Semidefinite Programming Relaxation vs Polyhedral Homotopy Method for Problems Involving Polynomials

Workshop on Advances in Optimization

Tokyo Institute of Technology, April 19-21, 2007

Masakazu Kojima

Tokyo Institute of Technology

Numerical results

Contents

- 1. PHoMpara Parallel implementation of the polyhedral homotopy method ([1] Gunji-Kim-Fujisawa-Kojima '06)
- 2. SparsePOP Matlab implementation of SDP relaxation for sparse POPs ([2] Waki-Kim-Kojima-Muramatsu '05)
- Numerical comparison between the SDP relaxation and the polyhedral homotopy method ([1]+[2]+[3] Mevissen-Kojima-Nie-Takayama)
- 4. Concluding remarks

SDP = Semidefinite Program or Programming POP = Polynomial Optimization Problem

Contents

- 1. PHoMpara Parallel implementation of the polyhedral homotopy method ([1] Gunji-Kim-Fujisawa-Kojima '06)
- 2. SparsePOP Matlab implementation of SDP relaxation for sparse POPs ([2] Waki-Kim-Kojima-Muramatsu '05)
- Numerical comparison between the SDP relaxation and the polyhedral homotopy method ([1]+[2]+[3] Mevissen-Kojima-Nie-Takayama)
- 4. Concluding remarks

SDP = Semidefinite Program or Programming POP = Polynomial Optimization Problem

The polyhedral homotopy method

- Implementation on a single CPU:
 - PHCpack [Verschelde]
 - HOM4PS [Li-Li-Gao]
 - PHoM [Gunji-Kim-Kojima-Takeda-Fujisawa-Mizutani]

The polyhedral homotopy method

- Implementation on a single CPU:
 - PHCpack [Verschelde]
 - HOM4PS [Li-Li-Gao]
 - PHoM [Gunji-Kim-Kojima-Takeda-Fujisawa-Mizutani]
- Suitable for parallel computation all isolated solutions can be computed independently in parallel.
 - PHoMpara [Gunji, Kim, Fujisawa and Kojima] Next
 - Leykin, Verschelde and Zhuang

Numerical results: Hardware — PC cluster (AMD Athlon 2.0GHz)

Problem		cpu time	speedup
(#sol)	#CPUs	in second	ratio
noon-10	1	62,672	1.0
(59,029)	40	1,797	34.9
eco-14	1	22,653	1.0
(4,096)	40	626	36.2

Numerical results: Hardware — PC cluster (AMD Athlon 2.0GHz)

Problem		cpu time	speedup
(#sol)	#CPUs	in second	ratio
noon-10	1	62,672	1.0
(59,029)	40	1,797	34.9
eco-14	1	22,653	1.0
(4,096)	40	626	36.2
noon-12	40	49,458	
(531,417)			
eco-16	40	12,051	
(16,384)			

Contents

- 1. PHoMpara Parallel implementation of the polyhedral homotopy method ([1] Gunji-Kim-Fujisawa-Kojima '06)
- 2. SparsePOP Matlab implementation of SDP relaxation for sparse POPs ([2] Waki-Kim-Kojima-Muramatsu '05)
- Numerical comparison between the SDP relaxation and the polyhedral homotopy method ([1]+[2]+[3] Mevissen-Kojima-Nie-Takayama)
- 4. Concluding remarks
- SDP = Semidefinite Program or Programming POP = Polynomial Optimization Problem

SparsePOP (Waki-Kim-Kojima-Muramatsu '06) = Lasserre's SDP relaxation '01 + "structured sparsity" — c-sparsity

Example:
$$f_0(\boldsymbol{x}) = \sum_{k=1}^n (-x_k^2)$$

 $f_j(\boldsymbol{x}) = 1 - x_j^2 - 2x_{j+1}^2 - x_n^2 \ (j = 1, \dots, n-1).$

 $Hf_0(x)$: the $n \times n$ Hessian mat. of $f_0(x)$,

 $\boldsymbol{Jf}_*(\boldsymbol{x}): \text{ the } m imes n \text{ Jacob. mat. of } \boldsymbol{f}_*(\boldsymbol{x}) = (f_1(\boldsymbol{x}), \dots, f_m(\boldsymbol{x}))^T,$

R: the csp matrix, the $n \times n$ density pattern matrix of

 $I + H f_0(x) + J f_*(x)^T J f_*(x)$ (no cancellation in '+').

 $[\mathbf{Jf}_*(\mathbf{x})^T \mathbf{Jf}_*(\mathbf{x})]_{ij} \neq 0$ iff x_i and x_j are in a common constraint.

Example:
$$f_0(\boldsymbol{x}) = \sum_{k=1}^n (-x_k^2)$$

 $f_j(\boldsymbol{x}) = 1 - x_j^2 - 2x_{j+1}^2 - x_n^2 \ (j = 1, \dots, n-1).$

 $Hf_0(x)$: the $n \times n$ Hessian mat. of $f_0(x)$,

 $\boldsymbol{Jf}_*(\boldsymbol{x}): \text{ the } m imes n \text{ Jacob. mat. of } \boldsymbol{f}_*(\boldsymbol{x}) = (f_1(\boldsymbol{x}), \dots, f_m(\boldsymbol{x}))^T,$

 $R: \text{ the csp matrix, the } n \times n \text{ density pattern matrix of}$ $I + H f_0(x) + J f_*(x)^T J f_*(x) \text{ (no cancellation in '+').}$ $[J f_*(x)^T J f_*(x)]_{ij} \neq 0 \text{ iff } x_i \text{ and } x_j \text{ are in a common constraint.}$ Example with n = 6:

the csp matrix R =

Example:
$$f_0(\boldsymbol{x}) = \sum_{k=1}^n (-x_k^2)$$

 $f_j(\boldsymbol{x}) = 1 - x_j^2 - 2x_{j+1}^2 - x_n^2 \ (j = 1, \dots, n-1).$

 $Hf_0(x)$: the $n \times n$ Hessian mat. of $f_0(x)$,

 $\boldsymbol{Jf}_*(\boldsymbol{x}): \text{ the } m imes n \text{ Jacob. mat. of } \boldsymbol{f}_*(\boldsymbol{x}) = (f_1(\boldsymbol{x}), \dots, f_m(\boldsymbol{x}))^T,$

R: the csp matrix, the $n \times n$ density pattern matrix of

 $I + H f_0(x) + J f_*(x)^T J f_*(x)$ (no cancellation in '+').

 $[\mathbf{Jf}_*(\mathbf{x})^T \mathbf{Jf}_*(\mathbf{x})]_{ij} \neq 0$ iff x_i and x_j are in a common constraint.

Example:
$$f_0(\boldsymbol{x}) = \sum_{k=1}^n (-x_k^2)$$
 — — — c-sparse
 $f_j(\boldsymbol{x}) = 1 - x_j^2 - 2x_{j+1}^2 - x_n^2 \ (j = 1, \dots, n-1).$

 $Hf_0(x)$: the $n \times n$ Hessian mat. of $f_0(x)$,

 $\boldsymbol{Jf}_*(\boldsymbol{x}): \text{ the } m \times n \text{ Jacob. mat. of } \boldsymbol{f}_*(\boldsymbol{x}) = (f_1(\boldsymbol{x}), \dots, f_m(\boldsymbol{x}))^T,$

 $oldsymbol{R}$: the csp matrix, the $n \times n$ density pattern matrix of

 $I + H f_0(x) + J f_*(x)^T J f_*(x)$ (no cancellation in '+').

 $[\mathbf{Jf}_*(\mathbf{x})^T \mathbf{Jf}_*(\mathbf{x})]_{ij} \neq 0$ iff x_i and x_j are in a common constraint.

POP : c-sparse (correlatively sparse) \Leftrightarrow The $n \times n$ csp matrix $\mathbf{R} = (R_{ij})$ allows a symbolic sparse Cholesky factorization (under a row & col. ordering like a symmetric min. deg. ordering).

Sparse (SDP) relaxation = Lasserre (2001) + c-sparsity

POP min. $f_0(x)$ s.t. $f_j(x) \ge 0$ or = 0 (j = 1, ..., m), c-sparse.

A sequence of c-sparse SDP relaxation problems depending on the relaxation order r = 1, 2, ...;

Sparse (SDP) relaxation = Lasserre (2001) + c-sparsity

POP min. $f_0(x)$ s.t. $f_j(x) \ge 0$ or = 0 (j = 1, ..., m), c-sparse.

A sequence of c-sparse SDP relaxation problems depending on the relaxation order r = 1, 2, ...;

- (a) Under a moderate assumption, opt. sol. of SDP \rightarrow opt sol. of POP as $r \rightarrow \infty$.
- (b) $r = \lceil$ "the max. deg. of poly. in POP"/2 \rceil +0 ~ 3 is usually large enough to attain opt sol. of POP in practice.
- (c) Such an r is unknown in theory except \exists special cases.
- (d) The size of SDP increases rapidly as $r \to \infty$.

Contents

- 1. PHoMpara Parallel implementation of the polyhedral homotopy method ([1] Gunji-Kim-Fujisawa-Kojima '06)
- 2. SparsePOP Matlab implementation of SDP relaxation for sparse POPs ([2] Waki-Kim-Kojima-Muramatsu '05)
- Numerical comparison between the SDP relaxation and the polyhedral homotopy method ([1]+[2]+[3] Mevissen-Kojima-Nie-Takayama)
- 4. Concluding remarks
- SDP = Semidefinite Program or Programming POP = Polynomial Optimization Problem

A POP alkyl from globalib

$$\begin{array}{ll} \min & -6.3x_5x_8 + 5.04x_2 + 0.35x_3 + x_4 + 3.36x_6\\ \text{sub.to} & -0.820x_2 + x_5 - 0.820x_6 = 0,\\ 0.98x_4 - x_7(0.01x_5x_{10} + x_4) = 0, & -x_2x_9 + 10x_3 + x_6 = 0,\\ x_5x_{12} - x_2(1.12 + 0.132x_9 - 0.0067x_9^2) = 0,\\ x_8x_{13} - 0.01x_9(1.098 - 0.038x_9) - 0.325x_7 = 0.574,\\ x_{10}x_{14} + 22.2x_{11} = 35.82, & x_1x_{11} - 3x_8 = -1.33,\\ \textbf{lbd}_i \leq x_i \leq \textbf{ubd}_i \ (i = 1, 2, \dots, 14). \end{array}$$

14 variables, 7 poly. equality constraints with deg. 3.

A POP alkyl from globalib

$$\begin{array}{ll} \min & -6.3x_5x_8+5.04x_2+0.35x_3+x_4+3.36x_6\\ \text{sub.to} & -0.820x_2+x_5-0.820x_6=0,\\ 0.98x_4-x_7(0.01x_5x_{10}+x_4)=0, \ -x_2x_9+10x_3+x_6=0,\\ x_5x_{12}-x_2(1.12+0.132x_9-0.0067x_9^2)=0,\\ x_8x_{13}-0.01x_9(1.098-0.038x_9)-0.325x_7=0.574,\\ x_{10}x_{14}+22.2x_{11}=35.82, \ x_1x_{11}-3x_8=-1.33,\\ \textbf{lbd}_i\leq x_i\leq \textbf{ubd}_i \ (i=1,2,\ldots,14). \end{array}$$

14 variables, 7 poly. equality constraints with deg. 3.

	Sparse			Den	se (Lasser	re)
r	ϵ obj	ϵ feas	сри	[€] obj	ϵ feas	cpu
2	1.0e-02	7.1e-01	1.8	7.2e-3	4.3e-2	14.4
3	5.6e-10	2.0e-08	23.0	out of	memory	

 $\epsilon_{obj} = approx.opt.val. - lower bound for opt.val.$ $<math>\epsilon_{feas} = the maximum error in the equality constraints$ Systems of polynomial equations

- Is the (sparse) SDP relaxation useful to solve systems of polynomial equations?
- The answer depends on:
 - how sparse the system of polynomial equations is,
 - the maximum degree of polynomials.

Systems of polynomial equations

- Is the (sparse) SDP relaxation useful to solve systems of polynomial equations?
- The answer depends on:
 - how sparse the system of polynomial equations is,
 - the maximum degree of polynomials.
- 2 types of systems of polynomial equations
- (a) Benchmark test problems from Verschelde's homepage;
 Katsura, cyclic not c-sparse
- (b) Systems of polynomials arising from discretization of an ODE and a DAE (Differential Algebraic Equations)
 c-sparse

 $0 = -x_8 + 2x_9x_2 + 2x_8x_1 + 2x_7x_2 + 2x_6x_3 + 2x_5x_4,$ $1 = 2x_9 + 2x_8 + 2x_7 + 2x_6 + 2x_5 + 2x_4 + 2x_3 + 2x_2 + x_1.$

 $0 = -x_8 + 2x_9x_2 + 2x_8x_1 + 2x_7x_2 + 2x_6x_3 + 2x_5x_4,$

 $1 = 2x_9 + 2x_8 + 2x_7 + 2x_6 + 2x_5 + 2x_4 + 2x_3 + 2x_2 + x_1.$

Numerical results on SparsePOP (WKKM 2004)

n	obj.funct.	relax. order r	сри
8	$\sum x_i \uparrow$	1	0.08
8	$\sum x_i^2 \downarrow$	2	7.1
11	$\sum x_i \uparrow$	1	0.14
11	$\sum x_i^2 \downarrow$	2	101.3

A formulation in terms of a POP

max $\sum_{i=1}^{n} x_i$ or min $\sum_{i=1}^{n} x_i^2$ sub.to Katsura *n* system $, -5 \le x_i \le 5 \ (i = 1, ..., n).$

• Different objective functions \Rightarrow different solutions.

 $0 = -x_8 + 2x_9x_2 + 2x_8x_1 + 2x_7x_2 + 2x_6x_3 + 2x_5x_4,$

 $1 = 2x_9 + 2x_8 + 2x_7 + 2x_6 + 2x_5 + 2x_4 + 2x_3 + 2x_2 + x_1.$

Numerical results on SparsePOP (WKKM 2004)

n	obj.funct.	relax. order r	сри
8	$\sum x_i \uparrow$	1	0.08
8	$\sum x_i^2 \downarrow$	2	7.1
11	$\sum x_i \uparrow$	1	0.14
11	$\sum x_i^2 \downarrow$	2	101.3

 $0 = -x_8 + 2x_9x_2 + 2x_8x_1 + 2x_7x_2 + 2x_6x_3 + 2x_5x_4,$

 $1 = 2x_9 + 2x_8 + 2x_7 + 2x_6 + 2x_5 + 2x_4 + 2x_3 + 2x_2 + x_1.$

Numerical results on SparsePOP (WKKM 2004)

n	obj.funct.	relax. order r	сри
8	$\sum x_i \uparrow$	1	0.08
8	$\sum x_i^2 \downarrow$	2	7.1
11	$\sum x_i \uparrow$	1	0.14
11	$\sum x_i^2 \downarrow$	2	101.3

Numerical results on HOM4PS (Li-Li-Gao 2002)

n	cpu sec.	#solutions
8	1.9	256
11	209.1	2048

cyclic *n* system of polynomial equations: n = 5 case $0 = x_1 + x_2 + x_3 + x_4 + x_5$,

- $0 = x_1 x_2 + x_2 x_3 + x_3 x_4 + x_4 x_5 + x_5 x_1,$ not c-sparse
- $0 = x_1 x_2 x_3 + x_2 x_3 x_4 + x_3 x_4 x_5 + x_4 x_5 x_1 + x_5 x_1 x_2,$
- $0 = x_1 x_2 x_3 x_4 + x_2 x_3 x_4 x_5 + x_3 x_4 x_5 x_1 + x_4 x_5 x_1 x_2 + x_5 x_1 x_2 x_3,$
- $0 = -1 + x_1 x_2 x_3 x_4 x_5.$
- Numerical results on SparsePOP: obj.funct.+lbd, ubd on x_i

n	obj.funct.	relax. order r	сри
5	$\sum x_i \uparrow$	3	1.83
6	$\sum x_i \uparrow$	4	753.2

cyclic *n* system of polynomial equations: n = 5 case $0 = x_1 + x_2 + x_3 + x_4 + x_5$,

- $0 = x_1 x_2 + x_2 x_3 + x_3 x_4 + x_4 x_5 + x_5 x_1,$ not c-sparse
- $0 = x_1 x_2 x_3 + x_2 x_3 x_4 + x_3 x_4 x_5 + x_4 x_5 x_1 + x_5 x_1 x_2,$
- $0 = x_1 x_2 x_3 x_4 + x_2 x_3 x_4 x_5 + x_3 x_4 x_5 x_1 + x_4 x_5 x_1 x_2 + x_5 x_1 x_2 x_3,$
- $0 = -1 + x_1 x_2 x_3 x_4 x_5.$
- Numerical results on SparsePOP: obj.funct.+lbd, ubd on x_i

n	obj.funct.	relax. order r	сри
5	$\sum x_i \uparrow$	3	1.83
6	$\sum x_i \uparrow$	4	753.2

Numerical results on HOM4PS (Li-Li-Gao)

n	cpu sec.	#solutions
5	0.1	70
6	0.2	156

Discretization of Mimura's ODE with 2 unknowns
$$u, v : [0, 5] \rightarrow \mathbb{R}$$

 $u_{xx} = -(20/9)(35 + 16u - u^2)u + 20uv,$
 $v_{xx} = (1/4)((1 + (2/5)v)v - uv),$
 $u_x(0) = u_x(5) = v_x(0) = v_x(5) = 0,$
Discretize:
 $x_i = i\Delta x \ (i = 0, 1, 2, ...), \ u_x(x_i) \approx (u(x_{i+1}) - u(x_{i-1}))/(2\Delta x).$

Discretization of Mimura's ODE with 2 unknowns $u, v : [0, 5] \rightarrow \mathbb{R}$ $u_{xx} = -(20/9)(35 + 16u - u^2)u + 20uv,$ $v_{xx} = (1/4)((1+(2/5)v)v - uv),$ $u_x(0) = u_x(5) = v_x(0) = v_x(5) = 0,$ Discretize: $x_i = i\Delta x \ (i = 0, 1, 2, ...), \ u_x(x_i) \approx (u(x_{i+1}) - u(x_{i-1}))/(2\Delta x).$ Discretized system of polynomials with $\Delta x = 1$: $f_1(\boldsymbol{u}, \boldsymbol{v}) = 76.8u_1 + u_3 + 35.6u_1^2 - 20.0u_1v_1 - 2.22u_2^3,$ $f_2(\boldsymbol{u}, \boldsymbol{v}) = -1.25v_1 + v_2 + 0.25u_1v_1 - 0.1v_1^2,$ $f_3(\boldsymbol{u}, \boldsymbol{v}) = u_1 + 75.8u_2 + u_3 + 35.6u_2^2 - 20.0u_2v_2 - 2.22u_2^3,$ $f_4(\boldsymbol{u}, \boldsymbol{v}) = v_1 - 2.25v_2 + v_3 + 0.25u_2v_2 - 0.1v_2^2,$ $f_5(\boldsymbol{u}, \boldsymbol{v}) = u_2 + 75.8u_3 + u_4 + 35.6u_3^2 - 20.0u_3v_3 - 2.22u_3^2,$ $f_6(\boldsymbol{u}, \boldsymbol{v}) = v_2 - 2.25v_3 + v_4 + 0.25u_3v_3 - 0.1v_3^2,$ $f_7(\boldsymbol{u}, \boldsymbol{v}) = u_3 + 76.8u_4 + 35.6u_4^2 - 20.0u_4v_4 - 2.22u_4^3,$ $f_8(\boldsymbol{u}, \boldsymbol{v}) = v_3 - 1.25v_4 + 0.25u_4v_4 - 0.1v_4^2.$ Here $u_i = u(x_i), v_i = v(x_i) \ (i = 0, 1, 2, 3, 4, 5),$ $u_0 = u_1$, $u_5 = u_4$, $v_0 = v_1$ and $v_5 = v_4$. \Rightarrow c-sparse

Discretization of Mimura's ODE with 2 unknowns
$$u, v : [0, 5] \rightarrow \mathbb{R}$$

 $u_{xx} = -(20/9)(35 + 16u - u^2)u + 20uv,$
 $v_{xx} = (1/4)((1 + (2/5)v)v - uv),$
 $u_x(0) = u_x(5) = v_x(0) = v_x(5) = 0,$
Discretize:
 $x_i = i\Delta x \ (i = 0, 1, 2, ...), \ u_x(x_i) \approx (u(x_{i+1}) - u(x_{i-1}))/(2\Delta x).$

 $v_{xx} = (1/4)((1+(2/5)v)v - uv),$ $\underline{u_x(0)} = u_x(5) = v_x(0) = v_x(5) = 0,$

Discretize:

$$x_i = i\Delta x \ (i = 0, 1, 2, ...), \ u_x(x_i) \approx (u(x_{i+1}) - u(x_{i-1}))/(2\Delta x).$$

Numerical results on SparsePOP

Δx	n	obj.funct.	relax. order r	cpu
1.0	8	$\sum r_i u(x_i) \uparrow$	3	11.3
0.5	18	$\sum r_i u(x_i) \uparrow$	3	57.8

Here $r_i \in (0, 1)$: random numbers.

 $v_{xx} = (1/4)((1+(2/5)v)v - uv),$ $\underline{u_x(0) = u_x(5) = v_x(0) = v_x(5) = 0},$

Discretize:

$$x_i = i\Delta x \ (i = 0, 1, 2, \dots), \ u_x(x_i) \approx (u(x_{i+1}) - u(x_{i-1}))/(2\Delta x).$$

Numerical results on SparsePOP

Δx	n	obj.funct.	relax. order r	cpu
1.0	8	$\sum r_i u(x_i) \uparrow$	3	11.3
0.5	18	$\sum r_i u(x_i) \uparrow$	3	57.8

Here $r_i \in (0, 1)$: random numbers.

 $v_{xx} = (1/4)((1+(2/5)v)v - uv),$ $\underline{u_x(0)} = u_x(5) = v_x(0) = v_x(5) = 0,$

Discretize:

$$x_i = i\Delta x \ (i = 0, 1, 2, ...), \ u_x(x_i) \approx (u(x_{i+1}) - u(x_{i-1}))/(2\Delta x).$$

Numerical results on SparsePOP

Δx	n	obj.funct.	relax. order r	cpu
1.0	8	$\sum r_i u(x_i) \uparrow$	3	11.3
0.5	18	$\sum r_i u(x_i) \uparrow$	3	57.8

Here $r_i \in (0, 1)$: random numbers.

 $v_{xx} = (1/4)((1+(2/5)v)v - uv),$ $\underline{u_x(0) = u_x(5) = v_x(0) = v_x(5) = 0},$

Discretize:

$$x_i = i\Delta x \ (i = 0, 1, 2, \dots), \ u_x(x_i) \approx (u(x_{i+1}) - u(x_{i-1}))/(2\Delta x).$$

Numerical results on SparsePOP

Δx	n	obj.funct.	relax. order r	cpu
1.0	8	$\sum r_i u(x_i) \uparrow$	3	11.3
0.5	18	$\sum r_i u(x_i) \uparrow$	3	57.8

Here $r_i \in (0, 1)$: random numbers.

Numerical results on HOM4PS

Δx	n	cpu sec.	#solutions	#real solutions
1.0	8	2.2	1296	222
0.5	18	167.7	10,077,696	not traced
		(M.vol.)	(M.vol.)	(M.cells=1089)

Discretization of DAE with 3 unknowns $y_1, y_2, y_3 : [0, 2] \rightarrow \mathbb{R}$ $y'_1 = y_3, \ 0 = y_2(1 - y_2), \ 0 = y_1y_2 + y_3(1 - y_2) - t, \ y_1(0) = y_1^0.$ 2 solutions : y(t) = (t, 1, 1) and $y(t) = (y_1^0 + t_2^2, 0, t).$ Discretization of DAE with 3 unknowns $y_1, y_2, y_3 : [0, 2] \to \mathbb{R}$ $y'_1 = y_3, \ 0 = y_2(1 - y_2), \ 0 = y_1y_2 + y_3(1 - y_2) - t, \ y_1(0) = y_1^0.$ 2 solutions : y(t) = (t, 1, 1) and $y(t) = (y_1^0 + t_2^2, 0, t).$

Numerical results on SparsePOP

- c-sparse

y_1^0	Δt	n	obj.funct.	relax. order r	cpu
0	0.02	297	$\sum y_2(t_i)\uparrow$	2	30.9
1	0.02	297	$\sum y_1(t_i)\uparrow$	2	33.9

Contents

- 1. PHoMpara Parallel implementation of the polyhedral homotopy method ([1] Gunji-Kim-Fujisawa-Kojima '06)
- 2. SparsePOP Matlab implementation of SDP relaxation for sparse POPs ([2] Waki-Kim-Kojima-Muramatsu '05)
- Numerical comparison between the SDP relaxation and the polyhedral homotopy method ([1]+[2]+[3] Mevissen-Kojima-Nie-Takayama)

4. Concluding remarks

SDP = Semidefinite Program or Programming POP = Polynomial Optimization Problem Some essential differences between Homotopy Continuation and (sparse) SDP Relaxation — 1:

- Some essential differences between Homotopy Continuation and (sparse) SDP Relaxation — 1:
- (a) HC works on \mathbb{C}^n while SDPR on \mathbb{R}^n .
- (b) HC aims to compute all isolated solutions; in SDPR, computing all isolated solutions is possible but expensive.
- (c) SDPR can process inequalities.

Some essential differences between Homotopy Continuation and (sparse) SDP Relaxation — 2:

- Some essential differences between Homotopy Continuation and (sparse) SDP Relaxation — 2:
- (d) **SDPR** is sensitive to degrees of polynomials of a POP because the SDP relaxed problem becomes larger rapidly as they increase.
 - \Rightarrow SDPR can be applied to POPs with lower degree polynomials such as degree ≤ 4 in practice.
- (e) HC fits parallel computation more than SDPR.
- (f) The effectiveness of sparse SDPR depends on the c-sparsity; for example, discretization of ODE, DAE, Optimal control problem and PDE.

- Some essential differences between Homotopy Continuation and (sparse) SDP Relaxation — 2:
- (d) **SDPR** is sensitive to degrees of polynomials of a POP because the SDP relaxed problem becomes larger rapidly as they increase.
 - \Rightarrow SDPR can be applied to POPs with lower degree polynomials such as degree ≤ 4 in practice.
- (e) HC fits parallel computation more than SDPR.
- (f) The effectiveness of sparse SDPR depends on the c-sparsity; for example, discretization of ODE, DAE, Optimal control problem and PDE.

Thank you!