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Abstract.
Exploiting sparsity has been a key issue in solving large-scale optimization problems. The
most time-consuming part of primal-dual interior-point methods for linear programs, second-
order cone programs, and semidefinite programs is solving the Schur complement equation
at each iteration, usually by the Cholesky factorization. The computational efficiency is
greatly affected by the sparsity of the coefficient matrix of the equation that is deter-
mined by the sparsity of an optimization problem (linear program, semidefinite program or
second-order program). We show if an optimization problem is correlatively sparse, then
the coefficient matrix of the Schur complement equation inherits the sparsity, and a sparse
Cholesky factorization applied to the matrix results in no fill-in.
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1 Introduction

Primal-dual interior-point methods are shown to be numerically robust for solving linear
programs (LPs), semidefinite programs (SDPs) and second-order cone programs (SOCPs).
For large-scale LPs, many free and commercial software packages implementing primal-
dual interior-point methods have been established as very efficient and powerful solvers.
Challenges still remain in solving large-scale SDPs and SOCPs, although several successful
software packages have been developed.

Efficient handling of large-scale LPs, SDPs and SOCPs in implementation of primal-dual
interior-point methods have taken two significant approaches: solving the Schur complement
equation (or larger systems that induce the Schur complement equation [26, 28]) efficiently
and exploiting the sparsity of the problems. In the case of LP, these two issues have
been studied widely and various practical techniques have been implemented in free and
commercial software packages. For LPs and SOCPs, the sparsity of the Schur complement
matrix (the coefficient matrix of the Schur complement equation) was exploited by splitting
the matrix into sparse and dense parts, factorizing the sparse part, and applying low-rank
update to the dense part [2, 9, 24]. For the case of SDP, the importance of exploiting the
sparsity of the data matrices was recognized in [6], which proposed three types of methods
for computing the elements of the Schur complement matrix depending on their sparsity.
For large-scale SDPs, solving the Schur complement equation using iterative methods was
proposed in [21, 25, 26]. The aggregated sparsity pattern of all data matrices of SDPs
was exploited for the primal-dual interior-point methods [7, 22]. The current paper adopts
some of basic ideas such as a chordal graph structure of the sparsity pattern used there.
The aggregated sparsity, however, does not necessarily imply the sparsity of the Schur
complement matrix. The issue of an efficient solution to the Schur complement equation
was not addressed there. Instead, the focus was on an efficient handling of the primal matrix
variable that becomes dense in general even when the aggregated sparsity pattern is sparse.

Sparsity can be used in various ways depending on optimization problems. The sparsity
from partially separable functions was used in connection with efficient implementation of
quasi-Newton methods for solving large-scale unconstrained optimization [10]. The correl-
ative sparsity was introduced to handle the sparsity of polynomial optimization problems
(POPs) [30], as a special case of sparsity described in [13, 15]. The relationship between
the partial separability and the correlative sparsity was discussed in the recent paper [14].
In the primal-dual interior-point methods, exploiting the sparsity of the Schur complement
matrix becomes important for efficiency because the Cholesky factorization is commonly
used for the solution of the Schur complement equation. We note that many fill-ins may
occur after applying a sparse Cholesky factorization to a general non-structured sparse ma-
trix. The sparsity of the Schur complement matrix is determined by the sparsity of the
data matrices of an optimization problem (LP, SDP or SOCP). Our motivation is based
on finding a sparsity condition on SDPs and SOCPs that can lead to a sparse Cholesky
factorization of the Schur complement matrix with no fill-in. We show that the correlative
sparsity is indeed such a sparsity condition that provides a sparse Cholesky factorization of
the Schur complement matrix with no fill-in. We also propose a correlatively-sparse linear
optimization problem (LOP) for a unified representation of correlatively-sparse LPs, SDPs
and SOCPs.
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We introduce the correlative sparsity, which was originally proposed for a POP [30],
for an LOP with a linear objective function in an n-dimensional variable vector x =
(x1, x2, . . . , xn) and inequality (linear matrix inequality, second-order cone inequality) con-
straints in x. This LOP is so called the dual inequality standard form LOP unifying LPs,
SDPs and SOCPs. The correlative sparsity of the LOP is defined by an n × n symmetric
matrix R, called the correlative sparsity pattern (csp) matrix, as follows. Each element Rij

of the csp matrix R is either 0 or ⋆ for a nonzero value. The symbol ⋆ was assigned to all
diagonal elements of R and also to each off-diagonal element Rij = Rji (1 ≤ i < j ≤ n) if
and only if the variables xi and xj appear simultaneously in a linear inequality (linear matrix
inequality, second-order cone inequality) constraint. If the csp matrix R allows a symbolic
sparse Cholesky factorization with no fill-in (under an appropriate simultaneous reordering
of its rows and columns), we say that the LOP is correlatively-sparse. The objective of the
paper is to show that if the LOP satisfies the correlative sparsity, then the sparsity pattern
of the Schur complement matrix coincides with the csp matrix R. This guarantees a sparse
Cholesky factorization of the Schur complement matrix with no fill-in.

Although our major concern is a correlatively-sparse LOP, we deal with an almost-
correlatively-sparse LOP, a slightly more practical LOP with a small-sized dense linear
inequality (linear matrix inequality, second-order cone inequality) constraint and sparse
constraints inducing a csp matrix R. With this form of LOP, the correlatively-sparse LOP
and the almost-correlatively-sparse LOP can be dealt with simultaneously because all the
results for the correlatively-sparse LOP can be obtained by simply neglecting the dense
constraint. The Schur complement matrix of the almost-correlatively-sparse LOP is dense
in general. Its sparsity, however, can be exploited by splitting the matrix into two parts, the
sparse part with the same sparsity pattern as the csp matrix R and the dense part of low-
rank. A sparse Cholesky factorization can be used for the sparse part, and the well-known
Sherman-Morrison-Woodbury formula for the dense part. This technique of splitting sparse
and dense parts of the Schur complement matrix was used in an affine scaling variant of
Karmarkar’s algorithm for linear programs [1]. See also [2, 9, 24].

We also examine the link between the correlative sparsity of a POP and the sparsity
of its SDP relaxation. When the sparse SDP relaxation ([30], see also [16, 18]) is applied
to a POP satisfying the correlative sparsity, an equivalent polynomial SDP satisfying the
same correlative sparsity is constructed as an intermediate optimization problem. It is then
linearized to an SDP relaxation problem. We prove that the correlative sparsity of the
POP is further maintained in the SDP relaxation problem. It was also observed through
the numerical experiment in [30] that “the sparse SDP relaxation for a correlatively-sparse
POP leads to an SDP that can maintain the sparsity for primal-dual interior-point methods”.
This observation is supported by a theoretical proof given in Section 6.

This paper is organized as follows. After describing a correlatively-sparse LOP for a
unified treatment of LPs, SOCPs and SDPs, the definition of correlative sparsity for the
LOP is presented in Section 2. An almost-correlatively-sparse LOP and its simple illustrative
example are also given in Section 2. In Sections 3, 4 and 5, we present almost-correlatively-
sparse LP, SDP and SOCP, respectively. In Section 6, we show that the correlative sparsity
of a polynomial SDP is preserved in the SDP obtained as its linearization. Section 7 is
devoted to concluding remarks.
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2 Preliminaries

2.1 Correlatively-sparse and almost-correlatively-sparse linear op-

timization problems

Let M = {1, 2, . . . , m} and N = {1, 2, . . . , n}. Consider an optimization problem with a
linear objective function

maximize bT y subject to (yi : i ∈ Ip) ∈ Cp (p ∈ M). (1)

Here Ip denotes a nonempty subset of N , (yi : i ∈ Ip) a subvector of an n-dimensional vector
y = (y1, y2, . . . , yn) consisting of elements yi (i ∈ Ip), and Cp a nonempty subset of #Ip-
dimensional Euclidean space. With the form of (1), we can deal with the problems whose
Cp represents linear inequalities, linear matrix inequalities or second-order cone inequalities.
Thus, (1) represents a unified linear optimization problem including LPs, SDPs and SOCPs.

Notice that some Ip can coincide with or contained in another Iq. Let {Ip : p ∈ Mmax}
denote the family of maximal Ip’s among the entire family {Ip : p ∈ M}; {Ip : p ∈ Mmax}
is uniquely determined although Mmax does not have to be unique. This family plays an
essential role in defining the correlative sparsity for the optimization problem (1) in the
following discussion. For simplicity of notation, we assume that Mmax = {1, 2, . . . , ℓ}.

Define the n × n symmetric symbolic matrix R whose (i, j)th element is given by

Rij =

{

⋆ if i = j or i, j ∈ Ip for some p ∈ Mmax,
0 otherwise.

We call R the correlative sparsity pattern (csp) matrix of the optimization problem (1). It
should be noted that we can replace Mmax by M to define the csp matrix R. According
to [30], we say that the optimization problem (1) is correlatively-sparse if the csp matrix
R allows a sparse Cholesky factorization (under an appropriate simultaneous reordering of
row and column indices, which is called a perfect elimination ordering) with no fill-in. Here
we implicitly assume that R is sufficiently sparse.

The csp matrix induces a graph, which is called the csp graph of the optimization
problem (1). We refer to [4, 8, 19] or some text books on the graph theory for the background
materials stated below. Let N = {1, 2, . . . , n} denote the node set of the csp graph, and
define the edge set E = {{i, j} ⊂ N : i < j and Rij = ⋆}. Then it is known that there
exists a Cholesky factorization of the csp matrix R with no fill-in if and only if the csp
graph G(N, E) is chordal. Here a graph is said to be chordal if every cycle of length ≥ 4
has a chord (an edge jointing two non-consecutive vertices of the cycle). By construction,
{Ip : p ∈ Mmax} forms the family of maximal cliques of the csp graph G(N, E). The chordal
graph property is also characterized as the running intersection property: there exists a
permutation π(1), π(2), . . . , π(ℓ) of 1, 2, . . . , ℓ such that

∀p ∈ {1, 2, . . . , ℓ − 1} ∃r; π(r) ≥ π(p + 1) and Iπ(p) ∩
(

∪ℓ
q=p+1Iπ(q)

)

⊂ Iπ(r). (2)

(Recall that we have assumed Mmax = {1, 2, . . . , ℓ} ⊆ M = {1, 2, . . . , m}).

If the running intersection property (2) is satisfied, then there exists a perfect elimination
ordering of 1, 2, . . . , n under which the matrix R is factorized into a lower triangular matrix
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L and its transpose with no fill-in; PRP T = LLT where P stands for the permutation
matrix corresponding to the perfect elimination ordering. The running intersection property
implies ℓ ≤ n.

If the optimization problem (1) is not correlatively-sparse or equivalently if the csp graph
G(N, E) is not a chordal graph, we can extend G(N, E) to a chordal graph G(N, E ′), where
E ′ denotes a superset of E. Let I ′

p (p ∈ M ′
max) denote the maximal cliques of the chordal

extension G(N, E ′) of G(N, E), which induces, as its adjacency matrix, an extended csp
matrix R′ whose (i, j)th element is given by

R′
i,j =

{

⋆ if i = j or i, j ∈ I ′
p for some p ∈ M ′

max,
0 otherwise.

Now the extended csp matrix R′ allows a sparse Cholesky factorization under a perfect
elimination ordering of its rows and columns. By construction, for every q ∈ Mmax, there
exists a p ∈ M ′

max such that Iq ⊆ I ′
p; hence we may replace the constraint (yi : i ∈ Iq) ∈ Cq

by
(yi : i ∈ I ′

p) ∈ C ′
q = {(yi : i ∈ I ′

p) : (yi : i ∈ Iq) ∈ Cq}.

Then the resulting optimization problem satisfies the correlative sparsity with the csp graph
G(N, E ′) and csp matrix R′. This implies that all the results in the subsequent sections
remain valid if we replace the csp graph G(N, E) and the csp matrix R by their chordal
extensions G(N, E ′) and R′, respectively. (Here we assume that R′ remains sparse). Chordal
extensions of G(N, E) are not unique, and a minimum chordal extension (a chordal extension
with the least number of edges) of the csp graph G(N, E) creates the minimum number of
nonzero elements in the resulting extended csp matrix R′ from R. Finding such a minimum
chordal extension is difficult in general. Several heuristics such as the minimum degree
ordering and the reverse Cuthill-Mckee ordering are known to produce good approximations.
Also some software packages [3, 12] are available for a chordal extension of a given graph.

Now we mention an almost-correlatively-sparse optimization problem by adding a dense
constraint to the sparse optimization problem (1).

minimize bT y

subject to (yi : i ∈ Ip) ∈ Cp (p ∈ M), y ∈ Cm+1.

}

(3)

Here we assume that the two optimization problems (1) and (3) share the correlatively-
sparse constraints (yi : i ∈ Ip) ∈ Cp (p ∈ M) and the csp matrix R induced from these
constraints. The added dense constraint y ∈ Cm+1 is also assumed to be small in the sense
that it represents a few number of linear inequalities, a small-sized linear matrix inequality
and/or a few number of small-sized second order cone inequalities. When primal-dual
interior-point methods are applied to an almost-correlatively-sparse LP, SOCP or SDP,
the Schur complement matrix becomes dense in general. But it is decomposed into two
matrices, a sparse matrix with the same sparsity pattern as the csp matrix R, and a dense
and low-rank matrix. Then, a sparse factorization and the Scherman-Morrison-Woodbury
formula can be applied to solve the Schur complement equation. We discuss more details
on almost-correlatively-sparse LP, SDP and SOCP in the subsequent sections.
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2.2 An illustrative example

As an example, we consider the optimization problem

maximize y1 + 2y2 + 3y3 + 4y4

subject to 5y1 + 6y4 ≤ 17,
3y2 + 2y4 ≤ 16,
(

11 2
2 12

)

−

(

4 −3
−3 3

)

y3 −

(

2 2
2 3

)

y4 � O,

y1 + y2 + y3 + y4 ≥ 1
yi ≥ 0 (i = 1, 2, 3, 4).







































(4)

Note that the 3rd constraint is an LMI where A � O implies that a symmetric matrix A

is positive semidefinite. Let

ℓ = m = 3, n = 4, Mmax = M = {1, 2, 3}, N = {1, 2, 3, 4},
I1 = {1, 4}, C1 = {(y1, y4) : y1 ≥ 0, 17 − 5y1 − 6y4 ≥ 0},
I2 = {2, 4}, C2 = {(y2, y4) : y2 ≥ 0, 16 − 3y2 − 2y4 ≥ 0}, I3 = {3, 4},

C3 =







(y3, y4) :
y3 ≥ 0, y4 ≥ 0,
(

11 2
2 12

)

−

(

4 −3
−3 3

)

y3 −

(

2 2
2 3

)

y4 � O







,

C4 = {y = (y1, y2, y3, y4) : −1 + y1 + y2 + y3 + y4 ≥ 0}.







































(5)

Then we can rewrite the problem (4) as a special case of LOP (3). In this case, the 4 × 4
csp matrix turns out to be

R =









⋆ 0 0 ⋆
0 ⋆ 0 ⋆
0 0 ⋆ ⋆
⋆ ⋆ ⋆ ⋆









. (6)

This csp matrix R exhibits a typical sparsity pattern that allows a sparse Cholesky fac-
torization wit no fill-in. The dense constraint set C4 is described as a single number of
linear inequality. We will see at the end of Section 4 that the Schur complement matrix is
decomposed into a 4 × 4 matrix of the same sparsity pattern as the csp matrix R and a
4 × 4 dense and rank-1 matrix.

3 LP

While primal-dual interior-point methods for LPs have been studied for many years, the
issue of exploiting the sparsity in the Schur complement equation is considered important
for computational efficiency in practice. Many software packages implementing primal-dual
interior-point methods for solving LPs must have utilized the correlative sparsity implicitly,
although the term itself has not appeared explicitly. A primal-dual interior-point method
for an LP is usually described with the equality standard form in most of the literature,
however, it is its dual (or the inequality standard form) that explicitly relates the sparsity
of the LP to the sparsity of the Schur complement matrix. We thus adopt an inequality
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standard form to describe an almost-correlative-sparse LP. This enables us to link the csp
matrix R induced from the correlatively-sparse constraints (or the constraints shared with
the corresponding correlatively-sparse LP without the dense constraint) and the coefficient
matrix of the dense constraint to the sparsity pattern of the Schur complement matrix.
If we neglect the dense constraint in the almost-correlatively-sparse LP, we see that the
sparsity pattern of the Schur complement matrix coincides with the sparsity pattern of the
csp matrix R in the correlatively-sparse case.

Suppose that each Cp in the LOP (3) is described as a system of linear inequalities such
that

Cp = {(yi : i ∈ Ip) : ap0 −
∑

i∈Ip

apiyi ≥ 0} (p ∈ M),

Cm+1 = {y = (y1, y2, . . . , yn) : a(m+1)0 −
∑

i∈N

a(m+1)iyi ≥ 0}.

Here api (i = 0, 1, 2, . . . , n, p ∈ M ∪ {m + 1}) denote column vectors. Then we have an LP
of the form

maximize bT y

subject to ap0 −
∑

i∈Ip

apiyi ≥ 0 (p ∈ M),

a(m+1)0 −
∑

i∈N

a(m+1)iyi ≥ 0,

and its dual

minimize
∑

p∈M

aT
p0xp

subject to
∑

p∈Ki

aT
pixp + aT

(m+1)ixm+1 = bi (i ∈ N),

xp ≥ 0 (p ∈ M ∪ {m + 1}).

Here
Ki = {p ∈ M : i ∈ Ip} (i ∈ N). (7)

When the primal-dual interior-point method is applied to this primal-dual pair of LPs, the
(i, j)th element of the n × n Schur complement matrix B is given by

Bij = B
sparse
ij + Bdense

ij ,

B
sparse
ij =

∑

p∈Ki∩Kj

aT
pidiag(xp)diag(sp)

−1apj,

Bdense
ij = aT

(m+1)idiag(xm+1)diag(sm+1)
−1a(m+1)j

for some sp > 0, which corresponds to the slack variable vector for the inequality constraint
ap0 −

∑

i∈Ip
apiyi ≥ 0, (p ∈ M ∪ {m + 1}) and some xp > 0 (p ∈ M ∪ {m + 1}). Here

diag(w) denotes a diagonal matrix with the diagonal elements w1, w2, . . . , wℓ for every vector
w = (w1, w2, . . . , wℓ). Hence, the Schur complement matrix B is represented as the sum
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of the two matrices Bsparse and Bdense. If we assume that all coefficient vectors api

(i ∈ Ip, p ∈ M ∪ {m + 1}) are fully dense, then B
sparse
ij = 0 if and only if Rij = 0. Hence

the sparsity pattern of Bsparse coincides with the sparsity pattern of R, and Bdense

becomes fully dense and its rank is not greater than the dimension of the coefficient vector
a(m+1)i. If dim(a(m+1)i) is small, a low-rank update can be used for the dense part. In

general, both Bsparse and Bdense may have additional zeros.

4 SDP

We now consider SDPs. Suppose that each Cp in the LOP (3) is described as an linear
matrix inequality (LMI) such that

Cp = {(yi : i ∈ Ip) : Ap0 −
∑

i∈Ip

Apiyi � O} (p ∈ M),

Cm+1 = {y : A(m+1)0 −
∑

i∈N

A(m+1)iyi � O}.

Here Api (i = 0, 1, 2, . . . , n, p ∈ M ∪ {m + 1}) denote symmetric matrices. Then we have
an SDP

maximize bT y

subject to Ap0 −
∑

i∈Ip

Apiyi � O (p ∈ M),

A(m+1)0 −
∑

i∈N

A(m+1)iyi � O,























(8)

and its dual

minimize
∑

p∈M

Ap0 • Xp + A(m+1)0 • Xm+1

subject to
∑

p∈Ki

Api • Xp + A(m+1)i • Xm+1 = bi (i ∈ N),

Xp � O (p ∈ M ∪ {m + 1}),























where Ki (i ∈ N) are given by (7). If the dense constraint Cm+1 involves multiple LMIs

Aq0 −
∑

i∈N

Aqiyi � O (q ∈ L),

where L = {m + 1, m + 2, . . . , m∗}, then those LMIs can be put into an LMI by combining
the data matrices and redefining larger block diagonal matrices A(m+1)i (i = 0, 1, 2, . . . , n)
such that

A(m+1)i = diag
(

A(m+1)i, A(m+2)i, . . . , A(m∗)i

)

(i = 0, 1, 2, . . . , n).
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In the case of the SDP (8), the (i, j)th element of the Schur complement matrix B for
the HKM search direction [11, 17, 20] is given by

Bij = B
sparse
ij + Bdense

ij ,

B
sparse
ij =

∑

p∈Ki∩Kj

XpApiS
−1
p • Apj ,

=

{

⋆ if Ki ∩ Kj 6= ∅ or i, j ∈ Ip for some p ∈ M,
0 otherwise,

(9)

Bdense
ij = Xm+1A(m+1)iS

−1
m+1 • A(m+1)j ,

for some Sp ≻ O, which corresponds to the slack matrix variable for the LMI Ap0 −
∑

i∈Ip
Apiyi � O, (p ∈ M∪{m+1}) and some Xp ≻ O (p ∈ M∪{m+1}). Note that we have

assumed that Xp and S−1
p are fully dense in the identity (9), and that the identity (9) implies

that the sparsity patterns of Bsparse and the csp matrix R coincide with each other. Thus
the Schur complement matrix B has been represented with a matrix Bsparse with the same

sparsity pattern as the csp matrix R and a dense matrix Bdense. When we are concerned

with a correlatively-sparse SDP without the dense constraint A(m+1)0 −
∑

i∈N

A(m+1)iyi � O

in (8), the dense part Bdense vanishes. If A(m+1)i (i = 0, 1, 2, . . . , n) are r × r matrices in

a general almost-correlatively-sparse case, the rank of Bdense ≤ r(r +1)/2 as shown in the
lemma below. Therefore, if r is small, a low-rank update technique can be used to solve the
Schur complement equation with the coefficient matrix B.

Lemma 4.1. Let F i (i = 1, 2, . . . , n) be an r × r matrix and Gi (i = 1, 2, . . . , n) an r × r
symmetric matrix. Let H be an n×n matrix whose (i, j)th element is given by Hij = F i•Gj

(i = 1, 2, . . . , n, j = 1, 2, . . . , n). Then, rank (H) ≤ r(r + 1)/2.

Proof: Let

fkℓ =











[F 1]kℓ

[F 2]kℓ
...

[F n]kℓ











, gkℓ =











[G1]kℓ

[G2]kℓ
...

[Gn]kℓ











.

Then we see that

H =

r
∑

k=1

r
∑

ℓ=1

fkℓg
T
kℓ =

r
∑

k=1

k−1
∑

ℓ=1

(fkℓ + f ℓk)g
T
kℓ +

r
∑

ℓ=1

f ℓℓg
T
ℓℓ.

Now each term (fkℓ + f ℓk)g
T
kℓ, f ℓℓg

T
ℓℓ on the right hand is rank-1 matrix. Thus rank

(H) ≤ r(r + 1)/2 follows.

We now apply the discussion above to the example (4) in Section 2.2. Recall that the
example (4) can be described as an almost correlatively-sparse LOP of the form (3) with
m = 3, n = 4, M , N , Ip (p ∈ M) and Cp (p ∈ M ∪ {4}) given in (5) and the csp matrix
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R given in (6). We also note that a linear inequality is a special case of an LMI whose
coefficients are 1 × 1 matrices. Hence we can treat the example as an SDP of the form (8).
Specifically, the dense constraint y ∈ Cm+1 is described as an LMI −1+y1 +y2 +y3 +y4 ≥ 0
with 1× 1 coefficient matrix; hence r = 1 in the discussion above. Consequently, the Schur
complement matrix B in this case is of the form

B =









⋆ 0 0 ⋆
0 ⋆ 0 ⋆
0 0 ⋆ ⋆
⋆ ⋆ ⋆ ⋆









+ “a 4 × 4 rank-1 dense matrix”.

Remark 4.2. We assume that the HKM search direction [11, 17, 20] is used in the primal-
dual interior-point method for the SDP (8). All the observation remains valid for the NT

search direction [23] with a slight modification in the descriptions of B
sparse
ij and Bdense

ij .

5 SOCP

Let Kp (p ∈ M ∪ L) be the second-order cones defined as

Kp = {xp = (xp0, xp1) ∈ R × R
kp−1 : x2

p0 − xT
p1xp1 ≥ 0, xp0 ≥ 0},

where L = {m + 1, m + 2, . . . , m∗}. We denote x �Kp
0 to mean x ∈ Kp. Suppose that

each Cp in the LOP (3) is described as a second-order cone inequality such that

Cp = {(xi : i ∈ Ip) : ap0 −
∑

i∈Ip

apiyi �Kp
0} (p ∈ M),

Cm+1 = {y : aq0 −
∑

i∈N

aqiyi �Kp
0 (q ∈ L)}

for some column vectors api ∈ R
kp (i = 0, 1, 2, . . . . , n, p ∈ M ∪ L). Then we have an SOCP

of the form

maximize bT y

subject to ap0 −
∑

i∈Ip

apiyi �Kp
0 (p ∈ M),

aq0 −
∑

i∈N

aqiyi �Kq
0 (q ∈ L),























(10)

and its dual

minimize
∑

p∈M

aT
p0xp +

∑

q∈L

aq0xq

subject to
∑

p∈Ki

aT
pixp +

∑

q∈L

aT
qixq = bi (i ∈ N),

xp �Kp
0 (p ∈ M ∪ L),
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where Ki (i ∈ N) is given by (7). The (i, j)th element of the Schur complement matrix B

for the HKM search direction [27] is given by

Bij = B
sparse
ij + Bdense

ij ,

B
sparse
ij =

∑

p∈Ki∩Kj

aT
piQpapj,

=

{

⋆ if Ki ∩ Kj 6= ∅ or i, j ∈ Ip for some p ∈ M,
0 otherwise,

(11)

Bdense
ij =

∑

q∈L

aT
qiQqaqj .

Here the scaling matrix Qp (p ∈ M ∪ L) is given by

Qp =
1

γ(sp)2

(

xp0sp0 − xT
p1sp1 sp0x

T
p1 − xp0s

T
p1

sp0xp1 − xp0sp1 (xT
p sp)I − sp1x

T
p1 − xp1s

T
p1

)

,

γ(sp) =
√

s2
p0 − sT

p1sp1

for some sp ≻Kp
0, which corresponds to the slack variable for the second order-cone

inequality ap0 −
∑

i∈Ip
apiyi �Kp

0, (p ∈ M ∪ L) and some xp ≻Kp
0 (p ∈ M ∪ L). We

have assumed that xp and sp are fully dense and api 6= 0, apj 6= 0 for some p ∈ Ki ∩ Kj

and every i, j such that Ki ∩ Kj 6= ∅ to derive the identity (11). We note that (11)
implies that the sparsity patterns of Bsparse and the csp matrix R coincide with each
other. Thus the Schur complement matrix B has been splitted into a matrix Bsparse with

the same sparsity pattern as the csp matrix R and a dense matrix Bdense. If we assume

that aqi 6= 0, aqj 6= 0 for some q ∈ L for every i, j ∈ N , then Bdense becomes fully dense.

The rank of the matrix Bdense is not greater than
∑

q∈L dim(aq0). If
∑

q∈L dim(aq0) is
small, then a low-rank update can be used for the dense part.

We can split the scaling matrix Qp such that

Qp = Qsparse
p + Qdense

p ,

Qsparse
p =

1

γ(sp)2
(xpsp)

(

−1 0
0 I

)

,

Qdense
p =

1

γ(sp)2

((

xp0

xp1

)

(

sp0 −sp1

)

+

(

sp0

−sp1

)

(

xp0 xp1

)

)

. (12)

Here the the matrix Qdense
p is fully dense and rank-2. Goldfarb and Scheinberg [9] proposed

to utilize this type of splitting to represent the Schur complement matrix B as a sum of
a sparse matrix and a dense matrix of low-rank. When api (i ∈ N) is sparse for some
p ∈ M∪L, we can incorporate their method to explore the sparsity of the Schur complement
matrix B further.

Remark 5.1. We assume that the HKM search direction is used in the primal-dual interior-
point method for the SOCP (10). All the observation remains valid for the NT search
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direction [23, 27] with a slight modification in the scaling matrix Qp. The method in [9] was
described for the NT search direction, but the method remains valid for the HKM direction.

We note that Qdense
p in (12) is of rank-2 for the HKM search direction while it is of rank-1

for the NT search direction.

6 Polynomial semidefinite program

Polynomial SDPs have a wide variety of applications in the system and control theory. They
also describe an intermediate optimization problem equivalent to a given sparse polynomial
optimization problem (POP) when the sparse SDP relaxation [16, 18, 30] is derived for the
POP. In this section, we focus on a correlatively-sparse polynomial SDP, which is obtained
from a sparse POP in the relaxation process of the POP to an SDP by linearization. We
show that the SDP relaxation problem inherits the correlative sparsity from the polynomial
SDP.

6.1 Polynomial SDP and its linearization

We restrict our attention to a sparse unconstrained POP, and briefly mention how a correlatively-
sparse polynomial SDP is derived from it. See [16, 18, 30] for more discussions on general
sparse constrained POPs.

Let Z+ denote the set of nonnegative integers. For every α = (α1, α2, . . . , αn) ∈
Z

n
+ and every n-dimensional vector variable x = (x1, x2, . . . , xn), we use the notation

xα = xα1

1 xα2

2 · · ·xαn
n . Then a real-valued polynomial φ(x) in x can be written as φ(x) =

∑

α∈A

cαxα for some nonempty finite set A ⊂ Z
n
+ and some nonzero real numbers cα

(α ∈ A). We assume that x0 = 1 for any x.

We consider an unconstrained POP

maximize −
∑

α∈F̃

cαxα, (13)

where F̃ denotes some nonempty finite subset F̃ of Z
n
+ and cα (α ∈ F̃) nonzero real

numbers. Let δ0 = max

{

n
∑

i=1

αi : α ∈ F̃

}

denote the degree of the objective polynomial

function, and assumed to be a positive even integer since otherwise the problem (13) is
unbounded. We define a graph G(N, E) consisting of the node set N = {1, 2, . . . , n} and
the edge set

E = {{i, j} ⊂ N : i < j, αi > 0 and αj > 0 for some α ∈ F̃}.

This graph G(N, E) represents the sparsity of the Hessian matrix of the objective polynomial
function. Let G(N, Ē) be a chordal extension of the graph G(N, E); G(N, Ē) is a chordal
graph consisting of the node set N and an edge set Ē ⊇ E, and Ip ⊆ N (p ∈ Mmax =
{1, 2, . . . , ℓ}) denote the maximal cliques of G(N, Ē), which satisfies the running intersection
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property (2) for some permutation π(1), π(2), . . . , π(ℓ) of 1, 2, . . . , ℓ. Let ρ = δ0/2. For every
I ⊆ N , let u(x; I, ρ) denote a column vector consisting of the monomials in the set







xα :
∑

i∈Ip

αi ≤ ρ, αj = 0 (j 6∈ Ip)







.

For every p ∈ Mmax, define

F p(xi : i ∈ Ip) = u(x; Ip, ρ)u(x; Ip, ρ)T ,

which is symmetric, rank-1 and positive semidefinite for any x. Let m = ℓ and M = Mmax.
Now we are ready to describe a polynomial SDP which is equivalent to the unconstrained
POP.

maximize −
∑

α∈F̃

cαxα

subject to F p(xi : i ∈ Ip) � O (p ∈ M).







(14)

6.2 Correlatively-sparse polynomial semidefinite programs and
their linearization

In the previous subsection, we have derived a polynomial SDP (14) which is equivalent to
the POP (13). In this subsection, we begin with a general polynomial SDP of the form
(14) such that each F p(xi : i ∈ Ip) represents a polynomial in the variable xi (i ∈ Ip) with
symmetric matrix coefficients. For every p ∈ M , let

Cp = {(xi : i ∈ Ip) : F p((xi : i ∈ Ip)) � O}.

Then we rewrite the polynomial SDP (14) as

maximize −
∑

α∈F̃

cαxα

subject to (xi : i ∈ Ip) ∈ Cp (p ∈ M),

so that the csp matrix R can be defined in the same way as in Section 2.1. We say that the
polynomial SDP (14) is correlatively-sparse if the csp matrix R allows a sparse Cholesky
factorization with no fill-in.

For every positive integer ω, let

F(Ip, ω) =







α ∈ Z
n
+ :

∑

i∈Ip

αi ≤ ω, αi = 0 (i 6∈ Ip)







(p ∈ M).

We assume that for some positive integer ω, each F p((xi : i ∈ Ip)) is described as

F p((xi : i ∈ Ip)) =
∑

α∈F (Ip,ω)

Apαxα.
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(Note that 2ρ corresponds to ω in the previous subsection’s discussion). Here Apα denotes
a symmetric matrix; some Apα can be zero matrices. Thus the polynomial SDP under
consideration can be written as

maximize −
∑

α∈F̃

cαxα

subject to
∑

α∈F (Ip,ω)

Apαxα � O (p = 1, 2, . . . , m).



















(15)

We now linearize the polynomial SDP (15) by replacing each xα by a single variable yα

to obtain an SDP as its relaxation.

maximize −
∑

α∈F̃

cαyα

subject to (yα : α ∈ F(Ip, ω)) ∈ C̃p (p = 1, 2, . . . , m),







(16)

where

C̃p = {(yα : α ∈ F(Ip, ω)) :
∑

α∈F (Ip,ω)

Apαyα � O}.

The following lemma demonstrates the relationship between the correlative sparsity of the
polynomial SDP (15) and that of its linearized SDP (16).

Lemma 6.1. Suppose that the polynomial SDP (14) is correlatively sparse, and that the
running intersection property (2) holds; for simplicity, suppose that (2) holds with π(p) = p
(p ∈ Mmax = {1, 2, . . . , ℓ}). Then the family of index sets F(Ip, ω) (p ∈ M) involved in the
SDP (16) satisfies the running intersection property:

∀p ∈ {1, 2, . . . , ℓ − 1} ∃r ≥ p + 1; F(Ip, ω) ∩
(

∪ℓ
q=p+1F(Iq, ω)

)

⊂ F(Ir, ω).

(Hence the SDP (16) is correlatively sparse).

Proof: Let p ∈ {1, 2, . . . , ℓ − 1}. By (2), there is an r ≥ p + 1 such that

Ip ∩
(

∪ℓ
q=p+1Iq

)

⊂ Ir

We will show that F(Ip, ω) ∩
(

∪ℓ
q=p+1F(Iq, ω)

)

⊂ F(Ir, ω). Assume that α ∈ F(Ip, ω) ∩
(

∪ℓ
q=p+1F(Iq, ω)

)

. It follows that α ∈ F(Ip, ω) ∩ F(Ip′, ω) for some p′ ≥ p + 1. By the
definitions of F(Ip, ω) and F(Ip′, ω) that

n
∑

i=1

αi ≤ ω, αi = 0 (i 6∈ Ip), αi = 0 (i 6∈ Ip′),

which implies that α ∈ F(Ip ∩ Ip′, ω). On the other hand, we know that

Ip ∩ Ip′ ⊆ Ip ∩
(

∪ℓ
q=p+1Iq

)

⊂ Ir;

hence Ip ∩ Ip′ ⊂ Ir. This implies that α ∈ F(Ip ∩ Ip′, ω) ⊂ F(Ir, ω).
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Figure 1: The graph G(N, E) representing the sparsity of the Chained wood function with
n = 8.

6.3 An example

As an example of an unconstrained POP, we consider minimizing the Chained wood function
[5]

1 +
∑

i∈J

(

100(xi+1 − x2
i )

2 + (1 − xi)
2 + 90(xi+3 − x2

i+2)
2 + (1 − xi+2)

2

+10(xi+1 + xi+3 − 2)2 + 0.1(xi+1 − xi+3)
2
)

,

where J = {1, 3, 5, . . . , n − 3} and n is a multiple of 4. The degree of the Chained wood
polynomial function is 4; hence δ0 = 4 and ρ = δ0/2 = 2. We first construct a graph
G(N, E) that represents the sparsity of the polynomial according to the method mentioned
in Section 6.1. We then see that the graph G(N, E) does not have any cycle (with length
greater than 2); hence G(N, E) itself is a chordal graph. Figure 1 illustrates the graph
G(N, E) for the case of n = 8. The maximal cliques of the graph G(N, E) are

{i, i + 1}, {i + 1, i + 3}, {i + 2, i + 3} (i ∈ J).

Using this family of maximal cliques, we construct a polynomial SDP (14) that is equivalent
to the minimization of the Chained wood function. Recall that we have rewritten the
polynomial SDP (14) as in (15). Figures 2 and 3 show the sparsity pattern of the csp
matrix R of the polynomial SDP (15) and that of the Schur complement matrix B of
the SDP (16) obtained linearizing the polynomial SDP (15), respectively. These figure are
obtained by SparsePOP [29] applied to the minimization of the Chained wood function. We
notice that the sparsity pattern of R of the polynomial SDP (15) is magnified in the Schur
complement matrix, keeping the same sparsity pattern.

7 Concluding remarks

We have shown that the correlative sparsity of LP, SOCP, and SDP is maintained in the
Schur complement matrix using a correlatively-sparse LOP and an almost correlative-sparse
LOP. A sparse Cholesky factorization applied to the sparse part of the Schur complement
matrix entails no fill-ins. Thus, the inherited sparsity of the Schur complement matrix can
be used to increase the computational efficiency of primal-dual interior-point methods. The
correlative sparsity of polynomial SDPs is also shown to lead to the correlative sparsity of
the SDP relaxation, resulting in the Schur complement matrix that can be factorized with
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Figure 2: The csp matrix R induced from the minimization of the Chained wood function
with n = 100
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Figure 3: The sparsity pattern of the Schur complement matrix B of the sparse SDP
relaxation of minimizing the Chained wood function with n = 100
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no fill-in. We have confirmed this with the minimization of the Chained wood function in
Section 6.

When a given optimization problem does not show enough sparsity to exploit, the
method proposed in [14] can be applied to bring out the underlying sparsity. The method is
based on a linear transformation of the variables and transforms an optimization problem to
one with increased sparsity. Then, the technique of extending the sparsity to the correlative
sparsity mentioned in Section 2.1 can be used to improve the computational efficiency of
primal-dual interior-point methods.
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