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1 Introduction

A polynomial SDP (semidefinite program) is a nonlinear and nonconvex optimization prob-
lem of minimizing a real valued polynomial objective function a(x) subject to a matrix
inequality A(x) � O i.e., a constraint for A(x) to be positive semidefinite. Here x denotes
a vector variable in the n-dimensional Euclidean space and A(x) an m × m symmetric
matrix whose (i, j)th component Aij(x) is a real valued polynomial in x. The polynomial
SDP is a generalization of the standard SDP (see, for example, [5, 9]) with a linear objec-
tive function and an LMI (linear matrix inequality) constraint to a polynomial objective
function and a PMI (polynomial matrix inequality) constraint. It includes a wide class of
problems, e.g., POPs (polynomial optimization problems) where A(x) is a diagonal matrix
and a BMI (bilinear matrix inequality) where Aij(x) is a quadratic function.

The purpose of this paper is to propose SOS (sum of squares) relaxation methods for a
polynomial SDP with an additional ball constraint x ∈ B (the unit ball in the n-dimensional
Euclidean space) by extending SOS relaxations introduced for POPs [6, 7]. We present a
method of generating a sequence of SOS relaxation problems whose optimal values converge
to the optimal value of the polynomial SDP. By applying a technique established in SOS
relaxation methods, we can convert it into a sequence of standard SDPs.

Two related approaches provide a sequence of SDP relaxations whose optimal values
converge to the optimal value of a given POP. The one is a dual approach and the other
is a primal approach. The dual approach is based on SOS relaxations [6, 7]. In the recent
paper [2], Kim et al presented a method to obtain a sequence of SDP relaxations by the
dual approach. They also showed that the quality of the sequence of SDP relaxations was
strengthened by applying a penalty function technique and a generalized Lagrangian dual.
The use of the penalty function technique and the generalized Lagrangian dual provided a
convenient way to exploit sparsity of polynomials in the POP and thus it was possible to
introduce effective SOS relaxations for a sparse POP. The method proposed in this paper
for the polynomial SDP is stemmed from those results in [2]. In particular, we introduce a
penalty function and a generalized Lagrangian function for the polynomial SDP with the
constraint x ∈ B. The main emphasis is placed, however, on convergence analysis of the
method but not on exploiting sparsity of the polynomial SDP.

A primal approach also produces a sequence of SDP relaxations for the polynomial
SDP by extending Lasserre’s SDP relaxation method [1, 4] for POPs to the polynomial
SDP. These SDPs are duals of the ones derived in the dual approach mentioned above.
A key idea behind the extension of Lasserre’s SDP relaxation lies in the following fact.
Let h(x) be a (1 + `)-dimensional column vector of a scalar constant 1 and real valued
polynomials h1(x), h2(x), . . . , h`(x) in x. Then a PMI A(x) � O is equivalent to a PMI to(
h(x)h(x)T

)
⊗A(x) � O, where M ⊗N denotes the Kronecker product of two matrices

M and N . This idea was presented as a technique to derive a valid constraint in the paper
[3], but polynomial SDPs were not investigated. The extension presented here employs
some techniques in the original SDP relaxation by Lasserre for a POP such as linearizing
the polynomial objective function and the resulting PMI constraint to a standard SDP with
an LMI.

We mention that the primal approach is more direct and easier to understand than
the dual approach. However, the method in this paper is presented in terms of the dual
approach instead of the primal approach because our theoretical analysis is based on the
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dual approach.
The remaining of the paper is organized as follows: In Section 2, we describe the def-

initions of polynomial matrices and sums of their squares after introducing some notation
and symbols, and then show a characterization of sums of squares of polynomial matrices in
terms of positive semidefinite matrices. In Section 3, we convert the polynomial SDP with
the additional unit ball constraint x ∈ B into a sequence of POPs over the single constraint
x ∈ B whose optimal values converge to the optimal value of the original polynomial SDP
using a penalty function approach. Section 4 includes the extension of the sequence of
penalized POPs over the single constraint x ∈ B given in Section 3 to a sequence of gen-
eralized Lagrangian duals, which provide better relaxations than the sequence of penalized
POPs, and derivation of an equivalent sequence of SOS relaxations of the polynomial SDP.
In Section 5, the primal approach to the polynomial SDP is presented to derive a sequence
of its SDP relaxations, and a close relationship between the Lagrangian duals in Section 4
and the SDP relaxations in Section 5 is shown; the former correspond to the duals of the
latter.

2 Polynomial matrices and sums of their squares

2.1 Symbols and notation

Let R
n, Z+ and Z

n
+ ⊂ R

n denote the n-dimensional Euclidean space, the set of nonnegative
integers and the set of n-dimensional nonnegative integer vectors, respectively. We use the
notation xα = xα1

1 x
α2

2 · · ·xαn

n for every α ∈ Z
n
+ and every x = (x1.x2, . . . , xn)T ∈ R

n. Here
T denotes the transpose of a vector or a matrix. Let Mm, Sm ⊂Mm and Sm

+ ⊂ Sm denote
the space of m×m real matrices, the space of m×m symmetric matrices and the cone of
m×m positive semidefinite symmetric matrices, respectively. When M ∈ Sm, we often use
the notation M � O to mean M ∈ Sm

+ .
Let F be a nonempty finite subset of Z

n
+, and Fα ∈ Mm (α ∈ F). We consider a

polynomial F (x) in x ∈ R
n with coefficients Fα ∈Mm (α ∈ F) such that

F (x) =
∑

α∈F

Fαxα. (1)

Let Ξm×m denote the set of such polynomials in x ∈ R
n with m×m coefficient matrices. We

mention that each F (x) ∈ Ξm×m is also characterized as an m×m matrix whose (i, j)the
component Fij(x) is a real valued polynomial. We will call each F (x) ∈ Ξm×m an m ×m
polynomial matrix, and F a support of F (x) if F (x) is represented as in (1).

We also consider special cases where all coefficient matrices Fα ∈ Mm (α ∈ F) are
symmetric, i.e., Fα ∈ Sm (α ∈ F) in (1). In this case, we will call F (x) ∈ Ξm×m an m×m
symmetric polynomial matrix. Let Ξm×m

s denote the set of all m×m symmetric polynomial
matrices. By definition, Ξm×m

s ⊂ Ξm×m. When m = 1, Ξ1×1
s = Ξ1×1. In this case, we write

Ξ instead of Ξ1×1
s = Ξ1×1.

Let a(x) ∈ Ξ, A(x) ∈ Ξm×m
s , and B the unit ball {x ∈ R

n : 1 − xT x ≥ 0}. Then
the polynomial SDP (polynomial semidefinite program) that we deal with throughout the
paper is described as

P0 : minimize a(x) subject to A(x) � O and x ∈ B.
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We use the symbol A for a support of the m×m polynomial matrix A(x).

2.2 Sums of squares of polynomial matrices and their character-

ization

We define the set Σm×m of sums of squares of m×m polynomial matrices as follows:

Σm×m ≡

{
q∑

p=1

(Gp(x))T
Gp(x) :

Gp(x) ∈ Ξm×m (p = 1, 2, . . . , q),
q is a positive integer

}
.

By definition, we know that Σm×m ⊂ Ξm×m
s and that F (x) � O for every x ∈ R

n if
F (x) ∈ Σm×m. We call each symmetric polynomial matrix in Σm×m a sum of squares of
polynomial matrices.

When m = 1, Σ = Σ1×1 is the set of sums of squares of real valued polynomials. It is
well-known and easily shown that each w(x) ∈ Σ is represented as a positive semidefinite
quadratic form of monomials and vice versa. This section generalizes this fact to the set
Σm×m of sums of squares of m × m polynomial matrices. We will associate each sum of
squares of polynomial matrices with a positive semidefinite matrix.

Suppose that

F (x) =

q∑

p=1

(Gp(x))T
Gp(x) ∈ Σm×m.

We may assume that the polynomial matrices Gp(x) ∈ Ξm×m (p = 1, 2, . . . , q) share a
common support G ⊂ Z

n
+. Hence they can be represented as

Gp(x) =
∑

α∈G

G
p
αxα (p = 1, 2, . . . , q)

for some G
p
α ∈Mm (α ∈ G, p = 1, 2, . . . , q); we allow cases where some coefficient matrices

G
p
α vanish. Let p ∈ {1, 2, . . . , q}. Then

(Gp(x))T
Gp(x) =


∑

α∈G

G
p
αxα




T 
∑

α∈G

G
p
αxα




=
∑

α∈G

∑

β∈G

(Gp
α)

T
G

p

β
xαxβ.

Let s denote the cardinality of G. Let V p denote the sm × sm symmetric matrix whose
(α,β)th block V

p

αβ
is given by (Gp

α)T
G

p

β
(α ∈ G, β ∈ G). For example, if G consists of

three elements α, β and γ, then

V p =




(Gp
α)T

G
p
α (Gp

α)T
G

p

β
(Gp

α)T
G

p
γ(

G
p

β

)T

G
p
α

(
G

p

β

)T

G
p

β

(
G

p

β

)T

G
p
γ(

G
p
γ

)T

G
p
α

(
G

p
γ

)T

G
p

β

(
G

p
γ

)T

G
p
γ




=
(

G
p
α G

p

β
G

p
γ

)T (
G

p
α G

p

β
G

p
γ

)
;
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hence V p is a 3m × 3m symmetric positive semidefinite matrix with rank at most m. In
general, we see that V p ∈ Ssm

+ . We now let

V αβ =

q∑

p=1

V
p

αβ
=

q∑

p=1

(Gp
α)

T
G

p

β
(α ∈ G, β ∈ G) and V =

q∑

p=1

V p.

Note that each V αβ (α ∈ G, β ∈ G) corresponds to the (α,β)th block of V ∈ Ssm
+ . We

also see that

F (x) =

q∑

p=1

(Gp(x))T
Gp(x) =

∑

α∈G

∑

β∈G

V αβ xαxβ.

Therefore we have shown that each F (x) ∈ Σm×m is represented as

F (x) =
∑

α∈G

∑

β∈G

V αβ xαxβ (2)

for some V ∈ Ssm
+ , where V αβ denotes the (α,β)th block of V ∈ Ssm

+ .

Conversely, we assume that F (x) ∈ Ξm×m
s is represented as in (2) for some V ∈ Ssm

+ to
show that F (x) is a sum of squares of polynomial matrices. Since V is positive semidefinite,
we can take a matrix G ∈Msm such that V = GT G. Let Gαβ denote the (α,β)th block

of G. Then, for every pair (α,β) (α ∈ G,β ∈ G), we have

V αβ =
∑

γ∈G

(
Gγα

)T
Gγβ .

In view of (2), we then obtain that

F (x) =
∑

α∈G

∑

β∈G


∑

γ∈G

(
Gγα

)T
Gγβ


xαxβ

=
∑

γ∈G

∑

α∈G

∑

β∈G

(
Gγα

)T
Gγβxαxβ

=
∑

γ∈G


∑

α∈G

Gγαxα




T 
∑

β∈G

Gγβxβ




=
∑

γ∈G

(
Gγ(x)

)T
Gγ(x),

where Gγ(x) =
∑

α∈G

Gγαxα ∈ Ξm×m (γ ∈ G). Thus we have shown that each F (x) ∈

Ξm×m
s represented as in (2) for some V ∈ Ssm

+ is a sum of squares of polynomial matrices,
i.e., F (x) ∈ Σm×m.
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For every nonempty finite subset G of Z
n
+, we define

Σm×m(G) =




∑

α∈G

∑

β∈G

V αβ xαxβ :
V ∈ Ssm

+ , where s denotes
the cardinality of G



 .

Then we can rewrite the entire set Σm×m of sums of squares of polynomial matrices as the
union of Σm×m(G) over all nonempty finite subset G of Z

n
+;

Σm×m =
⋃

∅ 6= G ⊂ Z
n
+

Σm×m(G). (3)

For a special case m = 1, we have that

Σ =
⋃

∅ 6= G ⊂ Z
n
+

Σ(G),

Σ(G) =




∑

α∈G

∑

β∈G

Vαβ xαxβ :
V ∈ S t

+,
where t denotes the cardinality of G



 .





(4)

3 A penalty function approach

The term “a penalty function” used below has a slightly different meaning from a conven-
tional penalty function. The difference lies in that it imposes a penalty even for feasible
points of the polynomial SDP P0 although the penalty values for the feasible points tend
to zero as the penalty parameter increases. We may regard it as a special case of the
generalized Lagrangian function for the polynomial SDP P0 given in the next section. We
show convergence of the optimal values of a sequence of penalized polynomial optimization
problems (Theorem 3.2), which will be used to establish convergence of the optimal values
of a sequence of generalized Lagrangian duals of the polynomial SDP P0 in the next section.

Let us first introduce an ideal penalty function φ∞ of the polynomial SDP P0 over B,
defined by

φ∞(x) =

{
0 if x ∈ C,
∞ if x ∈ B\C.

Here C denotes the feasible region {x ∈ B : A(x) � O}. Then the polynomial SDP P0 is
equivalent to the problem

Ψ∞ : minimize a(x) + φ∞(x) subject to x ∈ B.

We will construct a sequence {φp(x) (p ∈ Z+)} of polynomial penalty functions that “con-
verges” to the ideal one φ∞(x) on B.

Take an ω > 0 such that ‖A(x)‖ ≤ ω for every x ∈ B, where ‖N‖ ≡ max
‖z‖=1

‖Nz‖ = the

maximum absolute value of all eigenvalues of N ∈ Sm. (Note that such an ω > 0 always
exists since A(x) is continuous with respect to x in a compact set B). For every x ∈ R

n

and every p ∈ Z+, define

φp(x) = − (I −A(x)/ω)2p •A(x).

5



Here I denotes the m × m identity matrix and we assume that (I −A(x)/ω)0 = I. We
consider the sequence of penalized POPs over the unit ball B

Ψp : minimize a(x) + φp(x) subject to x ∈ B

(p ∈ Z+). Let ψ∗p denote the optimal value of this problem. By definition,

φp(x) ≤ 0 for every x ∈ C (p ∈ Z+).

Hence we see that ψ∗p ≤ ζ∗0 (p ∈ Z+). The lemma below shows that the polynomial function
φp(x) “converges” to φ∞(x) on B as p→∞.

Lemma 3.1.

(a) For any ε > 0, there exists a positive integer p̂ such that −ε ≤ φp(x) for every x ∈ B
and every p ≥ p̂.

(b) If x̃ ∈ B\C and κ > 0 then there exist a positive number δ̃ and a positive integer p̃
such that κ ≤ φp(x) for every x ∈ Uδ̃(x̃)

⋂
B and every p ≥ p̃.

Proof: First we derive an inequality that will be used to show (a) and (b). Let x ∈ B.
Take anm×m orthogonal matrix P and anm×m diagonal matrix M with the eigenvalues
µi of A(x) (i = 1, 2, . . . , m) such that A(x) = PMP T . Then

φp(x) = −(I −A(x)/ω)2p •A(x)

= −Trace(I −PMP T/ω)2pPMP T

= −Trace(I −M/ω)2pM

= −
m∑

i=1

(1− µi/ω)2pµi

= −ω

(
∑

µi≥0

(1− µi/ω)2pµi/ω +
∑

µi<0

(1− µi/ω)2pµi/ω

)
.

Since µi/ω ∈ [0, 1] if µi ≥ 0, we obtain that

φp(x) ≥ −mωµ(p)− ω

(
∑

µi<0

(1− µi/ω)2pµi/ω

)
, (5)

where µ(p) = max {(1− ξ)2pξ : ξ ∈ [0, 1]}. To show (a), we let ε > 0. Then we can find
a positive integer p̂ such that µ(p) ≤ ε/(mω) of every p ≥ p̂. Let x ∈ B and p ≥ p̂. It
follows from (5) that

φp(x) ≥ −mωµ(p) ≥ −ε.

Now we prove (b). Suppose that x̃ ∈ B\C and κ > 0. Since x̃ ∈ B\C, there exist δ > 0
and µ̄ < 0 such that if x ∈ Uδ̃(x̃)

⋂
B then the minimum eigenvalue of A(x) is not greater

than µ̄. Since (1− µ̄/ω) > 1 and µ̄ < 0, we can take a positive integer p̃ such that

−mω − (1− µ̄/ω)2pµ̄ ≥ κ for every p ≥ p̃.
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Suppose that x ∈ Uδ̃(x̃)
⋂
B in the inequality (5). Let µmin denote the minimum eigen-

value of A(x). Then µmin ≤ µ̄ < 0. Hence

φp(x) ≥ −mωµ(p)− (1− µmin/ω)2pµmin ≥ −mω − (1− µ̄/ω)2pµ̄ ≥ κ.

Now we are ready to show the convergence of the optimal values ψ∗p of Ψp (p ∈ Z+) to
the original polynomial SDP P0 as p→∞.

Theorem 3.2. ζ∗0 ≥ ψ∗p → ζ∗0 as p→∞.

Proof: Let xp be an optimal solution of Ψp (p ∈ Z+). Assume on the contrary that
the corresponding optimal value a(xp)+φp(x

p) does not converge to ζ∗0 . Then there is an
ε > 0 and a subsequence {xp (p ∈ J)} for some J ⊂ Z+ such that

a(xp) + φp(x
p) ≤ ζ∗0 − ε (p ∈ J). (6)

Since the subsequence {xp (p ∈ J)} is contained in the compact set B, we may assume
without loss of generality that it converges to x̄ ∈ B. By (6) and (b) of Lemma 3.1,
x̄ ∈ C. By (a) of Lemma 3.1, there exists a p̂ ∈ Z+ such that

a(xp)− ε/2 ≤ a(xp) + φp(x
p) if p ∈ J and p ≥ p̂.

If we take the limit of the subsequence {xp (p ∈ J)}, the the left hand side of the inequality
above converges to a(x̄)− ε/2 ≥ ζ∗0 − ε/2. Hence we obtain that

ζ∗0 − ε < a(xp) + φp(x
p) for every sufficiently large p ∈ J.

This contradicts to the inequality (6).

4 A dual approach

4.1 A generalized Lagrangian dual

We introduce a (generalized) Lagrangian function

λ(x,W ) = a(x)−W (x) •A(x) for every W (x) ∈ Σm×m and x ∈ R
n.

For every W (x) ∈ Σm×m, we consider a (generalized) Lagrangian relaxation

Λ(W ) : minimize λ(x,W ) subject to x ∈ B.

Since B is a nonempty compact subset of R
n, the Lagrangian relaxation Λ(W ) has an

optimal solution. Let λ∗(W ) denote the optimal value of this problem;

λ∗(W ) = min {λ(x,W ) : x ∈ B} .

If W (x) ∈ Σm×m and x ∈ C then A(x) ∈ Sm
+ and λ(x,W ) ≤ a(x). Hence

λ∗(W ) ≤ ζ∗0 for every W (x) ∈ Σm×m.
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The penalized POP optimization problem Ψp in the previous section is a special case of
the Lagrangian relaxation if we take W (x) = (I −A(x)/ω)2p ∈ Σm×m; Ψp is identical to
Λ((I −A(x)/ω)2p).

For every nonempty subset G of Z
n
+, we define a (generalized) Lagrangian dual

Λ(G) : maximize λ∗(W ) subject to W (x) ∈ Σm×m(G).

Let λ∗(G) denote the optimal value of this problem;

λ∗(G) = sup
{
λ∗(W ) : W (x) ∈ Σm×m(G)

}
.

We then see that

λ∗(W ) ≤ λ∗(G) ≤ λ(G ′) ≤ λ∗(Zn
+) ≤ ζ∗0

if W (x) ∈ Σm×m(G) and G ⊂ G ′ ⊂ Z
n
+. (7)

Recall that A denotes the support of the m × m polynomial matrix A(x) involved in
the polynomial SDP P0. We define

A(0) = {0}, A(1) = A
⋃
{0} ⊂ Z

n
+,

A(p+1) = {α + β : α ∈ A(p), β ∈ A(1)} ⊂ Z
n
+ (p = 1, 2, . . . , ).

Theorem 4.1. ζ∗0 ≥ λ∗(A(p)) → ζ∗0 as p→∞.

Proof: It follows from (7) that λ∗(A(p)) ≤ ζ∗0 (p ∈ Z+). By construction, we know
that A(p) forms a support of the m ×m polynomial matrix (I − A(x)/ω)p; hence (I −
A(x)/ω)2p ∈ Σm×m(A(p)). Hence

ψ∗p = min {a(x) + φp(x) : x ∈ B}

= min
{
a(x)− (I −A(x)/ω)2p •A(x) : x ∈ B

}

≤ sup

W (x) ∈ Σm×m(A(p))

min {a(x)−W (x) •A(x) : x ∈ B}

= λ∗(A(p)) (p ∈ Z+).

Therefore we have shown that ψ∗p ≤ λ∗(A(p)) ≤ ζ∗0 (p ∈ Z+). By Theorem 3.2, we obtain
the desired results.

Corollary 4.2. Suppose that a sequence
{
Gp ⊂ Z

n
+ (p ∈ Z+)

}
satisfies

∅ 6= Gp ⊂ Gp+1 (p ∈ Z+) and A(q) ⊂
⋃

p ∈ Z+

Gp (q ∈ Z+). (8)

Then ζ∗0 ≥ λ∗(Gp) → ζ∗0 as p→∞.

Proof: By the first inclusion relation of (8) and (7), we have

λ∗(Gp) ≤ λ∗(Gp+1) ≤ ζ∗0 (p ∈ Z+).

For every q ∈ Z+, (8) ensures the existence of p ∈ Z+ such that A(q) ⊂ Gp; hence
λ∗(A(q)) ≤ λ∗(Gp). Thus the result follows from Theorem 4.1.
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4.2 SOS relaxations of the Lagrangian duals

In this subsection, we present a numerical method for approximating ζ∗0 based on SOS re-
laxations of the Lagrangian duals Λ(Gp) (p ∈ Z+), where

{
Gp ∈ Z

n
+ (p ∈ Z+)

}
is a sequence

satisfying the assumption (8) of Corollary 4.2. For this purpose, we introduce an SOS re-
laxation of the Lagrangian dual Λ(G) (G ∈ Z

n
+). For every triplet of nonempty finite subsets

G, G̃ and Ĝ of Z
n
+, we consider an SOS optimization problem

Λ̂(G, G̃, Ĝ) : maximize η

subject to λ(x,W )− w̃(x)(1− xT x)− η ∈ Σ(Ĝ),

W (x) ∈ Σm×m(G), w̃(x) ∈ Σ(G̃).

In addition to a sequence {Gp ⊂ Z
n
+ (p ∈ Z+)} satisfying (8), we prepare sequences{

G̃p ⊂ Z
n
+ (p ∈ Z+)

}
and

{
Ĝp ⊂ Z

n
+ (p ∈ Z+)

}
such that

∅ 6= G̃p ⊂ G̃p+1 (p ∈ Z+) and Z
n
+ =

⋃

p ∈ Z+

G̃p,

∅ 6= Ĝp ⊂ Ĝp+1 (p ∈ Z+) and Z
n
+ =

⋃

p ∈ Z+

Ĝp.





(9)

Let η∗p denote the optimal value of the problem Λ̂(Gp, G̃p, Ĝp);

η∗p = sup

{
η :

λ(x,W )− w̃(x)(1− xT x)− η ∈ Σ(Ĝp),

W (x) ∈ Σm×m(Gp), w̃(x) ∈ Σ(G̃p)

}
.

Theorem 4.3. ζ∗0 ≥ η∗p → ζ∗0 as p→∞.

Proof: First we observe that η∗p ≤ ζ∗0 (p ∈ Z+). Let ε be an arbitrary positive number.

By Corollary 4.2, there exists a p̄ ∈ Z+ and a W (x) ∈ Σ(G p̄)
m×m such that

a(x)−W (x) •A(x)− (ζ∗0 − ε) > 0 for every x ∈ B.

This implies that the polynomial a(x) −W (x) •A(x) − (ζ∗0 − ε) is positive on the ball
B = {x ∈ R

n : 1−xT x ≥ 0}. By Lemma 4.1 of [8], there exists a w̃(x) ∈ Σ and ŵ(x) ∈ Σ
such that

a(x)−W (x) •A(x)− w̃(x)(1− xT x)− (ζ∗0 − ε) = ŵ(x) for every x ∈ R
n.

By (9), we can take a nonnegative integer p̂ ≥ p̄ such that w̃(x) ∈ Σ(G̃p) and ŵ(x) ∈ Σ(Ĝp)
for every p ≥ p̂. Since W (x) ∈ Σ(G p̄)

m×m ⊂ Σ(Gp)
m×m for every p ≥ p̂, we obtain that

(ζ∗0 − ε) ≤ η∗p ≤ ζ∗0 for every p ≥ p̂.

It is possible to convert the problem Λ̂(G, G̃, Ĝ) into an SDP by applying the conventional
technique commonly used in SOS optimization, but we do not describe the conversion here.
Instead, we derive the SDP in the next section as the dual of the SDP that is obtained by
a primal approach to the polynomial SDP P0.

9



5 A primal approach

The purpose of this section is twofold. The one is to derive an SDP relaxation directly from
the polynomial SDP P0 without applying either a Lagrangian dual or its SOS relaxation.
This part is an extension of Lasserre’s SDP relaxation for POPs to polynomial SDPs. The
other purpose is to show that the dual of the SDP relaxation derived is equivalent to the
the SOS optimization problem Λ̂(G, G̃, Ĝ).

5.1 Adding valid symmetric polynomial matrix inequality con-

straints

For every nonempty finite subset G of Z
n
+ and x ∈ R

n, let (xα : α ∈ G) denote a column
vector consisting of elements xα (α ∈ G). Although the order of the elements xα (α ∈ G)

in the vector is not important in the succeeding discussion, we assume xα precedes xβ

if and only if α ∈ G is lexicographically smaller than β ∈ G. In particular, the vector
(xα : α ∈ G) begins with x0 = 1 when 0 ∈ G.

Let G, G̃ and Ĝ be nonempty finite subsets of Z
n
+. Let s, t and u denote the dimensions

of the vectors (xα : α ∈ G), (xα : α ∈ G̃) and (xα : α ∈ Ĝ), respectively. We consider the
polynomial SDP

P1(G, G̃, Ĝ) : minimize a(x)
subject to

(
(xα : α ∈ G)(xα : α ∈ G)T

)
⊗A(x) ∈ Ssm

+ ,(
(xα : α ∈ G̃)(xα : α ∈ G̃)T

)
(1− xT x) ∈ S t

+,

(xα : α ∈ Ĝ)(xα : α ∈ Ĝ)T ∈ Su
+.

Here ⊗ denotes the Kronecker product of two matrices. If both G and G̃ contain 0 ∈ Z
n
+,

the polynomial SDP P1(G, G̃, Ĝ) turns out to be equivalent to the original polynomial SDP
P0.

5.2 Linearization leading to an SDP relaxation

Since the left hand sides of the inclusion relations in the constraint are symmetric polynomial
matrices, we can rewrite the polynomial SDP P1(G, G̃, Ĝ) as

P2(G, G̃, Ĝ) : minimize
∑

α∈D(G ,G̃,Ĝ)

dα xα

subject to
∑

α∈D(G ,G̃,Ĝ)

Dα xα −D0 ∈ S
sm
+ × S t

+ × S
u
+.

Here

0 6∈ D(G, G̃, Ĝ) ⊂ Z
n
+, dα ∈ R (α ∈ D(G, G̃, Ĝ)),

Dα ∈ Ssm
+ × St

+ × S
u
+ (α ∈ {0}

⋃
D(G, G̃, Ĝ)).
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By replacing each monomial xα by a single variable yα ∈ R (α ∈ D(G, G̃, Ĝ)) in the

polynomial SDP P2(G, G̃, Ĝ), we obtain an SDP relaxation of the polynomial SDP P0

P3(G, G̃, Ĝ) : minimize
∑

α∈D(G ,G̃,Ĝ)

dα yα

subject to
∑

α∈D(G ,G̃,Ĝ)

Dα yα −D0 ∈ S
sm
+ × S t

+ × S
u
+.

5.3 Dual of P3(G, G̃, Ĝ)

The dual of the SDP P3(G, G̃, Ĝ) is given by

P4(G, G̃, Ĝ) : maximize D0 •X

subject to Dα •X = dα (α ∈ D(G, G̃, Ĝ)), X ∈ Ssm
+ × S t

+ × S
u
+.

We write each feasible solution X ∈ Ssm
+ × S t

+ × S
u
+ of P4(G, G̃, Ĝ) as

X = diag(V , Ṽ , V̂ ) =




V O O

O Ṽ O

O O V̂


 ∈ Ssm

+ × S t
+ × S

u
+,

V =
(
V αβ : (α,β) ∈ G × G

)
∈ Ssm

+

(an sm× sm matrix whose (α,β)th block is an m×m matrix V αβ),

Ṽ =
(
Ṽαβ : (α,β) ∈ G̃ × G̃

)
∈ S t

+

(an t× t matrix whose (α,β)th element is Ṽαβ ∈ R),

V̂ =
(
V̂αβ : (α,β) ∈ Ĝ × Ĝ

)
∈ Su

+

(an u× u matrix whose (α,β)th element is V̂αβ ∈ R).

Then we know that X = diag(V , Ṽ , V̂ ) is a feasible solution of the dual SDP P4(G, G̃, Ĝ)
with the objective function value ζ = D0 •X if and only if the identity

a(x)− V •
(
(xα : α ∈ G)(xα : α ∈ G)T ⊗A(x)

)

−Ṽ •
(
(xα : α ∈ G̃)(xα : α ∈ G̃)T (1− xT x)

)

−V̂ •
(
(xα : α ∈ Ĝ)(xα : α ∈ Ĝ)T

)
= ζ for every x ∈ R

n

holds. See Section 6 of [3]. We can rewrite the left hand side of the identity above as

a(x)−


∑

α∈G

∑

β∈G

V αβ xαxβ


 •A(x)

−



∑

α∈G̃

∑

β∈G̃

Ṽαβ xαxβ


 (1− xT x) −

∑

α∈Ĝ

∑

β∈Ĝ

V̂αβ xαxβ.
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Now, recall the relations (3) and (4) on the set Σm×m of sums of squares of polynomial
matrices and the set Σ of sums of real valued polynomials. Then we see that

∑

α∈G

∑

β∈G

V αβ xαxβ ∈ Σm×m(G) ⊂ Σm×m,

∑

α∈G̃

∑

β∈G̃

Ṽαβ xαxβ ∈ Σ(G̃) ⊂ Σ,

∑

α∈Ĝ

∑

β∈Ĝ

V̂αβ xαxβ ∈ Σ(Ĝ) ⊂ Σ.

Thus each feasible solution X = diag(V , Ṽ , V̂ ) of the dual SDP P4(G, G̃, Ĝ) with the
objective function value ζ = D0 •X has induced

(W (x), w̃(x), ŵ(x)) ∈ Σm×m(G)× Σ(G̃)× Σ(Ĝ)

satisfying

a(x)−W (x) •A(x)− w̃(x)(1− xT x)− ŵ(x) = ζ for every x ∈ R
n (10)

by the relations

W (x) =
∑

α∈G

∑

β∈G

V αβ xαxβ ∈ Σm×m(G) ⊂ Σm×m,

w̃(x) =
∑

α∈G̃

∑

β∈G̃

Ṽαβ xαxβ ∈ Σ(G̃) ⊂ Σ,

ŵ(x) =
∑

α∈Ĝ

∑

β∈Ĝ

V̂αβ xαxβ ∈ Σ(Ĝ) ⊂ Σ.

Conversely, every (W (x), w̃(x), ŵ(x)) ∈ Σm×m(G) × Σ(G̃) × Σ(Ĝ) satisfying the identity

(10) induces a feasible solution X = diag(V , Ṽ , V̂ ) of the dual SDP P4(G, G̃, Ĝ) with the

objective function value ζ = D0 •X. Therefore we can rewrite the dual SDP P4(G, G̃, Ĝ)
as

P5(G, G̃, Ĝ) : maximize ζ

subject to a(x)−W (x) •A(x)− w̃(x)(1− xT x)− ζ ∈ Σ(Ĝ),

W (x) ∈ Σm×m(G) and w̃(x) ∈ Σ(G̃),

which is identical to the SOS optimization problem Λ̂(G, G̃, Ĝ).

6 Concluding discussions

Throughout this paper, we have focused on theoretical convergence of the optimal values
of the sequence of SOS relaxations of the polynomial SDP P0 based on analysis of the
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penalized problem Ψp and the Lagrangian dual Λ(G) of P0 (Theorem 4.3). We have also
shown a relationship between the SOS relaxation and Lasserre’s SDP relaxation applied to
the polynomial SDP P0.

Practical aspects of the SOS relaxation are remaining issues to be investigated. To solve
an SOS relaxation of a polynomial optimization problem or a polynomial SDP, we need to
convert it into a conventional SDP. The size of the resulting SDP increases very rapidly as
the original problem becomes larger and/or the maximum degree of the polynomials involved
there grows. This prevents the SDP relaxations from being used widely in practice. One
way to reduce this difficulty is to utilize powerful computing resources for solving large scale
SDPs. See [5] for example. Another way is to exploit sparsity of the data of the original
problem to reduce the size of its SDP relaxation without losing the effectiveness. We can
apply similar techniques proposed in the recent paper [2] for sparse polynomial optimization
problems to sparse polynomial SDPs. But those techniques may not be sufficient to solve
polynomial SDPs except very small size and/or low degree problems.

The importance of polynomial SDPs that can be observed with a key application such
as bilinear matrix inequalities in system and control theory has lead us to investigate the
SOS relaxations of polynomial SDPs in this paper. A further extension of SOS relaxations
to a class of polynomial conic optimization problems may be a possibility. This will be a
subject of future study.
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