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Abstract.

Solving large scale optimization problems requires a huge amount of computational
power. The size of optimization problems that can be solved on a few CPUs has been lim-
ited due to a lack of computational power. Grid and cluster computing has received much
attention as a powerful and inexpensive way of solving large scale optimization problems
that an existing single-unit CPU cannot process. The aim of this paper is to show that
grid and cluster computing provides tremendous power to optimization methods. The
methods that this article picks up are a successive convex relaxation method for quadratic
optimization problems, a polyhedral homotopy method for polynomial systems of equa-
tions and a primal-dual interior-point method for semidefinite programs. Their parallel
implementations on grids and clusters together with numerical results are reported. The
article also mentions a grid portal system for optimization problems briefly.
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1 Introduction

Optimization problems have a variety of practical applications in various fields such
as operations research, engineering, science, biology and economics. Many combinatorial
and nonconvex optimization problems are known to be NP-hard, which means that there
exists no algorithm that finds an optimal solution in polynomial time unless P = NP.
Hence, solving large scale combinatorial and nonconvex optimization problems require a
huge amount of computational time and resources, and the size of such problems that
we can solve has been limited. As computing resources continue to improve, however,
optimal solutions of larger scale optimization problems become more achievable. In
particular, grid and cluster computing technology has recently received much attention
as a powerful and inexpensive methodology for solving large scale optimization problems
that an existing single-unit CPU cannot process.

To solve large scale optimization problems, we need new computing infrastructure
which enables us to easily access to computational resources including hardware and
software library distributed across a wide area network like the Internet. For example,
Applegate et al. [2] implemented the Danzig, Fulkerson and Johnson’s cutting plane
method for the large scale TSP (traveling salesman problem). They obtained the optimal
solution of the TSP that has 15,112 cities (nodes) in Germany. This problem is the
largest scale TSPLIB 1 instance that have been solved to date. The computation was
executed on a network of 110 processors located at Rice and Princeton Universities. They
estimated the total computation time was 22.6 years, scaled to a Compaq EV6(21264)
Alpha processor running at 500MHz. A group of researchers at the University of Iowa and
Argonne National Laboratory solved the QAP (quadratic assignment problem) instance
called NUG30 in QAPLIB 2 using the Condor 3 developed the University of Wisconsin.
Condor is a system of daemons and tools to utilize commodity computing resources
including idle desktop machines for high-throughput computing. NUG30 is known as a
huge scale QAP that would require more than 10 years of computation time by a single
CPU. They obtained an optimal solution in just seven days using the Condor system and
653 CPUs on average. See the paper [1] for more details.

In this paper, we present grid and cluster computing for some optimization problems
with numerical results. In Section 2 and 3, we focus our attention on GridRPC, which
is an RPC system redesigned for Grid applications. Some GridRPC systems such as
Netsolve and Ninf are widely used. The Ninf system [11] developed by AIST (National
Institute of Advanced Industrial Science and Technology, Japan) employs a client-server
model, where server and client machines are connected via a local area network or the
Internet. We implemented highly parallel algorithms for some optimization problems and
polynomial systems of equations with the use of the Ninf system on several PC clusters
connected via a high speed local area network and/or the Internet. In Section 4, we briefly
explain the SDPARA (SemiDefinite Programming Algorithm paRAllel version) [16], a
parallel implementation of the SDPA [15], and present numerical results on PC clusters.
Section 5 presents a Grid Portal system which enables users who have little computational
resource for parallel optimization softwares.

1http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/
2http://www.opt.math.tu-graz.ac.at/qaplib/
3http://www.cs.wisc.edu/condor/
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2 Parallel Successive Convex Relaxation Method for

Nonconvex Quadratic Optimization Problems

Figure 1: Ninf client-server model

The QOP (Quadratic Optimization Problem) covers various important nonconvex
mathematical programs such as 0-1 linear and quadratic integer programs, linear com-
plementarity problems, bilevel quadratic programs, linear and quadratic fractional pro-
grams, and so on. Let R

n and Sn denote the n-dimensional Euclidean space and the
space of n× n real symmetric matrices, respectively. A general QOP is described in the
the following form:

(QOP)

∣

∣

∣

∣

max cT x

s.t. γi + 2qT
i x + xT Qix ≤ 0 (i = 1, . . .m),

(1)

where c ∈ R
n, γi ∈ R, qi ∈ R

n and Qi ∈ S
n (i = 1, . . . , m). When a given QOP has

a quadratic objective function such as γ0 + 2qT
0 x + xT Q0x, we can transform it into

QOP (1) by replacing the quadratic objective function with a new variable t and adding
−γ0 − 2qT

0 x − xT Q0x + t ≤ 0 to the set of inequality constraints. A general QOP is
known as one of the most significant nonlinear programming problems. QOPs cover not
only economics and engineering applications but also various important nonconvex math-
ematical programs. Because of their theoretical and computational difficulties, however,
solvable QOPs had been limited to convex QOPs where all Qis are assumed to be positive
semidefinite or general QOPs with small size.

The SCRM (Successive Convex Relaxation Method) proposed by Kojima-Tuncel [7]
is a powerful numerical method to compute upper bounds of general QOPs by repeated
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applications of SDP (semidefinite programming) relaxations. The SCRM generates and
solves a large number of SDP problems at each iteration. Takeda et al. [12] reported
that the SCRM can deal with some larger scale QOPs through numerical experiments
on a PC cluster. To get more accurate upper bounds and/or to process larger scale of
QOPs, we need more and more computing resources. We implemented a highly parallel
SCRM on the Ninf system. Figure 1 shows that a Ninf client-server model. The Ninf
client controls the SCRM applied to a QOP and generates a large number of subproblems
each of which forms an SDP problem at each iteration. All generated SDP problems are
sent to the Ninf server machines. Then each Ninf server solves an SDP problem using
the software SDPA [15]. Note that each Ninf server solves only one SDP problem at a
time. After finishing the execution of the SDPA, the result is sent back to the Ninf client
machine. Takeda et al. [12] also showed computational efficiency of the SCRM by varying
the number of Ninf servers. They reported that SDP problems were allocated to each
Ninf server in balance and the total computational time consumed by each Ninf server
was almost the same. Therefore a good performance and high scalability were attained.

Figure 2: Grid Environment(Kyoto ⇐⇒ Tokyo)

We now show some numerical experiments of the SCRM on a Grid environment.
Figure 2 illustrates that we have two PC clusters which are located in Kyoto and Tokyo.
The Kyoto cluster has 4 nodes which are connected to a Ninf client PC through LAN
(100BASE-TX). The Tokyo cluster has 4 nodes which are connected to the Ninf client
PC through the Internet called SINET. We estimate the average network speed of the
SINET between Kyoto and Tokyo to be about 2 to 4 Mbps. Table 1 shows that numerical
results of the SCRM on the grid environment illustrated in Figure 2. The first row “#
subproblems” denotes that the total number of SDP problems which the Ninf servers in
the Kyoto cluster and the Tokyo cluster solved, respectively. The second row denotes
that the total execution time of the SDPA in each cluster. The total execution time of
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the Kyoto cluster is almost the same as that of the Tokyo cluster. Note also that the total
transmitting time between the Ninf client and Ninf servers is extremely small. ¿From
the Table 1, we can say that the SCRM is well paralleled in the grid environment.

Table 1: Numerical results on grid environments
Prob. name LC80-144 BLevel20-3
Ninf Server Kyoto Tokyo Kyoto Tokyo

# subproblems 1795 1333 883 597
total execution time(sec.) 16486.5 16395.6 1053.6 984.2

total trans. time C → S(sec.) 0.150 0.117 0.046 0.028
total trans. time C ← S(sec.) 0.275 0.069 0.130 0.182

3 Parallel Polyhedral Homotopy Method

Polynomial systems have various applications in many fields of science and engineering.
The software package “PHoM” [6] is designed to find all isolated (real and complex)
solutions of a polynomial system of equations f(x) = 0 (such as the cyclic n problem, see
Table 2) using a polyhedral homotopy method. The package consists of three modules.
The first module which we call “StartSystem” constructs a family of polyhedral-linear
homotopy functions. Takeda et al. [13] implemented a highly paralleled StartSystem
using the Ninf. The second module traces the homotopy paths to compute all isolated
solutions of a polynomial system of equations. The Ninf servers trace the homotopy
paths by applying the predictor-corrector method. The third module verifies whether all
isolated solutions of the polynomial system of equations have been computed correctly.

Table 2: cyclic n problem

x1 + x2 + · · ·+ xn = 0
x1x2 + x2x3 + · · ·+ xnx1 = 0
x1x2x3 + · · ·+ xnx1x2 = 0
. . .
x1x2x3 · · ·xn − 1 = 0,

Table 3: noon-9 problem

x1x
2
2 + x1x

2
3 + · · ·+ x1x

2
9 − 1.1x1 + 1 = 0

x2x
2
1 + x2x

2
3 + · · ·+ x2x

2
9 − 1.1x2 + 1 = 0

. . .
x9x

2
1 + x9x

2
2 + · · ·+ x9x

2
8 − 1.1x9 + 1 = 0

We also employ the Ninf client-server system, illustrated in Figure 1, for the parallel
implementation of the first and second modules of the PHoM. Table 4 shows numerical
results of the first and second modules for the noon-9 problem. This problem has 19,665

4



Table 4: Numerical results of the homotopy method (noon-9 problem)
StartSystem Trace Total

# CPUs time(s.) sp-up-raito time(s.) sp-up-ratio time(s.) sp-up-ratio
1 43 1.00 44,119 1.00 44,162 1.00
2 25 1.72 22,192 1.99 22,217 1.99
4 22 1.95 11,109 3.97 11,131 3.97
8 14 3.07 5,548 7.95 5,562 7.94
16 14 3.07 2,822 15.63 2,826 15.57
32 20 2.15 1,435 30.74 1,455 30.35

isolated solutions. All numerical experiments were executed on the Presto I cluster
which has 64 nodes (each CPU is Celeron 500MHz). The ’sp-up-ratio’ stands for the
computation time (# of CPUs is 1) divided by the computation time (# of CPUs is k).
If ’sp-up-ratio’ is sufficiently close to k, we can regard the software as well paralleled on
the Ninf client-server system. Takeda et al. [13] reported that the computation of mixed
cells by StartSystem (the first module) is suitable for parallel computation through some
numerical experiments. We furthermore observe from Table 4 that tracing all homotopy
paths (the second module) is also suitable for parallel computation on the Ninf client-
server system. Table 5 also shows numerical results of the second module for the cyclic
problems with dimensions n = 11, 12 and 13. There are many homotopy paths, which
can be traced independently in parallel; specifically the cyclic 13 problem has 208,012
homotopy paths, and the above noon-9 problem has 19,665 homotopy paths. We use two
PC clusters which are located in Tokyo Institute of Technology. All homotopy paths of
the cyclic 11 problem were computed in the Presto I cluster, while all homotopy paths
of the cyclic 12 and 13 problems were computed on the Presto III cluster which has 256
nodes and 512 CPUs (each CPU is Athlon 1900+). From Table 5, we observe that the
second module of the PHoM is quite suitable for parallel computation on PC clusters.
Note that more than 5,000 seconds were required to compute all homotopy paths of
the cyclic 13 problem even when we used 256 CPUs simultaneously. Therefore parallel
computing is indispensable to process larger scale polynomial systems of equations.

Table 5: Numerical results of tracing homotopy paths (cyclic n problem)
cyclic-11 cyclic-12 cyclic-13

# CPUs time(s.) sp-up-raito time(s.) sp-up-ratio time(s.) sp-up-ratio
2 47,345 1.00
4 23,674 2.00
8 11,852 3.99
16 5,927 7.99
32 2,967 15.96
64 1,487 31.84 2,592 1.00
128 1,332 1.95 10,151 1.00
256 703 3.69 5,191 1.95

# paths traced 16,796 41,696 208,012
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4 Parallel Implementation of Semidefinite Program-

ming

In the last decade, SDP problems have been intensively studied in theoretical, numeri-
cal and practical aspects in various fields such as interior-point methods, combinatorial
optimization, control and systems, robust optimization and quantum chemistry. Let Sn

denote the vector space of n× n symmetric matrices. For a pair of matrices X, Y ∈ Sn,
the inner product is defined as X •Y =

∑n
i=1

∑n
j=1

XijYij. We use the notation X ∈ Sn
+

(Sn
++) to indicate that X ∈ Sn is positive semidefinite (or positive definite). Given

Ai ∈ S
n (i = 0, 1, . . . , m) and b ∈ R

m, the standard form SDP problem is written as
follows:

minimize A0 •X
subject to Ai •X = bi (i = 1, 2, . . . , m), X ∈ Sn

+

}

. (2)

The corresponding dual problem is as follows:

maximize

m
∑

i=1

bizi

subject to

m
∑

i=1

Aizi + Y = A0, Y ∈ Sn
+



















. (3)

It is known that the primal-dual interior point method is capable of solving these
problems in polynomial time. The SDPA (SemiDefinite Programming Algorithm) [15]
is an optimization software, written by the C++ language, of a PDIPM (primal-dual
interior-point method) for solving the standard form SDP problem. The SDPA incorpo-
rates a special data structure for handling block diagonal data matrices and an efficient
method proposed by Fujisawa, Kojima and Nakata [3] for computing search directions
when problems to be solved are large scale and sparse. In many applications, however,
SDP problems become too large for SDP software packages including the SDPA to solve
on a single processor. It is well-known that the PDIPM for SDP problems has two major
time consuming parts at each iteration even if we exploit the sparsity of the date matri-
ces. The first part is the computation of the so-called Schur complement matrix. The
second part is the Cholesky factorization of the Schur complement matrix. These two
parts are called ELEMENTS and CHOLESKY in Figure 3 below.

The SDPARA (SemiDefinite Programming Algorithm PARAllel version) [16] is a par-
allel version of the SDPA on multiple processors and distributed memory, which replaces
these two bottleneck parts mentioned above by their parallel implementation using MPI
and ScaLAPACK. The SDPARA reads input data m, n, b, A0, A1, . . ., Am and each
processor keeps the memory space for the input data and variables X, Y , z indepen-
dent of other processors, while the Schur complement matrix is divided and stored on
each processor. The SDPARA can compute each row of the Schur complement ma-
trix independently in parallel and applies a parallel Cholesky factorization provided by
ScaLAPACK to the Schur complement matrix. Figure 3 explains the main features of
the SDPARA. The SDPARA on a PC cluster attains high scalability for large scale SDP
problems. The largest scale problem arising from the quantum chemistry [8] which we
can solve involves a 24, 503× 24.503 Schur complement matrix. For more details, see the

6



Figure 3: The SDPARA (SemiDefinite Programming Algorithm PARAlell Version)
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Yamashita et al. [16]. Zhao et al. [17] proposed another SDP formulation of the quantum
chemistry. The size of the Schur complement matrix of their formulation is not so large,
however, the size of matrices X and Y are very large compared with the SDP formu-
lation proposed in [8] (See Table 6). We solved these two problems on the PC cluster
which we call ACT-JST cluster. The ACT-JST cluster in Tokyo Denki University has
40 nodes (each node has 1 or 2 GB memory) and 80 CPUs (Athlon 1.2GHz).

Table 6: Large scale problems arising from the quantum chemistry
problem (1):Nakata et al. [8] (2):Zhao et al. [17]

size of the Schur complement matrix (= m)) 24,503 7,230
size of X and Y (= n) 630 5,990

time(s.) 4153.5 (64CPUs) 38009.0 (32CPUs)

As we described above, each processor must maintain all input data and variables,
whereas the Schur complement matrix is stored on distributed memory. Therefore, the
current version of the SDPARA is suitable for a large scale SDP problem which involves
a large Schur complement matrix and not so large variables like the SDP problem (1)
in Table 6. The SDP problem (2) in Table 6 requires that all processors need more
than 1 GB for input data, variables and the distributed Schur complement matrix. AS a
given SDP problem to be solved gets larger, it becomes difficult to share common input
data and variables with all processors; we eventually need to distribute input data and
variables among the processors to save memory in each processor.

We also developed a new software package called SDPA-C to exploit the sparsity
structure of large scale SDP problems based on some fundamental results about positive
semidefinite matrix completion [5, 9]. The SDPARA-C [10] is an parallel implementa-
tion of SDPA-C using the parallel computing techniques including the ones used for the
SDPARA. We confirm that SDPARA-C attains high scalability and works efficiently to
solve large scale and sparse SDP problems through some numerical experiments on PC
clusters.

5 Future Works

We are planning to apply Grid and Cluster computing to some other optimization prob-
lems such as the vehicle routing problem with time windows and more general mixed in-
teger programming problems. So far we have mainly employed the Ninf GridRPC system
(which we call Ninf-1). Tanaka et al. [14] have recently redesigned the Ninf and imple-
mented a new GridRPC system called Ninf-G. The Ninf-G is a full re-implementation of
the Ninf-1 using Globus Toolkit. This takes advantage of high interoperability with some
other Globus-based Grid systems. We have plans to reconstruct our software packages
such as the SCRM and the PHoM using the Ninf-G and Globus Toolkit.

We are also developing a grid portal system for some optimization problem soft-
wares including the SDPARA, which enables users to easily perform parallel computa-
tion through the Internet. GridLib in Figure 4 developed by AIST (National Institute of
Advanced Industrial Science and Technology, Japan) provides a development framework
to construct a virtual computer center as ASP (Application Service Provider). For a
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Figure 4: A Grid Portal System for the SDPARA

GridLib user, no particular knowledge about the Web securities and the Web program-
ming is needed. We have already finished making a grid portal system for the SDPARA
with a little deal of trouble. We mention that little modification to the SDPARA is
necessary to portalize it. The user first access the Web portal site, select an application
and a problem to be solved. GridLib starts up a Ninf-G client program associated with
the application selected, and send the problem to a Ninf-G server over the Internet. Now
the Ninf-G server plays the role of a Ninf-1 client, which calls Ninf-1 servers among a
PC cluster to execute the SDPARA. After finishing the execution of the SDPARA, the
result is back to the Web portal site following the reverse route.
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