ≤ ti (i ∈ I2).

If Pi = 2, then fi(x)2
(Pi−1) ≤ ti can be represented as (ti + 1, ti − 1, 2fi(x))T≽S0.

For Pi ≥ 3, introducing auxiliary variables into the inequality fi(x)2
(Pi−1) ≤ ti until the power

of fi(x) becomes 2, we replace it by the sequence of inequalities ti ≥ u2
i , ui ≥ v2

i , . . . , wi ≥ fi(x)2.
Then, the problem is equivalent to

min
∑
i∈I0

fi(x) + s

subj. to
∑
i∈I1

fi(x)2 +
∑
i∈I2

t2i ≤ s, ti ≥ u2
i , ui ≥ v2

i , . . . , wi ≥ fi(x)2 (i ∈ I2).

 (4)

Alternatively,

min
∑
i∈I0

fi(x) +
∑

i ∈ I1

ti +
∑

i ∈ I2

ti

subj. to ti ≥ fi(x)2 (i ∈ I1), ti ≥ u2
i , ui ≥ v2

i , . . . , wi ≥ fi(x)2 (i ∈ I2).

 (5)

Let α and β be the number of indices in I1 and I2, respectively, and I1 = {i1j : j = 1, . . . , α}
and I2 = {i2k : k = 1, . . . , β}. We now consider the constraint∑

i∈I1

fi(x)2 +
∑
i∈I2

t2i ≤ s (6)

in the problem (4). The second order cone representation of (6) is(
s + 1, s − 1, 2fi11(x), 2fi12(x), . . . , 2fi1α(x), 2ti21 , 2ti22 , . . . , 2ti2β

)T ≽S0,

and the size of the second order cone is 2 + α + β. On the other hand, the sizes of all the second
order cones induced from the constraints in (5) are 3. The SOCP formulation of (5) thus involves
smaller size second order cones than that of (4). We note that another SOCP formulation can be
obtained by replacing the variable s in the objective function of the problem (4) by s′ + s′′ and
splitting the constraint

∑
i∈I1

fi(x)2 +
∑

i∈I2
t2i ≤ s into

∑
i∈I1

fi(x)2 ≤ s′ and
∑

i∈I2
t2i ≤ s′′.

Introducing less auxiliary variables than (5) and more auxiliary variables than (4) leads to an
SOCP formulation with the largest second order cone of size smaller than (4) and larger than
(5). Formulating the problem with the largest second order cone provides better computational
efficiency as we show below.

If a problem has a constraint
∑

i∈I fi(x)2
Pi ≤ g(x), the SOCP formulation described above

can be also applied, where g ∈ Aff.

Similarly, problems that involve
(∑

i∈I fi(x)2
Pi

)1/2
, with Pi ≥ 1 (hence I0 = ∅) in their

objective functions to be minimized or their inequality constraints can be represented in SOCPs
using

s ≥

 ∑
i∈I1

fi(x)2 +
∑
i∈I2

t2i

1/2

, ti ≥ u2
i , ui ≥ v2

i , . . . , wi ≥ fi(x)2 (i ∈ I2).
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We also mention that SOCP formulations of problems involving
(∑

i∈I fi(x)2
Pi

)
/g(x) in their

objective functions to be minimized, where g ∈ Aff++(K) for some SOCI representable convex
subset K of Rn, can be derived. More precisely, we consider the constraints∑

i∈I
fi(x)2

Pi

 /g(x) ≤ t and x ∈ K

where t is an auxiliary variable representing the objective value, and write∑
i∈I

fi(x)2
Pi

 ≤ tg(x) and x ∈ K

as second order cones by using the the restricted hyperbolic constraint given in Section 2.2.
For theoretical complexity aspect of an SOCP, Tsuchiya [18] showed that the long-step algo-

rithm for SOCP using NT direction has O(k log ϵ−1) iteration-complexity to reduce the duality
gap by a factor of ϵ, where k is the number of second order cones. We observe this with three
SOCP formulations of varying number of second order cones in the following illustrative example.

An illustrative example: the Chained singular function

As an illustrative example, we show three different SOCP formulations of the Chained singular
function. We consider minimizing the Chained singular function

min
∑
i∈J

(
(xi + 10xi+1)2 + 5(xi+2 − xi+3)2 + (xi+1 − 2xi+2)4 + 10(xi − 10xi+3)4

)
, (7)

where J = {1, 3, 5, . . . , n − 3} and n is a multiple of 4. This can be rewritten as

min
∑
i∈J

(si + ti + pi + qi)

subj. to si ≥ (xi + 10xi+1)
2 , ti ≥ 5 (xi+2 − xi+3)

2 , ri ≥ (xi+1 − 2xi+2)
2 ,

pi ≥ r2
i , ui ≥

√
10 (xi − 10xi+3)

2 , qi ≥ u2
i .

We can formulate this problem as an SOCP:

min
∑
i∈J

(si + ti + pi + qi)

subj. to

 si + 1
si − 1

2(xi + 10xi+1)

≽S0,

 ti + 1
ti − 1

2
√

5(xi+2 − xi+3)

≽S0, ri + 1
ri − 1

2(xi+1 − 2xi+2)

≽S0,

 pi + 1
pi − 1
2ri

≽S0, ui + 1
ui − 1

2 4
√

10(xi − 10xi+3)

≽S0,

 qi + 1
qi − 1
2ui

≽S0, i ∈ J.



(8)

The sizes of all the second order cones are 3.
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Minimizing the Chained singular function (7) can also be rewritten as

min s +
∑

i∈J(pi + qi)
subj. to s ≥

∑
i∈J

(
(xi + 10xi+1)2 + 5(xi+2 − xi+3)2

)
,

ri ≥ (xi+1 − 2xi+2)2, pi ≥ r2
i ,

ui ≥
√

10(xi − 10xi+3)2, qi ≥ u2
i , i ∈ J.

We can formulate this problem as an SOCP:

min s +
∑

i∈J(pi + qi)
subj. to a single SOCP inequality to be derived from

s ≥
∑

i∈J

(
(xi + 10xi+1)2 + 5(xi+2 − xi+3)2

)
, ri + 1

ri − 1
2(xi+1 − 2xi+2)

≽S0,

 pi + 1
pi − 1
2ri

≽S0, ui + 1
ui − 1

2 4
√

10(xi − 10xi+3)

≽S0,

 qi + 1
qi − 1
2ui

≽S0.


(9)

The single SOCP inequality is of the following form

s + 1
s − 1

2(x1 + 10x1+1)
2(x3 + 10x3+1)

...
2(xn−3 + 10xn−3+1)
2
√

5(x1+2 − x1+3)
2
√

5(x3+2 − x3+3)
...

2
√

5(xn−3+2 − xn−3+3)


≽S0.

The size of the largest second order cone in this formulation is n. Now we have two different
SOCP formulations (8) and (9).

A different SOCP formulation can be derived: If we write minimizing the Chained singular
function

min s
subj. to s ≥

∑
i∈J

(
(xi + 10xi+1)2 + 5(xi+2 − xi+3)2 + r2

i + u2
i

)
,

ri ≥ (xi+1 − 2xi+2)2, ui ≥
√

10(xi − 10xi+3)2,

an SOCP can be formulated as

min s
subj. to a single SOCP inequality to be derived from

s ≥
∑

i∈J

(
(xi + 10xi+1)2 + 5(xi+2 − xi+3)2 + r2

i + u2
i

)
, ri + 1

ri − 1
2(xi+1 − 2xi+2)

≽S0,

 ui + 1
ui − 1

2 4
√

10(xi − 10xi+3)

≽S0.


(10)
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The single SOCP inequality is represented as

s + 1
s − 1

2(x1 + 10x1+1)
2(x3 + 10x3+1)

...
2(xn−3 + 10xn−3+1)
2
√

5(x1+2 − x1+3)
2
√

5(x3+2 − x3+3)
...

2
√

5(xn−3+2 − xn−3+3)
2r1

2r3

...
2rn−3

2u1

2u3

...
2un−3



≽S0.

Note that the size of the largest second order cone is 2(n− 1) and the size of all the other second
order cones is 3.

4 Sparsity

When different SOCP formulations shown in Section 3 are solved by a software based on primal-
dual interior-point methods, their computational efficiency varies. The most time consuming part
is solving the Schur complement equation. Two important factors that affect the efficiency of
solving the Schur complement equation are the sparsity and the size of the Schur complement
matrix. We examine how SeDuMi [15] handles the Schur complement equations from various
SOCP formulations, resulting in different computational time.

Consider the primal-dual standard form SOCP:

min
ℓ∑

i=1

cT
i xi subj. to

ℓ∑
i=1

Aixi = b, xi≽S0 (i = 1, 2, . . . , ℓ), (11)

max bT y subj. to si = ci − AT
i y≽S0 (i = 1, 2, . . . , ℓ), (12)

where ci, xi, si ∈ Rki , Ai ∈ Rm×ki (i = 1, . . . , ℓ), and b, y ∈ Rm.
In primal-dual interior-point methods for solving SOCP, the Cholesky factorization is com-

monly used for the solution of the Schur complement equation. The sparsity of the Schur com-
plement matrix can be explained in connection with the sparsity of SOCP by considering the
correlative sparsity pattern (csp) matrix, which was originally proposed for a POP [19], for the
dual standard form SOCP (12). The csp matrix of SOCP is defined by m × m symmetric ma-
trix R, called the correlative sparsity pattern (csp) matrix whose element Rjk is either 0 or ∗
for a nonzero value. The symbol ∗ was assigned to all diagonal elements of R and also to each
off-diagonal element Rjk = Rkj (1 ≤ j < k ≤ m) if and only if the variables yj and yk appear
simultaneously in a second order cone inequality constraint si = ci − AT

i y≽S0. We note that the
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sparsity pattern of the Schur complement matrix (the coefficient matrix of the Schur complement
equation) coincides with the csp matrix R [9].

The sparsity of the Schur complement matrix is exploited by splitting the matrix into sparse
and dense parts, factorizing the sparse part, and applying low-rank update for the dense part. We
mention that, even with the dense csp matrix, the sparsity of the Schur complement matrix can still
be exploited by this splitting. Thus, the computational efforts for solving the Schur complement
equation depend on the size of the Schur complement matrix, the sparsity of the sparse part, and
the rank of the dense part.

Notice that SOCP formulated with small second order cones have more variables than that
with large second order cones because more auxiliary variables are introduced. As a result, the
size of the Schur complement matrix is larger.

The sparsity of the Schur complement matrix is determined by the sparsity of the data matrices
Ai (i = 1, 2, . . . , ℓ) in (12). More specifically, the nonzero pattern of the sparse part of the Schur
complement matrix coincides with the nonzero pattern of the matrix

∑ℓ
i=1 AiA

T
i . From this, we

can observe that different SOCP formulations from various ways of introducing auxiliary variables
do not change the sparsity pattern of the sparse part of the Schur complement matrix essentially,
and only the number of variables are different. This will be shown with the illustrative example
in this section.

The csp matrix becomes increasingly dense as a second order cone of SOCP formulation in-
cludes more variables, which was called a dense constraint in [9], for example (10). We need
to know how SeDuMi handles the Schur complement equation to compare the computational
efficiency of various SOCP formulations. SeDuMi implements the product-form Cholesky factor-
ization based on the rank-1 Fletcher-Powell method [4] for solving the Schur complement equation.
The product form approach can be described as follows. Let I ⊂ {1, . . . , ℓ} be the index set of
second order cones involving many variables. We also let (x1, x2, . . . , xℓ) be an interior-feasible
solution of the primal standard form SOCP (11) and (y, s1, s2, . . . , sℓ) an interior-feasible solution

of the dual standard form SOCP (12). We denote γ(xi) =
√

x2
i1 − ∥xi2∥2. In the Nesterov-

Todd direction used in SeDuMi, ui1 = {(γ(si)xi1 + γ(xi)si1)/γ(xi)}
√

xT
i si + γ(xi)γ(si) and

ui2 = {(−γ(si)xi2 + γ(xi)si2)/γ(xi)}
√

xT
i si + γ(xi)γ(si) where si means interior-feasible so-

lution. We denote Ai1 the first column of Ai. Then, the Schur complement matrix is represented
as

ℓ∑
i=1

AiF iA
T
i =

ℓ∑
i=1

γ2(ui)
2

AiA
T
i +

ℓ∑
i=1

(viv
T
i − wiw

T
i ),

where vi = Aiui, wi = γ(ui)Ai1, and F i = (γ2(ui)/2)Ii + uiu
T
i − γ2(ui)Ii1(Ii1)T . Here Ii is the

ki × ki identity matrix whose first column is denoted Ii1. For i ∈ I, AiF iA
T
i is splitted into the

sparse and dense parts. More precisely,
∑ℓ

i=1 AiF̃ iA
T
i +

∑
i∈I (viv

T
i − wiw

T
i ) where F̃ i = F i

for i /∈ I and F̃ i = (γ2(ui)/2)I for i ∈ I. Then, the sparse part
∑ℓ

i=1 AiF̃ iA
T
i is factorized,

and the rank-1 Fletcher-Powell update for the dense part
∑

i∈I (viv
T
i − wiw

T
i ) is applied to the

factorization. Notice that the rank of the dense part is 2#I. As a result, increasing the number
of second order cones of large dimensions in an SOCP formulation requires more applications of
the rank-1 Fletcher-Powell update to the factorization. SeDuMi uses a threshold value to decide
how large size of a second order cone is regarded as large.

8





∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗ ∗ ∗

∗ ∗



Figure 1: The csp matrix of (8)



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗

∗ ∗ ∗ ∗
∗ ∗



Figure 2: The csp matrix of (9)

Illustrative Example

Three different SOCP formulations of the Chained singular function in Section 3 result in different
computational performance. We investigate their difference with the size of the Schur complement
matrix, the csp matrix of A, and the sparsity of the sparse part of Schur complement matrix.

Consider the Chained singular function with n = 4. For SOCP formulation (8), we define
the vector y in (12) by y = (y1, y2, . . . , y10) = (x1, x2, x3, x4, s1, t1, r1, p1, u1, q1). The 10 × 10 csp
matrix of the SOCP formulation (8) is shown in Figure 1. For the SOCP formulation (9), the
vector y in (12) is defined by y = (y1, y2, . . . , y9) = (x1, x2, x3, x4, s1, r1, p1, u1, q1), and the 9 × 9
csp matrix of (9) is shown in Figure 2. For the SOCP formulation (10), the vector y in (12) is
defined by y = (y1, y2, . . . , y7) = (x1, x2, x3, x4, s1, r1, u1). In this SOCP formulation, all elements
in y are included in the first cone, and thus the 7 × 7 csp matrix becomes completely dense. Its
csp matrix is shown in Figure 3.

As we see from Figure 1, 2 and 3, the sparsity decreases from the csp matrix of (8), (9) to (10).
More precisely, as the size of the largest second order cone in the SOCP formulation increases, the
csp matrix gradually loses sparsity. Note that in (9), the first second order cone inequality contains
x1, x2, x3, x4, and s and this inequality makes 5 × 5 submatrix of the csp matrix to be completely
dense. Moreover, the first second order cone inequality in (10) contains x1, x2, x3, x4, s, r1, and u1

which makes 7×7 submatrix of the csp matrix completely dense. In SeDuMi, the nonzero pattern
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∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗



Figure 3: The csp matrix of (10)
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Figure 4: Sparse pattern of the sparse part for SOCP (9)

of the sparse part of the Schur complement matrix of (8) is equivalent to the csp matrix of (8)
shown in Fig 1. For (9) and (10), when a second order cone involving most variables is considered
large in SeDuMi, that is, #I = 1, the sparsity pattern of the sparse part of the Schur complement
matrix of is shown in Figure 4 and 5, respectively. If we compare Figure 1, 4 and 5, we see that
the size of the Schur compelment matrix decreases from 10, 9 to 7, and the number of nonzero
elements are reduced from 38, 29 to 23, and the sparsity pattern remains almost the same. As a
result, the computational time for factorizing the sparse part is expected to decrease slightly or
almost equal.

After factorizing the sparse part, the rank-1 Fletcher-Powell update is applied to the factoriza-
tion to account for the dense part. As n increases, the size of the largest cone of SOCP formulations
(9) and (10) grows, and that second order cone is regarded as large by SeDuMi. For (8), SeDuMi
did not find any large second order cones, namely, #I = 0. For (9) and (10) with n = 500, 1000
and 2000, our test showed that SeDuMi determined the number of large second order cone #I = 1.
This indicates that the rank of the dense part is 2. The computational time for applying the rank-1
update for the dense part is small and (10) has the smallest size of the Schur complement matrix
among the three formulations. Consequently, solving (10) consumes the least amount of cpu time,
as shown in the following numerical experiments.

The three SOCP formulations of the Chained singular function were tested with SeDuMi on a
Macintosh Dual 2.5GHz PowerPC G5 with 2GB DDR SDRAM. In Tables, n means the number
of variables, sizeA the size of SOCP problem in the SeDuMi input format, #nzA the number of
nonzeros in the coefficient matrix A of SOCP problem to be solved by SeDuMi, #it the number
of iterations, and rel.err the relative error of SOCP values.
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Figure 5: Sparsity pattern of the sparse part for SOCP (10)

Chained Singular
n SOCP (8)

sizeA #nzA rel.err cpu #it cpu/#it
500 [4482, 1994] 5478 5.7e-14 5.48 25 0.22

1000 [8982, 3994] 10978 0.0e-0 13.48 26 0.52
2000 [17982, 7994] 21978 0.0e-0 ∗37.48 25 1.50

Table 1: Numerical results of SOCP (8)

Chained Singular
n SOCP (9)

sizeA #nzA rel.err cpu #it cpu/#it
500 [3488, 1497] 4484 1.2e-7 3.47 18 0.19

1000 [6988, 2997] 8984 2.4e-7 7.14 18 0.40
2000 [13988, 5997] 17984 4.7e-7 19.06 18 1.06

Table 2: Numerical results of SOCP (9)

Chained Singular
n SOCP (10)

sizeA #nzA rel.err cpu #it cpu/#it
500 [2492, 999] 3488 1.2e-6 ∗3.26 23 0.14

1000 [4992, 1999] 6988 9.6e-5 ∗5.89 24 0.25
2000 [9992, 3999] 13988 1.6e-4 ∗14.15 28 0.51

Table 3: Numerical results of SOCP (10)
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Table 1, 2 and 3 show the numerical results of the SOCP formulation (8), (9) and (10). The
asterisk mark in Table 1, 2, and 3 means that numerical difficulty was encountered while SeDuMi
was solving the problem. Numerical problems in SeDuMi encountered while solving (10) may have
caused an increase in the number of iterations and large rel.err.

In Table 3, the formulation (10) consumes the least amount of cpu time and cpu time per
iteration, despite numerical difficulty which usually increases cpu time. Note that the size of A in
(10) is smaller than (8) and (9), indicated by sizeA, and the numbers of nonzero elements shown
in the column of #nzA in Table 3 are smaller than those in Tables 1 and 2. This resulted in the
least amount of cpu time per iteration of (10).

5 Numerical results

We test SOCP formulations of convex optimization problems using SeDuMi and compare numerical
results with LANCELOT. For unconstrained problems, we use the arwhead function, the engval1
function, nondquar function, the vardim function in addition to the chained singular function in
Section 4. Constrained test problems are generated by modifying some of unconstrained problems
and adding constraints because suitable constrained test problems of the type presented in this
paper for the numerical experiments are unavailable.

Numerical results for unconstrained problems are presented in Section 5.1. Generating con-
strained test problems is described in Section 5.2 with numerical results. All the numerical
tests were performed using the Matlab toolbox SeDuMi [15] for SOCP formulation, and using
LANCELOT on a Macintosh Dual 2.5GHz PowerPC G5 with 2GB DDR SDRAM. We use the
notation described in Table 4 for the description of numerical results.

n the number of variables
sizeA the size of SOCP problem in the SeDuMi input format
#nz the number of nonzeros in the coefficient matrix A of SOCP problem

for SeDuMi
cpu cpu time consumed by SeDuMi and LANCELOT in seconds

#iter. the number of iterations
gradNorm the infinity norm of the gradient vector of the objective function

at the obtained solution x
infeasErr maxi{max(gi(x), 0)} where gi(x) ≤ 0 (i = 1, . . . ,m) are constraint

and x is the obtained solution.
functVal the objective function value at the end of iteration

s/f S if num.err = 0 and pinf =dinf =0 from SeDuMi output.
F if num.err = 1, or pinf=1, or dinf =1, or infeasErr>1.0e-2.

init.pt initial guess for LANCELOT
inform Lancelot warning message; 0: successful, 1: maxit reached,

3: the step taken during the current iteration is so small that no
difference will be observed in the function values, 5: insufficient space,
8: Check constraints and try starting with different initial values,
10: Some of internal functions are not large enough.

Table 4: Notation
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5.1 Unconstrained problems

We selected minimization problems of the following functions for the test of unconstrained problems
from CUTEr [3].
The arwhead function

n−1∑
i=1

(−4xi + 3.0) +
n−1∑
i=1

(x2
i + x2

n)2. (13)

The engval1 function
n−1∑
i=1

(−4xi + 3.0) +
n−1∑
i=1

(x2
i + x2

i+1)
2. (14)

The nondquar function
n−2∑
i=1

(xi + xi+1 + xn)4 + (x1 − x2)2 + (xn−1 + xn)2. (15)

The vardim function
n∑

i=1

(xi − 1)2 + (
n∑

i=1

ixi −
n(n + 1)

2
)2 + (

n∑
i=1

ixi −
n(n + 1)

2
)4. (16)

Note that these functions belong to the class of Sepi and can thus be formulated as SOCPs.
The numerical results of the problems are shown in Table 5, 6, 7, and 8, respectively. The
SOCP formulation of the problems with the largest second order cone are tested for all numerical
experiment for computational efficiency as discussed in Section 4. In all Tables, we see that the
matrix A when applying SeDuMi for solving SOCP is very sparse from the size of A and the
number of nonzero elements of A shown in the columns of sizeA and #nzA, respectively.

The default values of the parameters in LANCELOT were used except the maximum number
of iterations, which was increased to 200, 000. Input for LANCELOT for all the problems was
prepared in SIF format. The column of “inform” shows information that LANCELOT returns after
it finishes solving the problems, and the meaning of each value is included in Table 4.

SeDuMi for SOCP formulated with largest second order cone
n s/f sizeA #nzA gradNorm functVal cpu

1000 S [4997, 2000] 4997 1.41e-4 9.75e-7 1.26
5000 S [24997, 10000] 24997 2.13e-4 9.24e-6 13.42

LANCELOT
n inform #iter. init.pt gradNorm functVal cpu

1000 0 5 xi = 1.0 ∀i 2.01e-6 1.69e-10 0.28
1000 0 14 xi = 10.0 ∀i 2.55e-13 0.0e-0 0.67
5000 0 5 xi = 1.0 ∀i 1.98e-7 1.11e-12 0.81
5000 0 14 xi = 10.0 ∀i 1.85e-13 0.0e-0 1.41

Table 5: Numerical results of minimizing the arwhead function using SeDuMi for SOCP and
LANCELOT

In Table 5, we see that solving with LANCELOT provides more accurate solutions faster than
using SeDuMi for SOCP formulations. For the engval1 function, LANCELOT obtained optimal
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SeDuMi for SOCP formulated with largest second order cone
n s/f sizeA #nzA gradNorm functVal cpu

1000 S [4997, 2000] 4997 2.35e-4 1.10819e+3 2.02
10000 S [49997, 20000] 49997 2.27e-4 1.10993e+4 25.10
15000 S [74997, 30000] 74997 1.95e-4 1.66499e+4 28.20

LANCELOT
n Inform #iter. init.pt gradNorm functVal cpu

1000 0 7 xi = 2.0 ∀i 2.47e-6 1.10819e+4 0.26
1000 0 13 xi = 10.0 ∀i 7.50e-12 1.10819e+4 0.63

10000 0 7 xi = 2.0 ∀i 2.47e-6 1.10993e+4 1.34
10000 3 13747 xi = 10.0 ∀i 1.66e-7 1.10993e+4 274.47
15000 0 7 xi = 2.0 ∀i 2.47e-6 1.66499e+4 1.94
15000 3 10152 xi = 10.0 ∀i 1.23e-7 1.66499e+4 324.79

Table 6: Numerical results of minimizing the engval1 function using SeDuMi for SOCP and
LANCELOT

SeDuMi for SOCP formulated with largest second order cone
n s/f sizeA #nzA gradNorm functVal cpu

1000 S [4994, 1999] 5994 4.81e-5 1.68e-5 2.35
10000 S [49994, 19999] 59994 9.03e-3 3.16e-3 31.43
50000 S [249994, 99999] 299994 1.03e+1 1.34e-1 227.22

LANCELOT
n inform #iter. init.pt gradNorm functVal cpu

1000 0 17 x =(1,-1,1,-1,...) 8.47e-6 1.39e-9 0.18
1000 0 28 xi = 10.0 ∀i 0.0e-0 9.31e-10 0.49

10000 0 19 x =(1,-1,1,-1,...) 6.61e-6 5.23e-10 1.17
10000 0 29 xi = 10.0 ∀i 1.15e-15 7.40e-8 1.13
50000 0 20 x =(1,-1,1,-1,...) 5.97e-6 4.16e-10 5.61
50000 0 31 xi = 10.0 ∀i 6.87e-15 6.07e-10 7.66

Table 7: Numerical results of minimizing the nondquar function using SeDuMi for SOCP and
LANCELOT
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objective function values faster for n = 1000, however, in the case of n = 10000 and n = 15000
with init.pt 10.0, it consumed more cpu time than SeDuMi as indicated in Table 6.

The numerical results for the nondquar function are presented in Table 7. It took longer to
solve with SeDuMi than LANCELOT. We observe that the performance of LANCELOT is better in
terms of cpu time for both case of initial points x = (1,−1, 1,−1, . . .) and xi = 10.0 for all i.

SeDuMi for SOCP formulated with largest second order cone
n s/f sizeA #nzA gradNorm functVal cpu

1000 S [1008, 1002] 3005 1.55e-2 2.79e-10 0.29
10000 S [10008, 10002] 30005 8.60e-3 9.22e-7 3.3
15000 S [15008, 15002] 45005 3.16e-2 1.55e-6 6.47

LANCELOT
n inform #iter. init.pt gradNorm functVal cpu

1000 0 36 xi = 1 − i/n ∀i 1.89e-7 8.95e-21 1.0
1000 0 56 xi = 10.0 ∀i 5.74e-17 7.72e-14 1.78

10000 3 48 xi = 1 − i/n ∀i 2.65e-3 1.77e-14 102.07
10000 3 61 xi = 10.0 ∀i 1.07e-3 3.78e-9 159.12
15000 3 50 xi = 1 − i/n ∀i 1.63e-2 2.97e-13 237.67
15000 3 75 xi = 10.0 ∀i 1.18e-2 4.03e-9 412.28

Table 8: Numerical results of minimizing the vardim function using SeDuMi and LANCELOT

In Table 8, the numerical results for the vardim function are shown. When LANCELOT ended
in inform 3 for solving the vardim function for n = 10000, 15000, the values of the column of
gradNorm are large compared to terminating with inform 0. We observe that the function values
are small for these cases. LANCELOT spent more cpu time with init.pt xi = 10 for all i. SeDuMi
could find optimal objective function values faster for n = 10000, 15000. We see that the cpu time
consumed by SeDuMi is smaller than that of LANCELOT, and LANCELOT needs a good initial
point to have fast convergence.

5.2 Constrained problems

Constrained test problems for SOCP formulations presented in this paper are scarce in the lit-
erature. We generated test problems using some problems in CUTEr [3]. We first describe how
the test problems were generated, and then present the numerical results of the problems. Main
purpose of generating constrained test problems was to create problems with rational polynomi-
als, square root of polynomials and nonlinear inequality constraints. The arwhead function, the
engval1 function, and the nondquar function were modified for the objective function of the test
problems, and the chained singular function was used to create constraints.

We create 6 test problems, which are called P1, P2, P3, P4, P5, and P6. In the description
of test problems, we use J = {1, 3, . . . , n− 3}, gi(x) = (xi +10xi+1)2 +5(xi+2 −xi+3)2 +(xi+1 −
2xi+2)4 + 10(xi − 10xi+3)4 (i ∈ J), where n is a multiple of 4. The constraints in the form of
gi(x − 2e) ≤ ρ, where e = (1, 1, . . . , 1)T ∈ Rn, are included in the test problems. Here ρ denotes
a parameter, which will be fixed to 1000 for numerical tests. We use a large number 1000 for
ρ because the value of gi(x) tends to be large for even small values of xi’s. Using the arwhead
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function (13), test problems P1 and P2 are generated as follows.

P1 : min
n−1∑
i=1

(−4xi + 3.0) +
n−1∑
i=1

(x2
i + x2

n)2

subj. to gj(x − 2e) ≤ ρ (j ∈ J).


P2 : min

(
n−1∑
k=1

(−4xk + 3.0)2
)1/2

+
n−1∑
i=1

(
x2

i + x2
n

)2

1 + xi + xn

subj. to gj(x − 2e) ≤ ρ (j ∈ J), x ∈ K,


where K = {x ∈ Rn : xi ≥ 0 (i = 1, 2, . . . , n) }.

Constrained test problems P3 and P4 are derived using the engval1 function.

P3 : min
n−1∑
i=1

(−4xi + 3.0) +
n−1∑
i=1

(x2
i + x2

i+1)
2

subj. to gj(x − 2e) ≤ ρ (j ∈ J).


P4 : min

n−1∑
i=1

(−4xi + 3.0) +
n−1∑
i=1

(x2
i + x2

i+1)
2

−
n−1∑
i=1

(1 + xi + xi+1)
1/4

(
1 +

xi

2
+

xi+1

i + 1

)1/2

subj. to gj(x − 2e) ≤ ρ (j ∈ J), x ∈ K,


where K = {x ∈ Rn : xi ≥ 0 (i = 1, 2, . . . , n) }.

Using the nondquar function (15), we obtain test problems P5 and P6.

P5 : min
n−2∑
i=1

(xi + xi+1 + xn)4 + (x1 − x2)2 + (xn−1 − xn)2

subj. to gj(x − 2e) ≤ ρ (j ∈ J).


P6 : min

n−2∑
i=1

(xi + xi+1 + xn)4

1 + xi + xi+1 + xn
+

(x1 − x2)
2

1 + x1 + x2
+

(xn−1 − xn)2

1 + xn−1 + xn

subj. to gj(x − 2e) ≤ ρ (j ∈ J), x ∈ K,


where K = {x ∈ Rn : xi ≥ 0 (i = 1, . . . , n) }.

Notice that gj ∈ Sepi in P1, P2, P3, P4, P5 and P6, and the constraints gj(x−2e) ≤ ρ (j ∈
J) can be formulated as second order cone inequalities. We see the objective functions of P1, P3
and P5, the constraint functions gj(x) are in the class of Sepi. Also, the objective functions of
P2, P4, P6 are in the class of Sepi(K). As a result, the problem P1, P2, P3, P4, P5 and P6
can be represented as SOCPs.

We show SOCP formulations of P2 and P4. Since the other problems have resembling terms
in the objective function and the same constraints as P2 and P4, their SOCP formulations can
be derived similarly.

The problems P2 and P4 have a common constraint gj(x − 2e) ≤ ρ (j ∈ J). We show how
the second order cone inequalities of the constraint can be described. Consider

ρ ≥ ((xj − 2) + 10 (xj+1 − 2))2 + 5 ((xj+2 − 2) − (xj+3 − 2))2 + q2
j + r2

j ,

qj ≥ ((xj+1 − 2) − 2 (xj+2 − 2))2 , rj ≥
√

10 ((xj − 2) − 10 (xj+3 − 2))2 .

}
(17)
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Then, the SOCP formulation of (17) can be written as

ρ + 1
ρ − 1

2 {(xj − 2) + 10 (xj+1 − 2)}
2
√

5 {(xj+2 − 2) − (xj+3 − 2)}
2qj

2rj

≽S0,

 qj + 1
qj − 1

2 {(xj+1 − 2) − 2 (xj+2 − 2)}

≽S0, rj + 1
rj − 1

2 4
√

10 {(xj − 2) − 10 (xj+3 − 2)}

≽S0 (j ∈ J).



(18)

The problem P2 is equivalent to the problem

min s +
n−1∑
i=1

ti

subj. to s ≥

(
n−1∑
k=1

(−4xk + 3.0)2
)1/2

, ti ≥
u2

i

1 + xi + xn
,

ui ≥ x2
i + x2

n (i = 1, 2, . . . , n − 1),
Second order cone inequalities in (18),
xi ≥ 0 (i = 1, 2, . . . , n).


(19)

The SOCP formulation of P2 with the largest size of second order cone is

min s +
n−1∑
i=1

ti

subj. to


s

−4x1 + 3.0
−4x2 + 3.0

...
−4xn−1 + 3.0

≽S0,

 ti + 1 + xi + xn

ti − 1 − xi − xn

2ui

≽S0,


ui + 1
ui − 1
2xi

2xn

≽S0 (i = 1, 2, . . . , n − 1),

Second order cone inequalities in (18),
xi ≥ 0 (i = 1, 2, . . . , n).


The problem P4 is equivalent to the problem

min
n−1∑
i=1

(−4xi + 3.0) + t +
n−1∑
i=1

(−ui)

subj. to t ≥
n−1∑
i=1

v2
i , vi ≥ x2

i + x2
i+1,

u2
i ≤ wi

(
1 +

xi

2
+

xi+1

i + 1

)
, w2

i ≤ 1 + xi + xi+1 (i = 1, 2, . . . , n),

Second order cone inequalities in (18),
xi ≥ 0 (i = 1, 2, . . . , n − 1).
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The SOCP formulation of P4 with the largest size of second order cone is

min
n−1∑
i=1

(−4xi + 3.0) + t +
n−1∑
i=1

(−ui)

subj. to



t + 1
t − 1
2v1

2v2
...

2vn−1


≽S0,


vi + 1
vi − 1
2xi

2xi+1

≽S0,

 wi + 1 + xi
2 + xi+1

i+1

wi − 1 − xi
2 − xi+1

i+1

2ui

≽S0, 1 + xi + xi+1 + 1
1 + xi + xi+1 − 1

2wi

≽S0, (i = 1, 2, . . . , n)

Second order cone inequalities in (18),
xi ≥ 0 (i = 1, 2, . . . , n − 1).


SeDuMi

n s/f sizeA #nzA infeasErr functVal cpu
1000 S [10986, 2999] 12982 5.53e-4 1.0293e+4 7.15
5000 S [54986, 14999] 64982 8.29e-4 5.1297e+4 53.12

LANCELOT
n inform #iter. init.pt infeasErr functVal cpu

1000 3 2165 xi = 1.0 ∀i 8.25e-8 1.0293e+4 22.28
1000 3 33455 xi = 10.0 ∀i 5.26e-7 1.0293e+4 190.39
5000 3 2548 xi = 1.0 ∀i 9.31e-9 5.1297e+4 1114.93
5000 3 27201 xi = 10.0 ∀i 2.28e-6 5.1299e+4 1255.33

Table 9: Numerical results from solving P1 using SeDuMi and LANCELOT

SeDuMi
n s/f sizeA #nzA infeasErr functVal cpu

1000 S [13982, 3998] 19974 2.94e-4 3.0860e+3 53
5000 S [69982, 19998] 99974 1.17e-4 1.5117e+4 55.42

LANCELOT
n inform #iter. init.pt infeasErr functVal cpu

1000 3 11805 xi = 1.0 ∀i 1.62e-6 3.0860e+3 55.99
1000 3 83580 xi = 10.0 ∀i 3.28e-7 3.1100e+3 402.53
5000 1 200000 xi = 1.0 ∀i - 1.5117e+4 7534.52
5000 3 168780 xi = 10.0 ∀i 1.80e-6 1.5137e+4 6855.94

Table 10: Numerical results from solving P2 using SeDuMi and LANCELOT

The numerical results for the problems P1 and P2 are shown in Tables 9 and 10, respectively.
In Table 9, we notice that LANCELOT took more cpu time to compute optimal objective function
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values than SeDuMi. The objective function values obtained by LANCELOT with init.pt 10.0 are
larger than the ones obtained with init.pt 1.0 for n = 5000.

From Table 10, we see that SeDuMi provided the optimal objective function values faster than
LANCELOT. If init.pt 10.0 is used for LANCELOT, it took longer time to attain slightly larger
values for the objective function values than with init.pt 1.0. For n = 5000 and init.pt = 1,
LANCELOT reached the maximum number of iterations, but the objective function value was as
good as the one obtained by SeDuMi.

In Table 11, solving the SOCP formulation of P3 with SeDuMi and solving P3 with LANCELOT
for n = 5000, 10000, and 15000 resulted in the same objective function values. We note that the
cpu time consumed by SeDuMi was less than LANCELOT using init.pt=10.0.

SeDuMi
n s/f sizeA #nzA infeasErr functVal cpu

5000 S [54986, 14999] 64982 1.06e-4 2.5023e+4 19.3
10000 S [109986, 29999] 129982 1.17e-3 5.0056e+4 70.4
15000 S [164986, 44999] 194982 9.20e-4 7.5089e+4 84.9

LANCELOT
n inform #iter. init.pt infeasErr functVal cpu

5000 3 220 xi = 1.0 ∀i 9.76e-9 2.5024e+4 22.20
5000 3 9794 xi = 10.0 ∀i 6.09e-9 2.5024e+4 321.87

10000 3 160 xi = 1.0 ∀i 1.84e-9 5.0056e+4 26.66
10000 3 10044 xi = 10.0 ∀i 5.48e-11 5.0056e+4 630.58
15000 3 2503 xi = 1.0 ∀i 1.04e-6 7.5089e+4 24.00
15000 3 9779 xi = 10.0 ∀i 1.19e-8 7.5089e+4 943.55

Table 11: Numerical results from solving P3 with SeDuMi and LANCELOT

In Table 12, solving the SOCP formulation of P4 with SeDuMi is shown to be a better approach
than LANCELOT for accuracy and getting smaller objective function values. For n = 15000,
LANCELOT resulted in insufficient memory.

SeDuMi
n s/f sizeA #nzA infeasErr functVal cpu

5000 S [84980, 24997] 124970 9.25e-4 3.3338e+3 72.45
10000 S [169980, 49997] 249970 8.63e-4 6.6790e+3 199.84
15000 S [254980, 74997] 374970 2.29e-4 1.0024e+4 345.19

LANCELOT
n inform #iter. Init.pt infeasErr functVal cpu

5000 3 244 xi = 1.0 ∀i 5.32e-2 2.5041e+4 21.38
5000 3 59749 xi = 10.0 ∀i 2.32e-2 8.9121e+4 3718.86

10000 3 245 xi = 1.0 ∀i 3.79e-2 5.0091e+4 26.67
10000 3 533 xi = 10.0 ∀i 3.38e-2 1.7768e+5 2698.54
15000 5 - - - -

Table 12: Numerical results from solving P4 with SeDuMi and LANCELOT.

From Table 13 for P5 and Table 14 for P6, we notice that large infeasible errors were obtained
by LANCELOT as shown in the column of infeasErr in the Tables. We also tested for small-
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sized problem such as n = 8, the same objective function values were obtained from SeDuMi
and LANCELOT for both P5 and P6. However, with increasing n, LANCELOT failed to attain
optimal objective function values while SeDuMi provided optimal objective function values with
small infeasible errors.

SeDuMi
n s/f sizeA #nzA infeasErr functVal cpu

5000 S [49985, 14998] 69979 2.69e-4 8.1213e+4 54.34
10000 S [99985, 29998] 139979 2.34e-4 1.6179e+5 124.48
15000 F [149985, 44998] 209979 2.07e-4 2.4220e+5 ∗192.52

LANCELOT
n inform #iter. Init.pt infeasErr functVal cpu

5000 3 2120 xi = 1.0 ∀i 5.10e-1 1.9877e+5 2.88
5000 3 2447 xi = 10.0 ∀i 7.84e-0 9.5439e+5 37.21

10000 3 2869 xi = 1.0 ∀i 2.96e+1 1.6179e+5 4774.05
10000 3 3537 xi = 10.0 ∀i 1.18e+3 1.6822e+7 8630.30
15000 3 2974 xi = 1.0 ∀i 9.39e+1 7.5836e+6 8029.10
15000 3 2900 xi = 10.0 ∀i 2.21e+1 2.3696e+6 327.51

Table 13: Numerical results from solving P5 with SeDuMi and LANCELOT

SeDuMi
n s/f sizeA #nzA infeasErr functVal cpu

5000 S [59983,11997] 109973 3.17e-4 2.6941e+4 40.84
10000 S [119983,39997] 219973 1.95e-4 5.3729e+4 94.97
15000 S [179983,59997] 329973 1.96e-4 8.0476e+4 196.08

LANCELOT
n Inform #iter. init.pt infeasErr functVal cpu

5000 10 731 xi = 1.0 ∀i 3.33e-1 1.6260e+5 446.28
5000 3 6339 xi = 10.0 ∀i 4.33e+0 2.4236e+6 191.52

10000 3 5256 xi = 1.0 ∀i 1.05e+0 2.9769e+5 14584.56
10000 10 4540 xi = 10.0 ∀i 1.95e+1 5.2815e+6 243.40
15000 3 3639 xi = 1.0 ∀i 1.50e-0 7.1146e+5 16404.76
15000 10 3735 xi = 10.0 ∀i 1.47e+2 8.0147e+6 303.33

Table 14: Numerical results from solving P6 with SeDuMi and LANCELOT

In unconstrained test problems, LANCELOT performed faster if initial points were given close
to the optimal solution. Otherwise, optimal solutions were attained faster by solving the SOCP
formulation with SeDuMi. Numerical experiments for constrained problems show that using Se-
DuMi for the SOCP formulation of the problems provides optimal objective function values in less
cpu time except for P3. LANCELOT failed to obtain an optimal objective function value in some
cases. We mention LANCELOT is a local optimizer while SeDuMi based on primal-dual interior-
point methods is a global optimizer, thus, does not depend on initial points for convergence. Good
initial points are necessary to have convergence to the optimal solution with LANCELOT. The
approach using SOCP is effective when good initial points are not available. We have observed in
the numerical experiments that SOCP is effective in solving constrained problems.
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6 Concluding discussions

We have shown that convex optimization problems of SOCI representable functions can be formu-
lated as SOCPs in various ways. The computational efficiency for solving the Schur complement
equation in the primal-dual interior-point methods depends on the SOCP formulation. Introducing
a smaller-number of auxiliary variables when transforming a convex optimization problem into an
SOCP provides a smaller-sized Schur complement matrix. For sparsity concern, the sparsity pat-
tern of the sparse part of the Schur complement matrix remains almost the same for various SOCP
formulations. Therefore, if the rank of the dense part of the Schur complement matrix, which is
determined by SeDuMi, is small, then, the computational efficiency increases by introducing a
minimum number of the auxiliary variables.

Numerical experiments shown in Section 5 demonstrate that SOCP formulations can be solved
efficiently by SeDuMi compared with LANCELOT when good initial points are not available. Solv-
ing the SOCP formulation by SeDuMi is shown to be more effective to obtain better optimal values
than LANCELOT for the constrained test problems.
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