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Abstract The SDPA (SemiDefinite Programming Algorithm) is known as efficient computer software based
on the primal-dual interior-point method for solving SDPs (Semidefinite Programs). In many applications,
however, some SDPs become larger and larger, too large for the SDPA to solve on a single processor. In
execution of the SDPA applied to large scale SDPs, the computation of the so-called Schur complement
matrix and its Cholesky factorization consume most of computational time. The SDPARA (SemiDefinite
Programming Algorithm PARAllel version) is a parallel version of the SDPA on multiple processors and
distributed memory, which replaces these two parts by their parallel implementation using MPI and ScaLA-
PACK. Through numerical results, we show that the SDPARA on a PC cluster consisting of 64 processors
attains high scalability for large scale SDPs without losing the stability of the SDPA.
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1 Introduction

Semidefinite Programming (SDP) has become one of the most attractive problems in mathematical pro-
gramming in recent years. Roughly speaking, it is an extension of Linear Programming (LP) having a linear
objective function over linear constraints in nonnegative vector variables to an optimization problem having
a linear objective function over linear constraints in symmetric positive semidefinite matrix variables.

The extension has brought a lot of applications in many fields. For examples, linear matrix inequalities
in control theory can be formulated as SDPs [5]; approximate values of maximum cut problems and theta
functions in graph theory can be computed efficiently through their SDP relaxations [10]; robust quadratic
optimization, which is an LP over ellipsoidal uncertainty, can be reduced to an SDP. See [3, 22] for more
applications.

The Primal-Dual Interior-Point Method (PDIPM) is known as one of the most powerful numerical
methods for general SDPs. The PDIPM not only has excellent features such as polynomial-time convergence
in theory, but also solves various SDPs efficiently in practice. See [6, 11, 12, 14, 18, 19, 23].

The SDPA (SemiDefinite Programming Algorithm) is computer software for general SDPs based on the
PDIPM. In their paper [24], Yamashita-Fujisawa-Kojima reported high performance of the SDPA 6.0 to
various problems including SDPLIB [7] benchmark problems. The high performance of the SDPA 6.0 is
mainly due to exploiting sparsity in input data [8] and computation of step lengths by the Lanzcos method
[20]. However, some SDPs in the real world, such as variational calculations arising from quantum chemistry
[16, 17], get larger and larger. Solving such large scale SDPs on a single present-day computer is still very
difficult because it would require enormous time and memory. On the other hand, there has been a rapid
and continuing growth of the field of high performance computing. In particular, cluster computing now
makes it possible to run a parallel program easily on multiple processors and distributed memory, and
computation on distributed memory enables us to solve larger problems at high speed which we could not
have attained so far.

In this paper, we describe the SDPARA (SemiDefinite Programming Algorithm PARAllel version), a
parallel implementation of the SDPA, and present numerical results on PC clusters. The SDPARA maintains
the numerical stability of the SDPA 6.0 and attains high scalability.

The paper is organized as follow. In Section 2, we first introduce a primal-dual pair of SDPs. Then we
outline an algorithmic framework of the PDIPM on a single processor, and point out that its bottleneck
lies in constructing and solving the so-called Schur complement equation to compute a search direction in
each iteration. In Section 3, we describe some technical details on how the SDPARA resolves the bottleneck
stemmed out of the Schur complement equation by applying parallel computation with the use of MPI and
ScaLAPACK [4] on multiple processors. Section 4 presents some numerical results of the SDPARA on a
PC cluster and shows its high scalability. In Section 5, we compare the SDPARA to the PDSDP [2], which
is the only existing software for solving general SDPs in parallel until now, through some numerical results.
We give some concluding remarks in Section 6.

2 An Algorithmic Framework of the SDPA and its Bottlenecks

We use the notation S
n for the set of n × n symmetric matrices, and S

n
+ for the set of n × n symmetric

positive semidefinite matrices, respectively. We also use the notation X � O (X � O) for X ∈ S
n to

be positive semidefinite (positive definite, respectively). We use the inner product in the space of S
n, i.e.,

U • V by U • V =
∑

i,j UijVij for U , V in S
n. Let ci ∈ R (i = 1, 2, . . . , m) and F 0, F 1, . . . , F m ∈ S

n be
input data. We are concerned with the standard form SDP P and its dual D.

SDP





P: minimize
m∑

i=1

cixi

subject to X =

m∑

i=1

F ixi − F 0, X � O,

D: maximize F 0 • Y

subject to F i • Y = ci (i = 1, 2, . . . , m), Y � O.

(1)

In this form, (x, X) ∈ R
n×S

n denotes a primal variable and Y ∈ S
n a dual variable. We call m the number

of equality constraints in D and n the size of the matrix variables (in P and D). We say that (x, X) and Y
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are feasible solutions of P and D if they satisfy the constraints of P and D, respectively, and that they are
optimal solutions of P and D if they attain the minimum and the maximum objective function values of P
and D in addition to their feasibility, respectively. Interior feasible solutions (x, X) of P and Y of D are
feasible solutions such that X � O and Y � O, respectively. For convenience, we say that (x, X, Y ) is a
feasible solution (an optimal solution, an interior-feasible solution) of the SDP if (x, X) and Y are feasible
solutions (optimal solutions, interior-feasible solutions) of P and D.

A common basic idea behind most PDIPMs is described as numerical tracing of the central path C ={
(x(µ), X(µ), Y (µ)) ∈ R

m × S
n
+ × S

n
+ : µ > 0

}
, where each (x(µ), X(µ), Y (µ)) is defined as the solution of

the system of equations

X =

m∑

i=1

F ixi − F 0 � O, F i • Y = ci (i = 1, 2, . . . , m), Y � O and XY = µI .

Here I denotes the n × n identity matrix. It is well-known that for each µ > 0 the system above has the
unique solution (x(µ), X(µ), Y (µ)) under the assumptions

• F 1, F 2, . . . , F m are linearly independent,

• there exists an interior feasible solution (x, X, Y ) of the SDP.

Under these assumptions, it is also well-known that (x(µ), X(µ), Y (µ)) converges to an optimal solution
of the SDP as µ → 0. More specifically, each (x(µ), X(µ), Y (µ)) is an interior feasible solution of the SDP
with a duality gap

n∑

i=1

cixi − F 0 • Y = X(µ) • Y (µ) = nµ.

This identity can be verified directly from the definition of (x(µ), X(µ), Y (µ)).
The SDPA starts from a point (x0, X0, Y 0) such that X

0 � O and Y
0 � O. It should be noted that

the initial point (x0, X0, Y 0) is not necessarily a feasible solution of the SDP. We suppose that we have
an (x, X, Y ) satisfying X � O and Y � O as an initial point or the kth iterate (k ≥ 1), and we present
below how we compute the next iterate (x̄, X̄, Ȳ ). Let µ = X • Y /n. If the current point (x, X, Y ) lies
on the central path C, then (x, X, Y ) = (x(µ), X(µ), Y (µ)) holds with µ = X •Y /n. Thus we may regard
the point (x(µ), X(µ), Y (µ)) with µ = X • Y /n as the “nearest” point on C from (x, X, Y ) even when
(x, X, Y ) does not lie on C. Assuming this, we choose a target point (x(µ′), X(µ′), Y (µ′)) on C, where
µ′ = βµ. Generally, we take β ∈ [0, 1] depending on estimate on how close the current point (x, X, Y ) is
to the central path C and/or to the boundary of the interior of the region R

m × S
n
+ × S

n
+ in which every

iterate is restricted to move. In principle, we take a larger β close to 1 to move towards the center of the
region when the current point (x, X, Y ) is near to the boundary of the region, and a smaller β close to 0
to decrease the duality gap when the current point (x, X, Y ) is near to the central path.

Then we compute a search direction (dx, dX, dY ) from the current point (x, X, Y ) toward the target
point (x(µ′), X(µ′), Y (µ′)) by solving the system of modified Newton equation





∑m

i=1
F idxi − dX = P ,

F i • d̂Y = di (i = 1, 2, . . . , m),

dXY + Xd̂Y = R, dY = (d̂Y + d̂Y
T
)/2,

(2)

where P = F 0 −
∑m

i=1
F ixi + X, di = ci − F i • Y (i = 1, 2, . . . , m) and R = µ′

I − XY . Note that the

symmetrization of the matrix d̂Y is needed for Y + dY being a symmetric matrix. This search direction
is called the HRVW/KSH/M direction [11, 12, 14]. There have been proposed various search directions as
systems of differently modified Newton equations. The HRVW/KSH/M direction is employed in the SDPT3
[19] and the CSDP [6] besides the SDPA. We update the current point (dx, dX, dY ) to the new iterate
(x + αpdx, X + αpdX, Y + αddY ), where αp, αd ∈ (0, 1] are step size to keep the new iterate within the
interior of the region R

m ×S
n
+ × S

n
+. We repeat this procedure until µ = X •Y /n and the feasibility errors

‖X−
∑m

i=1
F ixi +F 0‖, |F i •Y − ci| (i = 1, 2, . . . , m) get sufficiently small, where ‖ ·‖ denotes some matrix

norm.
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In the procedure described above, solving the system of modified Newton equation (2) in the search
direction (dx, dX , dY ) is the most time consuming part. We reduce (2) to

Bdx = r (3)

dX =
m∑

i=1

F idxi − P

d̂Y = X
−1(R − dX Y ), dY = (d̂Y + d̂Y

T
)/2,

where

Bij = (X−1
F iY ) • F j (i = 1, 2, . . . , m, j = 1, 2, . . . , m)

ri = −di + F i • (X−1(R + PY )) (i = 1, 2, . . . , m).

We call the equation (3) the Schur complement equation and the matrix B the Schur complement matrix,
respectively. It is well-known that B becomes a symmetric positive definite matrix whenever X and Y

are positive definite and the linear independence assumption on the input data matrices F 1, F 2, . . . , F m is
satisfied; hence (2) determines the unique search direction (dx, dX, dY ) even when the central path C does
not exist. In each iteration of the SDPA, we first compute the elements in the Schur complement matrix B

and then applies the Cholesky factorization to B to solve the Schur complement equation (3).
What we want to emphasize here strongly is that in general most of the computational time in each

iteration of the SDPA is occupied by computation of the elements of the Schur complement matrix B and
its Cholesky factorization. Although the former computation heavily depends on how sparse the input data
matrices F 1, F 2, . . . , F m are [8], it often occupies the largest portion of the computational time. In addition,
the Schur complement matrix B usually becomes fully dense even when input data matrices are sparse.
Since the Cholesky factorization of B needs m3/3 multiplication, it sometimes takes longer computational
time than the computation of the elements of B especially when the input data matrices are sparse and/or
the number m of the equality constraints of D is much larger than the size n of the matrix variables.

In order to confirm the above fact numerically, we pick up two characteristic problems from SDPLIB
[7], ’control11’ and ’theta6’. The former is an SDP arising from control theory and the latter a Lovasz
theta problem arising from graph theory, respectively. Table 1 shows how much proportion of the total
computational time is occupied by the computation of the elements of the Schur complement matrix B,
denoted by “ELEMENTS”, and the Cholesky factorization, denoted by “CHOLESKY”, in comparison to
the other parts, denoted by “Others”. “Total” denotes the total computational time in second. We executed
the SDPA 6.0 on the single Pentium 4 (2.2 GHz) CPU and 1GB memory under Linux 2.4.18.

control11 theta6
CPU time(sec) ratio CPU time(sec) ratio

ELEMENTS 451.5 90.6% 77.1 26.4%
CHOLESKY 37.7 9.6% 203.0 69.4%

Others 9.2 1.8% 12.4 4.2%
Total 498.4 100.0% 292.5 100.0%

Table 1: Performance of the SDPA 6.0 for control11 and theta6 on the single processor

Table 1 explicitly indicates that about 90% of computational time was spent for ELEMENTS in control11
and about 70% for CHOLESKY in theta6, respectively. In both cases, the computational time spent in
the other portions of the SDPA is less than 5%. In solving many SDPs by the SDPA, ELEMENTS and
CHOLESKY occupy most of the computational time. Therefore, applying parallel computation to these
two parts ELEMENTS and CHOLESKY is quite reasonable to shorten the total computational time. This
is not true, however, that when the size of the matrix variables X and Y is as large as the number m of the
equality constraints and the data matrices F 1, F 2, . . . , F m have a special sparse structure. In such a case,
the two parts ELEMENTS and CHOLESKY are expected to occupy only a small part of the computational
time, and their parallel computation does not work effectively. The max-cut problem is such an example
whose numerical results are reported in Section 5.
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3 Parallel Implementation of the SDPA

To accelerate ELEMENTS (the computation of the elements of the Schur complement matrix B) and
CHOLESKY (the Cholesky factorization of B), we adopt parallel computation with the use of MPI (Mes-
sage Passing Interface) for communications between multiple processors and ScaLAPACK (Scalable Linear
Algebra PACKages) [4] for parallel Cholesky factorization routine on multiple processors. We call the par-
allel version of the SDPA as the SDPARA (SemiDefinite Programming Algorithm PARAllel version ). Let
N be the number of available processors, and attach the numbers from 1 through N to each processor.
The SDPARA starts its execution by reading the input data m, n, c, F 0, F 1, . . . , F m into the processor
1. Then the processor 1 distributes all the data to the other processors 2, 3, . . . , N so that either of the
processors could participate in any portion of the PDIPM. After this distribution, each processor has the
input data m, n, c, F 0, F 1, . . . , F m, and then it allocates memory space for the variables x, X, Y indepen-
dently from other processors. Afterall the retentions by each processor are those input data and variables.
As we describe below, however, the Schur complement matrix B is stored on distributed memory in two
different ways; the entire elements of each row of B is computed and stored temporarily in a single proces-
sor (hence each processor computes multiple rows B independently from the other processors), and then
they are redistributed according to the two dimensional block-cyclic distribution for its parallel Cholesky
factorization.

We now describe how to compute the elements of B in parallel. Since each element of B is of the
form Bij = (X−1

F iY ) • F j , all elements Bij (j = 1, 2, . . . , m) in the ith row share a common matrix
(X−1

F iY ). If two different processors shared the computation of those elements, they would need to
compute the entire matrix (X−1

F iY ) in duplicate or they would need to transfer partial elements of the
matrix to each other. Hence, to avoid duplicate computation of X

−1
F iY and communication time between

different processors, it is reasonable to require a single processor to compute the entire matrix (X−1
F iY )

and all elements Bij (j = 1, 2, . . . , m) in the ith row. On the other hand, if k 6= i then we can compute
the matrix (X−1

F kY ) and the elements Bkj (j = 1, 2, . . . , m) independently from them. Thus we assign
the computation of the elements in each row of B to a single processor. More precisely, the ith row of B

is computed by processor i%N , where a%b denotes the remainder of a divided by b if it is nonzero or b if
it is zero. We illustrate in Figure 1 the case when B is a 9 × 9 matrix and the number of processors is
N = 4. For example, B35 and B39 are computed by the processor 3, and B28 and B67 are computed by the
processor 2. We should mention that only the upper triangular part of B is necessary to compute because
B is symmetric and that we can consistently combine the technique [8] employed in the SDPA for exploiting
the sparsity of the input data matrices F 1, F 2, . . . , F m with the parallel computation because the technique
is adapted row-wisely. Although the parallel implementation of ELEMENTS here is very simple, it is very
efficient as we will see through numerical results in Section 4.

Figure 1: Computation of the Schur complement
matrix B
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Figure 2: Two-dimensional block-cyclic distribution
of the Schur complement matrix B
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After the computation of the elements of the Schur complement matrix B, we apply the parallel Cholesky
factorization, provided by ScaLAPACK [4], to B. Since ScaLAPACK assumes the elements of a positive
definite matrix to be factorized are distributed according to the two-dimensional block-cyclic distribution
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over distributed memory, what the SDPARA needs to do before calling the parallel Cholesky factorization
routine is to redistribute the elements of B as ScaLAPACK assumes. Figure 2 illustrates an example of the
two-dimensional block-cyclic distribution for the case where the elements of 9 × 9 matrix B is distributed
on N = 4 processors and block size is 2. For example, B23 and B24 are stored in the processor 2, while B35

and B72 are stored in the processor 3, respectively.
We remark here that all the parts of the SDPARA except ELEMENTS and CHOLESKY which we have

explained above are essentially the same as those of the SDPA 6.0 [24] developed for a single processor.

4 Numerical Results

Our numerical experiment was executed on Presto III, a PC cluster in Matsuoka lab, Tokyo Institute
of Technology. Each node of the cluster has Athlon 1900+ (1.6GHz) CPU and 768 MB memory. The
communication between the nodes is done through Myrinet(Myrinet-2000), a network interface card with
a higher transmission capability than Gigabit Ethernet. The capacity of Myrinet affects significantly the
performance of the parallel Cholesky factorization provided by ScaLAPACK.

The SDPs that we tested are divided into the following two types. The SDPs of the first type are selected
from SDPLIB benchmark problems [7], while the other type are SDPs arising from quantum chemistry listed
in Table 4 [16, 17].

We selected control10,11, theta5,6 and thetaG51 from SDPLIB. Their sizes are shown in Table 2. con-
trol10 and control11 are from control theory and they are the largest problems of this type in SDPLIB,
while theta5, theta6 and thetaG51 are Lovasz theta problems. In particular, thetaG51 spends the maxi-
mal computational time among all problems of SDPLIB. Table 3 shows numerical results on the SDPARA
applied to these problems.

In control10 and control11, most of the computational time is spent in ELEMENTS (the computation of
the elements of the Schur complement matrix B). We observe an excellent scalability (the ratio of real time
to solve a problem) with respect to the number of processor used, especially in ELEMENTS. For example,
the SDPARA with 8 processors solved control11 6.1 times faster than the SDPARA with a single processor,
and the case with 64 processors solved the problem 22 times faster than the case with a single processor,
respectively. The m × m Schur complement matrix is always a fully dense and its Cholesky factorization
does not depend on the block structure, described as nBLOCK (the number of blocks) and bLOCKsTRUCT
(the block diagonal structure) in Table 2, of the test problem to be solved. Although the block structure
and the sparsity of X, Y , and F i are effectively utilized in the multiplication and inner product of X, Y ,
and F i, they do not affect to the scalability of the computation of the elements of the Schur complement
matrix in the parallel computation. The scalability sometimes exceeds the ratio of the number of processors.
This unusual phenomenon happened probably because as we increased the processors the memory space for
each processor to access decreased so that the access speed to memory became faster.

In theta5, theta6 and thetaG51, most of the computational time are spent for CHOLESKY (the Cholesky
factorization of the Schur complement matrix B). We observe again high scalability in the numerical results
on these problems. For example, The SDPARA with 8 processors solved theta6 5.3 times faster than the
SDPARA with a single processor, and the case with 64 processors solved the problem 15 times faster than
the case with a single processor, respectively.

The SDPs given in Table 4 are from quantum chemistry [16, 17]. The characteristic of this type of SDPs
is that the number m of equality constraints of D can be very large. In the largest problem with m = 24503,
we need to store a 24503× 24503 matrix for the Schur complement matrix B on distributed memory. The
matrix requires about 9GB memory to store, so that we need at least 16 processors to solve the problem.
Table 5 shows the numerical results on the SDPARA applied to the problems listed in Table 4. It is clear
that as more processors we used, faster we solved each problem. It should be also emphasized that as the
size of the problems becomes larger, the SDPARA attains higher scalability; as the number of processors is
increased from 8 to 64, 1/2.5 reduction of the real time to solve the smallest problem BH3 is attained while
1/5.2 reduction is attained in the larger problem case LiF.

We have measured a load balance of the SDPARA over 64 processors by using PAPI [13]. Table 6 shows
the lowest and highest cpu operation counts in 64 processors and their ratio. We observe that the ratios in
Total operation counts are bounded by 1.40. Especially, in control11 and theta6, the SDPARA shows an
excellent load balance in ELEMENTS. Therefore we can conclude that the SDPARA attains a reasonable
load balance although it adopts the simple parallel implementation described Section 3.
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name m nBLOCK bLOCKsTRUCT
control10 1326 2 (100,50)
control11 1596 2 (110,55)
theta5 3028 1 (250)
theta6 4375 1 (300)

thetaG51 6910 1 (1001)

Table 2: SDPs picked up from SDPLIB: m is the number of equality constraints of D, nBLOCK and
bLOCKsTRUCT define the structure of X and Y ; for example, nBLOCK = 2 and bLOCKsTRUCT
= (100, 50) mean that each data matrix F i is a symmetric block diagonal matrix with two blocks, the one
100× 100 and the other 50× 50.

the number of processors 1 2 4 8 16 32 64
control10 ELEMENTS 388.7 189.8 95.8 46.6 22.3 11.5 5.9

CHOLESKY 31.8 18.2 12.3 10.2 6.5 6.1 3.7
Total 441.4 235.1 129.1 74.9 42.7 31.8 24.6

control11 ELEMENTS 603.4 293.4 146.8 73.6 35.9 17.9 9.0
CHOLESKY 54.5 29.2 18.7 15.4 10.1 9.1 5.3

Total 685.3 363.1 195.0 112.1 66.6 42.9 31.8
theta5 ELEMENTS 58.2 26.2 12.4 6.0 2.9 1.5 0.8

CHOLESKY 140.7 58.8 36.0 26.0 14.9 12.5 6.9
Total 222.5 114.4 72.1 51.2 35.1 26.1 20.1

theta6 ELEMENTS 135.0 60.5 28.3 13.7 6.7 3.4 1.8
CHOLESKY 417.3 161.6 93.3 63.1 35.6 27.2 17.2

Total 600.6 341.7 168.2 112.8 68.4 51.3 38.3
thetaG51 ELEMENTS * * 339.0 173.0 82.2 40.3 20.2

CHOLESKY * * 557.2 334.8 181.5 125.4 75.91
Total * * 1345.3 919.3 626.6 587.9 447.3

Table 3: Performance of the SDPARA on multiple processors (’*’ indicates lack of memory)

System.Status.Basis m nBLOCK bLOCKsTRUCT
BH3.

1A1.STO-6G 2897 2 (120,120)
HF+.2Π.STO-6G 4871 3 (66,66,144)
NH2.

2A1.STO-6G 8993 3 (91,91,196)
LiF.1Σ.STO-6G 15313 3 (120,120,256)

CH4.
1A1.STO-6G 24503 3 (153,153,324)

Table 4: SDPs arising from quantum chemistry
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the number of processors 8 16 32 64
BH3.

1A1.STO-6G ELEMENTS 20.0 10.1 5.0 2.3
CHOLESKY 24.0 13.5 10.9 6.6

Total 68.2 41.2 28.8 27.4
HF+.2Π.STO-6G ELEMENTS 55.9 28.0 12.2 5.7

CHOLESKY 86.8 49.8 33.7 19.7
Total 212.0 125.0 81.1 60.2

NH2.
2A1.STO-6G ELEMENTS 207.2 120.1 55.2 27.6

CHOLESKY 452.6 289.0 185.2 108.0
Total 909.7 578.1 363.3 223.8

LiF.1Σ.STO-6G ELEMENTS 761.8 377.6 173.7 86.4
CHOLESKY 2244.5 1219.3 774.7 404.9

Total 3836.3 2076.5 1289.7 732.7
CH4.

1A1.STO-6G ELEMENTS * 820.7 399.2 191.5
CHOLESKY * 4369.5 2743.3 1248.1

Total * 6370.2 3955.1 1984.7

Table 5: Performance of the SDPARA on multiple processors for SDPs arising from quantum chemistry (’*’
indicates lack of memory)

problems lowest highest ratio
control11 ELEMENTS 1.24× 1010 1.35× 1010 1.09

CHOLESKY 1.62× 109 4.30× 109 2.65
Total 2.10× 1010 2.72× 1010 1.29

theta6 ELEMENTS 6.06× 108 6.43× 108 1.06
CHOLESKY 1.67× 1010 2.68× 1010 1.60

Total 4.19× 1010 5.21× 1010 1.24
HF+.2Π.STO-6G ELEMENTS 1.82× 109 2.62× 109 1.43

CHOLESKY 2.42× 1010 3.57× 1010 1.42
Total 3.16× 1010 4.40× 1010 1.39

Table 6: A load balance of the SDPARA on 64 processors: “lowest” and “highest” indicate the lowest and
highest cpu operation counts in 64 processors, respectively, and “ratio” indicates the ratio of the lowest and
the highest.
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5 Comparison with the PDSDP

We compare the performance of our SDPARA with the PDSDP [2] through some numerical results. The
PDSDP is a parallel version of the DSDP, an SDP solver developed by Benson and Ye [1]. In our best
knowledge, the PDSDP had been the only parallel solver for general SDPs before we implemented the
SDPARA. There are two major differences between the SDPARA and the PDSDP. One difference lies in
their algorithmic frameworks; the SDPARA is based on the PDIPM with the use of the HRVW/KSH/M
search direction, while the PDSDP is based on dual scaling algorithm. In general, the PDIPM attains higher
accuracy, and the dual scaling algorithm can exploit the sparsity of the input data F 0, F 1, . . . , F m more
effectively. The other difference lies in the means to solve the Schur complement equation; the SDPARA
adopts the Cholesky factorization as we have mentioned in Section 2, while the PDSDP employs the CG
(conjugate gradient) method, which is known as a typical iterative method for solving a positive definite
system of linear equations. In general, the CG method works very efficiently to well-conditioned positive
definite system. As the current point (x, X, Y ) approaches to an optimal solution, however, the condition
number of the Schur complement matrix B gets worse rapidly and the CG method requires more and more
computational time to solve the Schur complement equation. Hence we may say that the CG method is
not effective when we need highly accurate solutions, although lots of efforts [9, 15, 21] have been made to
resolve this difficulty.

We applied the SDPARA and the PDSDP with changing the number of processors to the SDP problems
control10, control11, theta5, theta6, maxG11 and maxG51 selected from SDPLIB. maxG11 and maxG51
are SDP relaxations of max-cut problems. Their sizes are shown in Table 7. The total time required for
them to solve the problems is shown in Table 8.

name m nBLOCK bLOCKsTRUCT
maxG11 800 1 (800)
maxG51 1000 1 (1000)

Table 7: SDP relaxations of max-cut problems picked up from SDPLIB

the number of process 1 2 4 8 16 32 64
control10 SDPARA 441 235 129 75 43 32 25

PDSDP 8706 5378 3748 2884 2534 1983 1156
control11 SDPARA 685 363 195 112 67 43 32

PDSDP 15414 9465 6683 5119 4416 3661 2022
theta5 SDPARA 223 114 72 51 35 26 20

PDSDP 1113 564 300 162 99 65 55
theta6 SDPARA 601 342 168 113 68 51 38

PDSDP 2221 1121 597 366 184 115 94
maxG11 SDPARA 98 99 97 104 102 103 101

PDSDP 31 17 10 10 9 9 13
maxG51 SDPARA 176 179 177 189 184 185 190

PDSDP 86 47 27 22 16 15 20

Table 8: Comparison of the cpu time (seconds) between the SDPARA and the PDSDP on multiple processors

In the control problems, the SDPARA achieves both faster total time and higher scalability than the
PDSDP. Among others, when we use 64 processors to solve control11, the SDPARA is 64 times faster
than the PDSDP. The overwhelming difference is mainly due to the fact that the SDPARA computes the
elements of the Schur complement matrix B in parallel without any communication between the processors.
This enables the SDPARA to obtain high scalability for the control problems which spend most of the
computational time for computation of the Schur complement matrix. (see Table 1).

In the problems theta5 and theta6 arising from graph theory, the SDPARA is also faster than the PDSDP.
We observe, however, that the difference becomes smaller as the number of processors used increases;
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specifically, the ratio of the total time of the SDPARA to that of the PDSDP decreases roughly from 4 to 2.
This is because the Cholesky factorization occupies the major computational time in this case (see Table 1),
and also because the CG method works efficiently to this type of problem (this was shown in [15]).

In maxG11 and maxG51, however, the PDSDP is obviously faster than the SDPARA. This is mainly
because the size of the matrix variables X and Y is as large as the number m of the equality constraints in
these problems (see Table 7) , so that the main cpu time is occupied by operations to the matrix variables
X and Y , such as their Cholesky factorizations, compared to ELEMENTS and CHOLESKY required for
solving the Schur complement equation; hence the SDPARA cannot attain much scalability. For such SDPs,
we can not expect the SDPARA to work effectively. On the other hand, the dual scaling algorithm adopted
by the PDSDP effectively exploits the special sparsity of the input data, and attains shorter cpu time and
better scalability than the SDPARA.

Another important point that we should emphasize is the quality of approximate solutions computed
by the two software packages. Table 9 shows the maximum relative gap obtained for each problem and
each software package. The relative gap is defined as |p − d|/ max{(|p| + |d|)/2, 1}, where p and d denote
the objective function values of P and D, respectively, and it theoretically becomes 0 when we attain an
optimal solution. In all cases, the SDPARA gained 3 or more digits in the relative gap than the PDSDP. As
we pointed out in the first paragraph of this section, this difference is mainly due to the difference between
the Cholesky factorization and the CG method for solving the Schur complement equation; the former is
employed in the SDPARA and the latter in the PDSDP.

SDPARA PDSDP
control10 4.08× 10−6 9.99× 10−3

control11 2.63× 10−6 9.98× 10−3

theta5 2.48× 10−8 6.53× 10−3

theta6 2.46× 10−8 7.31× 10−3

maxG11 3.47× 10−8 9.18× 10−3

maxG51 4.26× 10−8 8.02× 10−3

Table 9: Comparison of the relative gap between the SDPARA and the PDSDP

We also applied the PDSDP to the problem thetaG51 from SDPLIB and the problems from quantum
chemistry, which are listed in Tables 2 and 4. However, the PDSDP could not solve these problems correctly
giving some numerical error.

6 Conclusion

We have outlined the SDPA and pointed out that the computation of the elements of the Schur complement
matrix and its Cholesky factorization are bottlenecks of the SDPA on a single processor. To overcome these
bottlenecks, we have illustrated how to implement the SDPARA, a parallel version of the SDPA, on multiple
processors.

We have shown that the SDPARA successfully solves large scale SDPs from SDPLIB and quantum
chemistry on the Presto III PC cluster. It attains high scalability in particular for larger scale SDPs. In
addition, distributed memory over the PC cluster enables the SDPARA to store a fully dense and large Schur
complement matrix and to solve a large scale of SDPs having more than 24, 000 linear equality constraints.
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