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Abstract.

Given a polynomial optimization problem (POP), any affine transformation on its variable vector
induces an equivalent POP. Applying Lasserre’s SDP relaxation to the original and the transformed
POPs, we have two SDPs. This paper shows that these two SDPs are isomorphic to each other
under a nonsingular linear transformation, which maps the feasible region of one SDP onto that
of the other isomorphically and preserves their objective values. This fact means that the SDP
relaxation is invariant under any affine transformation.
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1 Introduction

A polynomial optimization problem (POP) is the problem of minimizing a polynomial objective
function over a feasible region defined by polynomial equalities and inequalities. In recent years,
intensive and extensive studies have been done on theoretical and practical aspects of semidefinite
programming (SDP) and sum of squares (SOS) relaxations for POPs since Lasserre’s and Parrilo’s
pioneering works on this subject [9, 14]. In theory, the SDP and SOS relaxations guarantee global
optimal solutions to POPs under various moderate assumptions [9, 12, 13]. In practice, some
software packages [1, 15, 17] are available, and the sparse SDP and SOS relaxations [10, 16] can
now be applied to large-scale POPs. The SDP and SOS relaxations also have been extended to
polynomial SDPs [3, 4, 6] and POPs over symmetric cones [8, 16].

In this paper, we consider a POP (1) with an n-dimensional variable vector x ∈ R
n and a POP

(10) with a variable vector w ∈ R
n transformed from (1) by an affine transformation x = Aw +b,

where A denotes an n×n nonsingular matrix and b ∈ R
n. Applying Lasserre’s SDP relaxation, we

obtain a pair of SDPs, one from the original POP (1) and the other from the transformed POP (10).
We show that these two SDPs are isomorphic. More specially, there exists a nonsingular linear
transformation between their feasible regions that preserves their objective values. The POPs
and SDPs which we deal with and the invariant relations which we establish are summarized in
Figure 1.

POP (1) on POP (10) on 

SDP relax. SDP relax.

SDP (6) on SDP (13) on 

Dual Dual
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Figure 1: Invariance of Lasserre’s SDP relaxation under an affine transformation

This paper is organized as follows. Section 2 describes the SDP relaxation proposed by Lasserre
[9]. Section 3 presents the main results, the invariant relations under an affine transformation in
the SDP relaxation illustrated in Figure 1. Section 4 is devoted to their proofs. Section 5 is
devoted to some concluding remarks.

We introduce some symbols used in this paper. Let R denote the set of real numbers, Z+ the set
of nonnegative integers, and R[x] the set of polynomials in a variable vector x = (x1, . . . , xn)T ∈
R

n. For every α ∈ Z
n
+, xα denotes the monomial xα1

1 · · · xαn
n and |α| =

∑n
i=1 αi. Given a polynomial

f ∈ R[x], let F denote the set of exponents of the monomials of f with non-zero coefficients.
Then F is a finite subset of Z

n
+ and is called the support of f . f ∈ R[x] can be written as

f(x) =
∑

α∈F fαxα. The degree deg(f) is the maximum value of |α| over all α ∈ F .
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2 Lasserre’s SDP relaxation

In this section, we present the SDP relaxation proposed by Lasserre [9]. Our description of the
relaxation below is based on a general framework given in [7] for SDP relaxations of POPs over
cones, and it is slightly different from the original description [9] using the moment theory. We
deal with the polynomial optimization problem

minimize f0(x) subject to fj(x) ≥ 0 (j = 1, . . . ,m). (1)

where f0, . . . , fm ∈ R[x]. The SDP relaxation is composed of two steps. The first step is to
replace the polynomial inequalities fj(x) ≥ 0 (j = 1, . . . ,m) by a set of valid polynomial matrix
inequalities. The resulting problem forms a polynomial SDP having the same polynomial objective
function as POP (1) and polynomial matrix inequalities which are equivalent to the polynomial
inequalities of POP (1). The second step is to linearize the polynomial SDP by replacing each
monomial xα in the polynomial SDP with a variable yα.

For every r ∈ Z+, let Gr = {α ∈ Z
n
+ | |α| ≤ r} and let ur(x) be the column vector of all

monomials xα (α ∈ Gr): ur(x) =
(

x0, x1, . . . , xn, x2
1, x1x2, . . . , x

2
n, . . . , xr

1, . . . , x
r
n

)T
, where x0 is 1

for any x ∈ R
n. Let s(r) =

(

n+r
r

)

denote the cardinality of Gr, which coincides with the size of the
column vector ur(x). We introduce the s(r) × s(r) symmetric matrix ur(x)ur(x)T ; the (β, γ)th
element of the matrix is given by xβ+γ for each pair of row and column indices β, γ ∈ Gr. To
represent ur(x)ur(x)T in terms of a polynomial in x with symmetric matrix coefficients, define
an s(r) × s(r) matrix Eα whose elements are given by

(Eα)β,γ =

{

1 if α = β + γ, and β, γ ∈ Gr,
0 otherwise,

(2)

for every α ∈ G2r. Then we can write ur(x)ur(x)T =
∑

α∈G2r
xαEα. We also deal with the s(r)×

s(r) matrix f(x)ur(x)ur(x)T for each f ∈ R[x]. The (β, γ)th element of the matrix is xβ+γf(x)
for β, γ ∈ Gr. The matrix can be represented as f(x)ur(x)ur(x)T =

∑

α∈G2r+deg(f)
xαBα, for

some s(r) × s(r) matrices Bα (α ∈ G2r+deg(f)).

We observe that ur(x)ur(x)T is positive semidefinite for all x ∈ R
n, and that f(x)ur(x)ur(x)T

is positive semidefinite for any x such that f(x) ≥ 0. As the first step of the SDP relaxation of
POP (1), we will derive an equivalent polynomial SDP. Let r̄ be the maximum value of ⌈deg(fj)/2⌉
over all j = 0, 1, . . . ,m. Choose a nonnegative integer r ≥ r̄, and let rj = r − ⌈deg(fj)/2⌉ for all
j = 1, . . . ,m. By definition, we see that r, rj ∈ Z+ (j = 1, 2, . . . ,m). Replacing each constraint
fj(x) ≥ 0 by fj(x)urj

(x)urj
(x)T � O in POP (1) and adding ur(x)ur(x)T � O to POP (1), we

now obtain a polynomial SDP

minimize f0(x)
subject to fj(x)urj

(x)urj
(x)T � O (j = 1, . . . ,m),

ur(x)ur(x)T � O.







(3)

Note that the (1, 1)th element of the symmetric matrix urj
(x)urj

(x)T involved in the constraints
is 1 for every j = 1, . . . ,m. This ensures that fj(x)urj

(x)urj
(x)T � O if and only if fj(x) ≥ 0.

Therefore, POP (1) and polynomial SDP (3) are equivalent to each other. We further rewrite
polynomial SDP (3) as

minimize cT
2ru2r(x)

subject to
∑

α∈G2r
xαBj,α � O (j = 1, . . . ,m),

∑

α∈G2r
xαEα � O







(4)

for some s(2r)-dimensional column vector c2r such that f0(x) = cT
2ru2r(x) for all x ∈ R

n, some
s(r)× s(r) symmetric matrices Eα and some s(rj)× s(rj) symmetric matrices Bj,α (α ∈ G2r, j =
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1, . . . ,m). By construction, we know that deg(f0) ≤ 2r̄ ≤ 2r. Hence, for any α ∈ G2r \ G2r̄,
the αth element (c2r)α of the column vector c2r vanishes. This fact will be used later to see the
monotonicity of the optimal value v∗r of SDP (6) with respect to r.

Note that we use G2r instead of G2rj+deg(fj) to describe the matrices
∑

α∈G2r
xαBj,α in poly-

nomial SDP (4) for the sake of simplicity. Indeed, we know that G2rj+deg(fj) ⊂ G2r, and if G2r \
G2rj+deg(fj) is not empty, we set Bj,α = O for all α ∈ G2r\G2rj+deg(fj). Then

∑

α∈G2rj+deg(fj )
xαBj,α

=
∑

α∈G2r
xαBj,α holds.

Before we proceed to the second step of the SDP relaxation, we show some examples to illustrate
the symbols and notation used above.

Example 2.1. In the case of n = 2 and r = 2, we have

Gr = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)},

ur(x) = (x0, x1, x2, x
2
1, x1x2, x

2
2)

T ,

ur(x)ur(x)T =

















x0 x1 x2 x2
1 x1x2 x2

2

x1 x2
1 x1x2 x3

1 x2
1x2 x1x

2
2

x2 x1x2 x2
2 x2

1x2 x1x
2
2 x3

2

x2
1 x3

1 x2
1x2 x4

1 x3
1x2 x2

1x
2
2

x1x2 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 x4

2

















,

G2r =

{

(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1),
(1, 2), (0, 3), (4, 0), (3, 1), (2, 2), (1, 3), (0, 4)

}

.

Recall that x0 = 1 for any x ∈ R
n, so that the (1, 1)th element of ur(x)ur(x)T is 1. If we take

α = (2, 0) ∈ G2r and α = (3, 1) ∈ G2r, we see

E(2,0) =

















1

1

1

















and E(3,1) =

















1
1

















,

where each blank above means 0.

Example 2.2. Let n = 2, f(x) = 2 − x1 + x2, and r = 1. Then

Gr = {(0, 0), (1, 0), (0, 1)},

ur(x) = (x0, x1, x2)
T ,

f(x)u1(x)u1(x)T

=





2x0 − x1 + x2 2x1 − x2
1 + x1x2 2x2 − x1x2 + x2

2

2x1 − x2
1 + x1x2 2x2

1 − x3
1 + x2

1x2 2x1x2 − x2
1x2 + x1x

2
2

2x2 − x1x2 + x2
2 2x1x2 − x2

1x2 + x1x
2
2 2x2

2 − x1x
2
2 + x3

2



 , (5)

G2r+deg(f) =
{

(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3)
}

.

If we take α = (1, 0), (1, 1), (2, 1) ∈ G2r+deg(f), we see

B(1,0) =





−1 2
2



 , B(1,1) =





1 −1
1 2
−1 2



 and B(2,1) =



 1 −1
−1



 .
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If we replace each monomial xα on the right side of the identity (5), we have a linear mapping from
the space of s(2r + deg(f))-dimensional column vector y consisting of yα (α ∈ G2r+deg(f)) into
the space of s(r) × s(r) symmetric matrices, which we will denote by M r(fy) in the subsequent
discussion;

M r(fy)

=





2y0 − y(1,0) + y(0,1) 2y(1,0) − y(2,0) + y(1,1) 2y(0,1) − y(1,1) + y(0,2)

2y(1,0) − y(2,0) + y(1,1) 2y(2,0) − y(3,0) + y(2,1) 2y(1,1) − y(2,1) + y(1,2)

2y(0,1) − y(1,1) + y(0,2) 2y(1,1) − y(2,1) + y(1,2) 2y(0,2) − y(1,2) + y(0,3)





=
∑

α∈G2r+deg(f)

yαBα.

Since the (β, γ)th element of the s(r) × s(r) matrix f(x)ur(x)ur(x)T is xβ+γf(x) (β, γ ∈ G2r),
the corresponding element of the s(r) × s(r) matrix M r(fy) is given by

∑

α∈F fαyα+β+γ , where
F is the support of f and fα is the coefficient of the monomial xα of f . In this example, we have
F = {(0, 0), (1, 0), (0, 1)}, f(0,0) = 2, f(1,0) = −1, f(0,1) = 1 and fα = 0 for all α 6∈ F . If we take
β = (1, 0), γ = (0, 0), then we have

∑

α∈F

fαyα+β+γ =
∑

α∈F

fαyα+(1,0)+(0,0)

= f(0,0)y(0,0)+(1,0) + f(1,0)y(1,0)+(1,0) + f(0,1)y(0,1)+(1,0)

= 2y(1,0) − y(2,0) + y(1,1),

and we can see that the left-hand side is equal to the (β, γ)th element of the matrix M r(fy).

Now we perform the second step of the SDP relaxation of POP (1). Recall that we have derived
an equivalent polynomial SDP (4) from POP (1) in the first step. We apply the linearization to
the objective polynomial function and the polynomial matrix inequality constraints of polynomial
SDP (4) by replacing each xα by a single real variable yα (α ∈ G2r). Then we obtain an SDP

minimize cT
2ry

subject to M rj
(fjy) � O (j = 1, . . . ,m),M r(y) � O, y0 = 1.

}

(6)

Here
M rj

(fjy) =
∑

α∈G2r

yαBj,α (j = 1, . . . ,m), M r(y) =
∑

α∈G2r

yαEα, (7)

respectively. The size of variable vector y is s(2r). For each β, γ ∈ Grj
, the (β, γ)th element of

M rj
(fjy) is

∑

α∈Fj
fj,αyα+β+γ , where Fj denotes the support of fj and fj,α the coefficient of the

monomial xα of fj.
We note that SDP (6) is defined for every nonnegative integer r ≥ r̄. Hence we obtain an

infinite sequence of SDP relaxation problems of POP (1). Let v∗ denote the optimal value of POP
(1) and v∗r the optimal value of SDP (6) with r ≥ r̄. Then v∗r ≤ v∗r+1 ≤ v∗ for all r ≥ r̄. In fact, if
x ∈ R

n is a feasible solution of POP (1) (hence it is a feasible solution of polynomial SDP (4)), then
y = u2r(x) ∈ R

s(2r) is a feasible solution of SDP (6) with the objective value cT
2ry = cT

2ru2r(x).
This implies that if POP (1) attains an objective value at a feasible solution then so does SDP
(6). Hence v∗r ≤ v∗. The monotonicity of v∗r is proved as follows. Let ȳ ∈ R

s(2(r+1)) be a feasible
solution of SDP (6) with r = r + 1. Then M rj+1(ȳ) � O (j = 1, . . . ,m) and M r+1(ȳ) hold
from the feasibility. Let ỹ denote the subvector of ȳ consisting of the elements ȳα with indices α
restricted to the members of G2r. Then M rj

(ỹ) � O (j = 1, . . . ,m) and M r(ỹ) � O because
M rj

(ỹ) (j = 1, . . . ,m) and M r(ỹ) are leading principal submatrices of M rj+1(ỹ) (j = 1, . . . ,m)
and M r+1(ỹ), respectively. Hence ỹ is a feasible solution of SDP (6) with r. We also see that
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cT
2(r+1)ȳ = cT

2rỹ =
∑

α∈G2r̄
(c2r)αỹα because (c2r)α = 0 and (c2(r+1))α = 0 for any α ∈ G2r \ G2r̄.

As a result, we have v∗r ≤ v∗r+1.
In [9], Lasserre showed the convergence of v∗r (r ≥ r̄) to the optimal value v∗ of POP (1) as

r → ∞ under a certain moderate condition which requires the boundedness of the feasible region
of POP (1) (see Theorem 4.2 of [9]). He also demonstrated that the optimal value v∗r of SDP (6)
attains the optimal value v∗ of POP (1) for a finite r, which is not much larger than r̄, in all test
problems reported there, and suggested that the finite convergence of v∗r (r ≥ r̄) to v∗ is expected
in many practical problems. The following sufficient condition for the finite convergence, which
we call the rank condition, was proved in [2, 11].

Proposition 2.3. Let y∗ be an optimal solution of SDP (6) and d = maxj=1,...,m⌈deg(fj)/2⌉. If
rank M r(y

∗) = rank M r−d(y
∗), then v∗r is equal to the optimal value v∗ of POP (1).

To check whether the optimal value of SDP (6) attains the optimal value of POP (1) or not, this
condition was used in the software package GloptiPoly [1].

The dual problem of SDP (6) turns out to be

maximize p
subject to 〈X,E0〉 +

∑m
j=1〈Y j,Bj,0〉 = (c2r)0 − p,

〈X,Eα〉 +
∑m

j=1〈Y j,Bj,α〉 = (c2r)α (α ∈ G2r \ {0}),

X,Y j � O (j = 1, . . . ,m),















(8)

where 〈A,B〉 denotes the matrix inner product
∑

k

∑

ℓ AkℓBkℓ for symmetric matrices A and B,
and the size of the matrix variables X and Y j are s(r) × s(r) and s(rj) × s(rj) (j = 1, . . . ,m),
respectively. We are also concerned with an SOS relaxation problem of POP (1) (Lasserre [9])

maximize p
subject to f0(x) − p = ur(x)T Xur(x) +

∑m
j=1 fj(x)urj

(x)T Y jurj
(x) (∀x ∈ R

n),

X ,Y j � O (j = 1, . . . ,m).







(9)

The equality condition of the problem (9) is the identity on x. We can verify that the dual SDP
(8) is equivalent with the problem (9). In fact, comparing coefficients of each monomial on the
both sides of the identity, we obtain the equality constraints in SDP (8). See Lasserre [9] for more
details.

3 Main results

In this section, we first introduce a POP transformed from (1) by an affine transformation x =
Aw + b, where A ∈ R

n×n is a nonsingular matrix and b ∈ R
n.

minimize f̃0(w) subject to f̃j(w) ≥ 0 (j = 1, . . . ,m), (10)

where f̃0(w) = f0(Aw+b) and f̃j(w) = fj(Aw+b). We derive Lasserre’s SDP relaxation problem
(13) for the transformed POP (10) and its dual (15) as we have done for POP (1), and we then
describe details of the isomorphic relations illustrated in Figure 1.

By the definition of f̃j, deg(fj) = deg(f̃j) holds for all j = 0, 1, . . . ,m. Thus, We can construct
a sequence of SDP relaxation problems from POP (10) for all r ∈ Z+ satisfying r ≥ r̄. Moreover,
the obtained SDP (13) has s(r)× s(r) and s(rj)× s(rj) coefficient matrices for all r ≥ r̄ as in (6).

To generate the polynomial SDP from POP (10), we use the monomial vector

ur(w) = (w0, w1, . . . , wn, w2
1 , w1w2, . . . , w

2
n, . . . , wr

1, . . . , w
r
n)T
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where w0 = 1 for any w ∈ R
n, and represent the matrix ur(w)ur(w)T in w as

ur(w)ur(w)T =
∑

α∈G2r

wαEα,

where Eα is given by (2).
The first step of the SDP relaxation for (10) gives the polynomial SDP:

minimize f̃0(w)

subject to f̃j(w)urj
(w)urj

(w)T � O (j = 1, . . . ,m),
ur(w)ur(w)T � O,







(11)

where rj = r − ⌈deg(fj)/2⌉ (j = 1, . . . ,m). Let c̃2r ∈ R
s(2r) be the column vector such that

f̃0(w) = c̃T
2ru2r(w) for all w ∈ R

n. Note that the size of each coefficient matrix of polynomial
SDP (11) is the same as that of the corresponding matrix of polynomial SDP (3). We can also
write polynomial SDP (11) as

minimize c̃T
2ru2r(w)

subject to
∑

α∈G2r
wαB̃j,α � O (j = 1, . . . ,m),

∑

α∈G2r
wαEα � O







(12)

for some s(rj) × s(rj) real symmetric matrices B̃j,α (j = 1, . . . ,m;α ∈ G2r).
Applying the linearization to polynomial SDP (12) as the second step of the SDP relaxation,

we now obtain the SDP relaxation problem for POP (10):

minimize c̃T
2rz

subject to M rj
(f̃jz) � O (j = 1, . . . ,m),M r(z) � O, z0 = 1,

}

(13)

where
M rj

(f̃jz) =
∑

α∈G2r

zαB̃j,α (j = 1, . . . ,m), M r(z) =
∑

α∈G2r

zαEα. (14)

The size of the variable z is s(2r). Note that the (β, γ)th element of the matrix M rj
(f̃jz) is

∑

α∈F̃j
f̃j,αzα+β+γ for β, γ ∈ Grj

, where F̃j is the support of f̃j and f̃j,α is the coefficient of the

monomial wα of f̃j.
The dual problem of SDP (13) is

maximize q

subject to 〈W ,E0〉 +
∑m

j=1〈Zj , B̃j,0〉 = (c̃2r)0 − q,

〈W ,Eα〉 +
∑m

j=1〈Zj , B̃j,α〉 = (c̃2r)α (α ∈ G2r \ {0}),

W ,Zj � O (j = 1, . . . ,m),















(15)

where W ∈ R
s(r)×s(r) and Zj ∈ R

s(rj)×s(rj). Note that SDP (15) is also equivalent with the SOS
relaxation problem of POP (10):

maximize q

subject to f̃0(w) − q = ur(w)T Wur(w) +
∑m

j=1 f̃j(w)urj
(w)T Zjurj

(w) (∀w ∈ R
n),

W ,Zj � O (j = 1, . . . ,m).







(16)

Recall that a similar equivalent relation between SDP (8) and (9) was observed at the end of
Section 2.

The following theorems are the main results of this paper.
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Theorem 3.1. There exists an s(2r) × s(2r) nonsingular matrix P s(2r) satisfying the following
properties.

1. (p,X , {Y j}
m
j=1) is a feasible (optimal) solution for SDP (8) if and only if

(q,W , {Zj}
m
j=1) = (p,P T

s(r)XP s(r), {P
T
s(rj)

Y jP s(rj)}
m
j=1),

is a feasible (optimal) solution for SDP (15), where P s(r) and P s(rj) are the s(r)× s(r) and
s(rj) × s(rj) leading principal matrices of P s(2r).

2. y is a feasible (optimal) solution for SDP (6) with an objective value cT
2ry if and only if

z = P−1
s(2r)y is a feasible (optimal) solution for SDP (13) with the same objective value c̃T

2rz.

3. We have

c̃2r = P T
s(2r)c2r,

B̃j,α = P−1
s(rj)





∑

β∈G2r

(

Ps(2r)

)

β,α
Bj,β



 P−T
s(rj)

,

Eα = P−1
s(r)





∑

β∈G2r

(

Ps(2r)

)

β,α
Eβ



P−T
s(r).

Theorem 3.2. Let y∗ be a feasible solution of SDP (6), and let z∗ = P−1
s(2r)y

∗. If y∗ satisfies the

rank condition rank M r(y
∗) = rank M r−d(y

∗), then z∗ satisfies the rank condition rankM r(z
∗) =

rankM r−d(z
∗) with the same r.

Proofs of Theorems 3.1 and 3.2 will be given in Section 4.

4 Proofs

4.1 Basic lemmas

In this subsection, we construct matrices P s(2r), P s(r) and P s(rj) (j = 1, . . . ,m) involved in
Theorem 3.1 from the affine transformation x = Aw +b, and show some basic properties on these
matrices.

Lemma 4.1. There exists a sequence of nonsingular matrices P s(k) ∈ R
s(k)×s(k) (k ∈ Z+) satis-

fying the following properties :

1. uk(x) = P s(k)uk(w) for every x and w such that x = Aw + b.

2. Let ℓ < k. There exist matrices R ∈ R
(s(k)−s(ℓ))×s(ℓ) and S ∈ R

(s(k)−s(ℓ))×(s(k)−s(ℓ)) such that

P s(k) =

(

P s(ℓ) O

R S

)

.

Proof: For every k ∈ Z+ and α ∈ Gk, substituting Aw +b for x, we can represent the monomial
xα as a polynomial in w :

xα = (Aw + b)α =
n

∏

i=1

(Aw + b)αi

i =
∑

β∈Gk

Pα,βwβ

7



for some Pα,β (β ∈ Gk). Defining P s(k) to be an s(k) × s(k) matrix whose (α, β)th component is
Pα,β for every α, β ∈ Gk, we see that uk(x) = uk(Aw + b) = P s(k)uk(w). By a similar argument

applied to the inverse affine transformations w = A−1x−A−1b, there exists a nonsingular matrix
Qs(k) ∈ R

s(k)×s(k) such that uk(w) = uk(A
−1x − A−1b) = Qs(k)uk(x). It follows from uk(x) =

P s(k)Qs(k)uk(x) for every x ∈ R
n that P s(k)Qs(k) = I. We see that P s(k) is nonsingular.

It remains to prove property 2 on P s(k). We can partition uk(x) = (uℓ(x)T ,vℓ(x)T )T and

uk(w) = (uℓ(w)T ,vℓ(w)T )T , where vℓ(x) and vℓ(w) are column vectors of all monomials xα and
wα for every α ∈ Gk \ Gℓ. Let us write :

uk(x) =

(

uℓ(x)
vℓ(x)

)

=

(

P ′ Q′

R′ S′

)(

uℓ(w)
vℓ(w)

)

= P s(k)uk(w),

where P ′ ∈ R
s(ℓ)×s(ℓ), Q′ ∈ R

s(ℓ)×(s(k)−s(ℓ)), R′ ∈ R
s(ℓ)×(s(k)−s(ℓ)) and S′ ∈ R

(s(k)−s(ℓ))×(s(k)−s(ℓ)),
respectively. It follows from this relation that uℓ(x) = P ′uℓ(w) + Q′vℓ(w). Because uℓ(x) =
P s(ℓ)uℓ(w) for all x,w satisfying x = Aw + b, we obtain the identity on w :

P ′uℓ(w) + Q′vℓ(w) = P s(ℓ)uℓ(w) for all w ∈ R
.

Comparing the coefficients of each monomial wα on the both sides of this identity, we have P ′ =
P s(ℓ) and Q′ = O.

Example 4.2. We consider the following affine transformation:

x1 =
w1 + 1

2
and x2 =

w2 + 1

2
.

In this case,

A =

(

1/2
1/2

)

and b =

(

1/2
1/2

)

Under this affine transformation, u2(x) = P s(2)u2(w) turns out to be

u2(x) =

















1
x1

x2

x2
1

x1x2

x2
2

















=

















1

1/2 1/2
1/2 1/2

1/4 1/2 1/4
1/4 1/4 1/4 1/4
1/4 1/2 1/4

































1
w1

w2

w2
1

w1w2

w2
2

















= P s(2)u2(w).

Hence, P s(0) and P s(1) are

P s(0) = (1) and P s(1) =





1

1/2 1/2
1/2 1/2



 .

We can see that P s(0), P s(1) and P s(2) have all properties in Lemma 4.1.

Lemma 4.3. Let f ∈ R[x] and k ≥ deg(f). Define a polynomial f̃ ∈ R[w] by f̃(w) = f(Aw +b).
Represent f ∈ R[x] such that f(x) = fT uk(x) for some f ∈ R

s(k) and f̃ ∈ R[w] such that

f̃(w) = f̃
T
uk(w) for some f̃ ∈ R

s(k). Then f̃ = P T
s(k)f .

Proof: By definition, we see that f̃
T
uk(w) = f̃(w) = f(x) = fT uk(x) if x = Aw + b. By

property 1 of Lemma 4.1, we know that uk(x) = P s(k)uk(w) if x = Aw + b. Hence f̃
T
uk(w) =

(P T
s(k)f)T uk(w) for all w ∈ R

n. Comparing the coefficients of all monomials wα on the both sides
of this identity, we obtain the desired result.
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4.2 Proof of property 1 of Theorem 3.1

We only prove the “only if” part of property 1 of Theorem 3.1 because we can prove the “if”
part similarly. Since SDP (8) is equivalent to SOS relaxation problem (9), any feasible solution
(p,X , {Y j}

m
j=1) of SDP (8) satisfies the following identity on x :

f0(x) − p = ur(x)T Xur(x) +

m
∑

j=1

fj(x)urj
(x)T Y jurj

(x) for every x ∈ R
n.

By substituting x = Aw + b into the both side of the identity above and by applying property 1
of Lemma 4.1, we obtain the following identity on w:

f̃0(w) − p

= ur(w)T P T
s(r)XP s(r)ur(w) +

m
∑

j=1

f̃j(w)urj
(w)T P T

s(rj)
Y jP s(rj)urj

(w)

for every w ∈ R
n.

Note that P T
s(r)XP s(r) and P T

s(rj)
Y jP s(rj) (j = 1, . . . ,m) are positive semidefinite matrices.

These facts imply that (q,W , {Zj}
m
j=1) = (p,P T

s(r)XP s(r), {P
T
s(rj)

Y jP s(rj)}
m
j=1), is a feasible

solution of SOS relaxation problem (16) of POP (10). Hence (q,W , {Zj}
m
j=1) is a feasible solution

for SDP (15) because SDP (15) is equivalent to SOS problem (16).

4.3 Proof of property 2 of Theorem 3.1

To prove property 2 of Theorem 3.1, we will use two lemmas below. Throughout this subsection,
we assume that r ≥ r̄ is fixed, and we denote the (α, β)th element of P s(2r) by Pα,β for simplicity
of notation.

Lemma 4.4. Let k ∈ Z+ and ℓ ∈ Z+ satisfy 2r ≥ k + ℓ. Then

Pα+β,γ =
∑

γ=γ1+γ2,
γ1∈Gk,γ2∈Gℓ

Pα,γ1Pβ,γ2 for every α ∈ Gk, β ∈ Gℓ and γ ∈ G2r.

Proof: Let α ∈ Gk and β ∈ Gℓ be fixed. Property 2 of Lemma 4.1 gives

Pα,γ = 0 (∀γ ∈ G2r \ Gk), Pβ,γ = 0 (∀γ ∈ G2r \ Gℓ), Pα+β,γ = 0 (∀γ ∈ G2r \ Gk+ℓ).

By property 1 of Lemma 4.1, we see that

xα =
∑

γ∈G2r

Pα,γwγ =
∑

γ∈Gk

Pα,γwγ , xβ =
∑

γ∈G2r

Pβ,γwγ =
∑

γ∈Gℓ

Pβ,γwγ ,

xα+β =
∑

γ∈G2r

Pα+β,γwγ =
∑

γ∈Gk+ℓ

Pα+β,γwγ .

It follows from these relations that

∑

γ∈Gk+ℓ

Pα+β,γwγ = xα+β = xαxβ =





∑

γ1∈Gk

Pα,γ1w
γ1









∑

γ2∈Gℓ

Pβ,γ2w
γ2





=
∑

γ∈Gk+ℓ









∑

γ=γ1+γ2,
γ1∈Gk,γ2∈Gℓ

Pα,γ1Pβ,γ2









wγ .

Comparing the coefficients of each monomial wγ , we obtain the desired result.
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Lemma 4.5. Assume that f ∈ R[x], r ≥ ⌈deg(f)/2⌉ and ẑ ∈ R
s(2r). Let ŷ = P s(2r)ẑ, r′ =

r − ⌈deg(f)/2⌉ and f̃(w) = f(Aw + b). Then P s(r′)M r′(f̃ ẑ)P T
s(r′) = M r′(f ŷ) holds.

Proof: Because the size of P s(r′)M r′(f̃ ẑ)P T
s(r′) coincides with that of M r′(f ŷ), it is enough to

show that the (α, β)th element m̃α,β of P s(r′)M r′(f̃ ẑ)P T
s(r′) is equal to the (α, β)th element mα,β

of M r′(f ŷ) for all α, β ∈ Gr′ . Substituting ŷ = P s(2r)ẑ into M r′(f ŷ), we see by the assumption
ŷ = P s(2r)ẑ and Lemma 4.1 that

mα,β =
∑

γ∈F

fγ ŷα+β+γ =
∑

γ∈F

fγ





∑

δ∈G2r

Pα+β+γ,δ ẑδ





=
∑

γ∈F

fγ





∑

δ∈Gdeg(f)+2r′

Pα+β+γ,δ ẑδ



 ,

where F denotes the support of the polynomial f , f ∈ R
s(2r) the coefficient vector of f such that

f(x) = fT u2r(x) and fγ the γth element of f . On the other hand, we obtain by the definition of
m̃α,β and deg(f) = deg(f̃) that

m̃α,β =
∑

δ1∈Gr′

∑

δ2∈Gr′

Pα,δ1





∑

γ′∈Gdeg(f)

f̃γ′ ẑγ′+δ1+δ2



 Pβ,δ2,

where F̃ denotes the support of the polynomial f̃ , f̃ ∈ R
s(2r) the coefficient vector of f̃ such that

f̃(w) = f̃
T
u2r(w) and f̃γ the γth element of f̃ . We also see from Lemma 4.3 and deg(f) = deg(f̃)

that f̃γ′ =
∑

γ∈F fγPγ,γ′ for all γ′ ∈ Gdeg(f). By these relations and Lemma 4.4, we obtain the
following relations:

m̃α,β =
∑

δ1∈Gr′

∑

δ2∈Gr′

Pα,δ1





∑

γ′∈Gdeg(f)





∑

γ∈F

fγPγ,γ′



 ẑγ′+δ1+δ2



 Pβ,δ2

=
∑

γ∈F

fγ

∑

γ′∈Gdeg(f)

Pγ,γ′





∑

δ1∈Gr′

∑

δ2∈Gr′

Pα,δ1Pβ,δ2 ẑγ′+δ1+δ2





=
∑

γ∈F

fγ

∑

γ′∈Gdeg(f)

Pγ,γ′

∑

δ∈G2r′









∑

δ=δ1+δ2,
δ1,δ2∈Gr′

Pα,δ1Pβ,δ2









ẑγ′+δ

=
∑

γ∈F

fγ

∑

γ′∈Gdeg(f)

Pγ,γ′





∑

δ∈G2r′

Pα+β,δ ẑγ′+δ



 (by Lemma 4.4)

=
∑

γ∈F

fγ





∑

γ′∈Gdeg(f)

∑

δ∈G2r′

Pγ,γ′Pα+β,δ ẑγ′+δ





=
∑

γ∈F

fγ





∑

δ∈Gdeg(f)+2r′

Pα+β+γ,δ ẑδ



 (by Lemma 4.4)

= mα,β.

This completes the proof.
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Now we are ready to prove property 2 of Theorem 3.1. We only prove the “only if” part since
we can prove the “if” part similarly. Letting f = 1 in Lemma 4.5, we obtain P s(r)M r(z)P T

s(r) =

M r(y). Since y is feasible for SDP (6) and z = P−1
s(2r)y, we obtain that

M r(z) = P−1
s(r)M r(y)P−T

s(r) � O,

M rj
(f̃jz) = P−1

s(rj)
M rj

(fjy)P−T
s(rj)

� O (j = 1, . . . ,m).

These imply that z is feasible for SDP (13). By Lemma 4.3 and the definitions of c2r and c̃2r , we
also see that c̃2r = P T

s(2r)c2r and c̃T
2rz = cT

2rP s(2r)P
−1
s(2r)y = cT

2ry. This shows that the objective

value of SDP (13) coincides with that of SDP (6).

4.4 Proof of property 3 of Theorem 3.1

Recall that we have already proved c̃2r = P T
s(2r)c2r, which is the first identity of property 3 of

Theorem 3.1, in Lemma 4.3. To prove the second identity, let j ∈ {1, . . . ,m} be fixed arbitrarily.
Then we observe that

∑

α∈G2r

zαB̃j,α = M rj
(f̃jz) (by (14))

= P−1
s(rj)

M rj
(fjy)P−T

s(rj)
(by Lemma 4.5)

= P−1
s(rj)





∑

β∈G2r

Bj,βyβ



 P−T
s(rj)

(by (7))

= P−1
s(rj)





∑

β∈G2r

Bj,β

∑

α∈G2r

Pβ,αzα



 P−T
s(rj)

(by property 2 of Theorem 3.1)

= P−1
s(rj)





∑

α∈G2r

zα

∑

β∈G2r

Pβ,αBj,β



 P−T
s(rj)

=
∑

α∈G2r

zαP−1
s(rj)





∑

β∈G2r

Pβ,αBj,β



 P−T
s(rj)

.

Comparing the both sides of the above equality, we have the second identity of property 3 of
Theorem 3.1.

Taking fj(x) = 1 in the above argument, we can similarly show the third identity of property 3
of Theorem 3.1. The details are omitted here.

4.5 Proof of Theorem 3.2

It suffices to show that rankMk(z
∗) = rankMk(y

∗) for every k ≤ r. To show this, let k ∈
{0, 1, . . . , r} be fixed. By property 2 of Lemma 4.1, we can express

P s(r) =

(

P s(k) O

R S

)

for some R ∈ R
(s(r)−s(k))×s(k) and S ∈ R

(s(r)−s(k))×(s(r)−s(k)). Substituting this into the relation
P s(r)M r(z

∗)P T
s(r) = M r(y

∗), and taking the s(k) × s(k) principal submatrices of the both sides,

we obtain P s(k)Mk(z
∗)P T

s(k) = Mk(y
∗). Because P s(k) is nonsingular due to Lemma 4.1, we see

that rankMk(z
∗) = rankMk(y

∗) for all k ≤ r.
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5 Concluding remarks

We have shown that Lasserre’s SDP relaxation [9] is invariant under any affine transformation
on the variable space R

n. We can also say that Ps(2r) has the invariance property between the
polynomial SDP and its linear SDP relaxation, and that the affine transformation induces such
linear transformation on R[x]. In fact, one of the key observations was the block lower triangular
structure of P s(2r) of the linear transformation on R[x]. See property 2 of Lemma 4.1. We can
hardly imagine that any linear transformation on R[x] that does not have this property will have the
good invariance property. On the other hand, we can consider some other linear transformations
on R[x] having the same block lower triangular structure property. Such a linear transformation is
natural in the sense that it maps any polynomial of degree r to a polynomial of the same degree.
Whether a linear transformation of this type has the same invariance property or not will be the
subject to further research.

An important usage of an affine transformation of a POP is to increase numerical stability. We
can scale a POP to be solved by applying an appropriate affine transformation in advance so that
the transformed POP could be solved more stably. Suppose that a POP to be solved involves a
higher degree monomials in variables x1, . . . , xn, and that they are expected to take large numerical
values at optimal solutions. Then it is likely that optimal solutions of its SDP relaxation contain
huge numerical values, which causes a numerical instability. It was reported in [16] that scaling
those variables within [0, 1]n is very effective to avoid this type of numerical instability, and this
technique was incorporated in SparsePOP [17].

In this paper, we have not paid any attention to the sparsity of the polynomials involved
in a POP, and we have restricted ourselves to the “dense” SDP relaxation of a POP. Another
important usage of an affine transformation on the space of a variable vector of a POP is to
improve its sparsity so that we can apply the “sparse” SDP relaxation [10, 16] to the transformed
POP. This issue is discussed in the recent paper [5]. We should mention, however, that when we
apply the “sparse” SDP relaxation to POPs the invariance under affine transformation does not
hold any more in general.
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