Semidefinite Programming Relaxation vs Polyhedral Homotopy Method for Problems Involving Polynomials

Workshop on Advances in Optimization
Tokyo Institute of Technology, April 19-21, 2007
Masakazu Kojima
Tokyo Institute of Technology

- Numerical results

Contents

1. PHoMpara - Parallel implementation of the polyhedral homotopy method ([1] Gunji-Kim-Fujisawa-Kojima '06)
2. SparsePOP - Matlab implementation of SDP relaxation for sparse POPs ([2] Waki-Kim-Kojima-Muramatsu '05)
3. Numerical comparison between the SDP relaxation and the polyhedral homotopy method ([1]+[2]+[3] Mevissen-Kojima-Nie-Takayama)
4. Concluding remarks

SDP $=$ Semidefinite Program or Programming
POP = Polynomial Optimization Problem

Contents

1. PHoMpara - Parallel implementation of the polyhedral homotopy method ([1] Gunji-Kim-Fujisawa-Kojima '06)
2. SparsePOP - Matlab implementation of SDP relaxation for sparse POPs ([2] Waki-Kim-Kojima-Muramatsu '05)
3. Numerical comparison between the SDP relaxation and the polyhedral homotopy method ([1]+[2]+[3] Mevissen-Kojima-Nie-Takayama)
4. Concluding remarks

SDP $=$ Semidefinite Program or Programming
POP = Polynomial Optimization Problem

The polyhedral homotopy method

- Implementation on a single CPU:
- PHCpack [Verschelde]
- HOM4PS [Li-Li-Gao]
- PHoM [Gunji-Kim-Kojima-Takeda-Fujisawa-Mizutani]

The polyhedral homotopy method

- Implementation on a single CPU:
- PHCpack [Verschelde]
- HOM4PS [Li-Li-Gao]
- PHoM [Gunji-Kim-Kojima-Takeda-Fujisawa-Mizutani]
- Suitable for parallel computation - all isolated solutions can be computed independently in parallel.
- PHoMpara [Gunji, Kim, Fujisawa and Kojima] - Next
- Leykin, Verschelde and Zhuang

Numerical results: Hardware - PC cluster (AMD Athlon 2.0 GHz)

Problem (\#sol)	\#CPUs	cpu time in second	speedup ratio
noon-10	1	62,672	1.0
$(59,029)$	40	1,797	34.9
eco-14	1	22,653	1.0
$(4,096)$	40	626	36.2

Numerical results: Hardware - PC cluster (AMD Athlon 2.0 GHz)

Problem (\#sol)	\#CPUs	cpu time in second	speedup ratio
noon-10	1	62,672	1.0
$(59,029)$	40	1,797	34.9
eco-14	1	22,653	1.0
$(4,096)$	40	626	36.2

noon-12 $(531,417)$	40	49,458	
eco-16 $(16,384)$	40	12,051	

Contents

1. PHoMpara - Parallel implementation of the polyhedral homotopy method ([1] Gunji-Kim-Fujisawa-Kojima '06)
2. SparsePOP - Matlab implementation of SDP relaxation for sparse POPs ([2] Waki-Kim-Kojima-Muramatsu '05)
3. Numerical comparison between the SDP relaxation and the polyhedral homotopy method ([1]+[2]+[3] Mevissen-Kojima-Nie-Takayama)
4. Concluding remarks

SDP $=$ Semidefinite Program or Programming
POP = Polynomial Optimization Problem

> | SparsePOP (Waki-Kim-Kojima-Muramatsu '06) = Lasserre's |
| :--- |
| SDP relaxation '01 + "structured sparsity" - c-sparsity |

POP min. $f_{0}(\boldsymbol{x})$ s.t. $f_{j}(\boldsymbol{x}) \geq 0$ or $=0(j=1, \ldots, m)$.
Example: $\quad f_{0}(\boldsymbol{x})=\sum_{k=1}^{n}\left(-x_{k}^{2}\right)$

$$
f_{j}(\boldsymbol{x})=1-x_{j}^{2}-2 x_{j+1}^{2}-x_{n}^{2}(j=1, \ldots, n-1)
$$

$\boldsymbol{H} f_{0}(\boldsymbol{x}):$ the $n \times n$ Hessian mat. of $f_{0}(\boldsymbol{x})$,
$\boldsymbol{J} \boldsymbol{f}_{*}(\boldsymbol{x})$: the $m \times n$ Jacob. mat. of $\boldsymbol{f}_{*}(\boldsymbol{x})=\left(f_{1}(\boldsymbol{x}), \ldots, f_{m}(\boldsymbol{x})\right)^{T}$,
\boldsymbol{R} : the csp matrix, the $n \times n$ density pattern matrix of $\boldsymbol{I}+\boldsymbol{H} f_{0}(\boldsymbol{x})+\boldsymbol{J} \boldsymbol{f}_{*}(\boldsymbol{x})^{T} \boldsymbol{J} \boldsymbol{f}_{*}(\boldsymbol{x})$ (no cancellation in ' + '). $\left[\boldsymbol{J} \boldsymbol{f}_{*}(\boldsymbol{x})^{T} \boldsymbol{J} \boldsymbol{f}_{*}(\boldsymbol{x})\right]_{i j} \neq 0$ iff x_{i} and x_{j} are in a common constraint.

POP min. $f_{0}(\boldsymbol{x})$ s.t. $f_{j}(\boldsymbol{x}) \geq 0$ or $=0(j=1, \ldots, m)$.
Example: $\quad f_{0}(\boldsymbol{x})=\sum_{k=1}^{n}\left(-x_{k}^{2}\right)$

$$
f_{j}(\boldsymbol{x})=1-x_{j}^{2}-2 x_{j+1}^{2}-x_{n}^{2}(j=1, \ldots, n-1) .
$$

$\boldsymbol{H} f_{0}(\boldsymbol{x})$: the $n \times n$ Hessian mat. of $f_{0}(\boldsymbol{x})$,
$\boldsymbol{J} \boldsymbol{f}_{*}(\boldsymbol{x})$: the $m \times n$ Jacob. mat. of $\boldsymbol{f}_{*}(\boldsymbol{x})=\left(f_{1}(\boldsymbol{x}), \ldots, f_{m}(\boldsymbol{x})\right)^{T}$,
R : the csp matrix, the $n \times n$ density pattern matrix of $\boldsymbol{I}+\boldsymbol{H} f_{0}(\boldsymbol{x})+\boldsymbol{J} \boldsymbol{f}_{*}(\boldsymbol{x})^{T} \boldsymbol{J} \boldsymbol{f}_{*}(\boldsymbol{x})$ (no cancellation in ' + '). $\left[\boldsymbol{J} \boldsymbol{f}_{*}(\boldsymbol{x})^{T} \boldsymbol{J} \boldsymbol{f}_{*}(\boldsymbol{x})\right]_{i j} \neq 0$ iff x_{i} and x_{j} are in a common constraint.
Example with $\mathrm{n}=6$:
the csp matrix $\boldsymbol{R}=$

$$
\left(\begin{array}{cccccc}
\star & \star & 0 & 0 & 0 & \star \\
\star & \star & \star & 0 & 0 & \star \\
0 & \star & \star & \star & 0 & \star \\
0 & 0 & \star & \star & \star & \star \\
0 & 0 & 0 & \star & \star & \star \\
\star & \star & \star & \star & \star & \star
\end{array}\right)
$$

POP min. $f_{0}(\boldsymbol{x})$ s.t. $f_{j}(\boldsymbol{x}) \geq 0$ or $=0(j=1, \ldots, m)$.
Example: $\quad f_{0}(\boldsymbol{x})=\sum_{k=1}^{n}\left(-x_{k}^{2}\right)$

$$
f_{j}(\boldsymbol{x})=1-x_{j}^{2}-2 x_{j+1}^{2}-x_{n}^{2}(j=1, \ldots, n-1)
$$

$\boldsymbol{H} f_{0}(\boldsymbol{x}):$ the $n \times n$ Hessian mat. of $f_{0}(\boldsymbol{x})$,
$\boldsymbol{J} \boldsymbol{f}_{*}(\boldsymbol{x})$: the $m \times n$ Jacob. mat. of $\boldsymbol{f}_{*}(\boldsymbol{x})=\left(f_{1}(\boldsymbol{x}), \ldots, f_{m}(\boldsymbol{x})\right)^{T}$,
\boldsymbol{R} : the csp matrix, the $n \times n$ density pattern matrix of $\boldsymbol{I}+\boldsymbol{H} f_{0}(\boldsymbol{x})+\boldsymbol{J} \boldsymbol{f}_{*}(\boldsymbol{x})^{T} \boldsymbol{J} \boldsymbol{f}_{*}(\boldsymbol{x})$ (no cancellation in ' + '). $\left[\boldsymbol{J} \boldsymbol{f}_{*}(\boldsymbol{x})^{T} \boldsymbol{J} \boldsymbol{f}_{*}(\boldsymbol{x})\right]_{i j} \neq 0$ iff x_{i} and x_{j} are in a common constraint.

POP min. $f_{0}(\boldsymbol{x})$ s.t. $f_{j}(\boldsymbol{x}) \geq 0$ or $=0(j=1, \ldots, m)$.
Example: $f_{0}(\boldsymbol{x})=\sum_{k=1}^{n}\left(-x_{k}^{2}\right) \quad$ - ——c-sparse

$$
f_{j}(\boldsymbol{x})=1-x_{j}^{2}-2 x_{j+1}^{2}-x_{n}^{2}(j=1, \ldots, n-1) .
$$

$\boldsymbol{H} f_{0}(\boldsymbol{x})$: the $n \times n$ Hessian mat. of $f_{0}(\boldsymbol{x})$,
$\boldsymbol{J} \boldsymbol{f}_{*}(\boldsymbol{x})$: the $m \times n$ Jacob. mat. of $\boldsymbol{f}_{*}(\boldsymbol{x})=\left(f_{1}(\boldsymbol{x}), \ldots, f_{m}(\boldsymbol{x})\right)^{T}$,
R : the csp matrix, the $n \times n$ density pattern matrix of $\boldsymbol{I}+\boldsymbol{H} f_{0}(\boldsymbol{x})+\boldsymbol{J} \boldsymbol{f}_{*}(\boldsymbol{x})^{T} \boldsymbol{J} \boldsymbol{f}_{*}(\boldsymbol{x})$ (no cancellation in ' + '). $\left[\boldsymbol{J} \boldsymbol{f}_{*}(\boldsymbol{x})^{T} \boldsymbol{J} \boldsymbol{f}_{*}(\boldsymbol{x})\right]_{i j} \neq 0$ iff x_{i} and x_{j} are in a common constraint.

POP : c-sparse (correlatively sparse) \Leftrightarrow The $n \times n$ csp matrix $\boldsymbol{R}=\left(R_{i j}\right)$ allows a symbolic sparse Cholesky factorization (under a row \& col. ordering like a symmetric min. deg. ordering).

Sparse (SDP) relaxation = Lasserre (2001) + c-sparsity

POP min. $f_{0}(\boldsymbol{x})$ s.t. $f_{j}(\boldsymbol{x}) \geq 0$ or $=0(j=1, \ldots, m)$, c-sparse.

```
\Downarrow
```

A sequence of c-sparse SDP relaxation problems depending on the relaxation order $r=1,2, \ldots$;

Sparse (SDP) relaxation = Lasserre (2001) + c-sparsity
POP min. $f_{0}(\boldsymbol{x})$ s.t. $f_{j}(\boldsymbol{x}) \geq 0$ or $=0(j=1, \ldots, m)$, c-sparse.
\Downarrow
A sequence of c-sparse SDP relaxation problems depending on the relaxation order $r=1,2, \ldots$;
(a) Under a moderate assumption, opt. sol. of SDP \rightarrow opt sol. of POP as $r \rightarrow \infty$.
(b) $r=$ 「"the max. deg. of poly. in POP" $/ 2\rceil+0 \sim 3$ is usually large enough to attain opt sol. of POP in practice.
(c) Such an r is unknown in theory except \exists special cases.
(d) The size of SDP increases rapidly as $r \rightarrow \infty$.

Contents

1. PHoMpara - Parallel implementation of the polyhedral homotopy method ([1] Gunji-Kim-Fujisawa-Kojima '06)
2. SparsePOP - Matlab implementation of SDP relaxation for sparse POPs ([2] Waki-Kim-Kojima-Muramatsu '05)
3. Numerical comparison between the SDP relaxation and the polyhedral homotopy method ([1]+[2]+[3] Mevissen-Kojima-Nie-Takayama)
4. Concluding remarks

SDP $=$ Semidefinite Program or Programming
POP $=$ Polynomial Optimization Problem

A POP alkyl from globalib
$\min -6.3 x_{5} x_{8}+5.04 x_{2}+0.35 x_{3}+x_{4}+3.36 x_{6}$
sub.to $-0.820 x_{2}+x_{5}-0.820 x_{6}=0$,
$0.98 x_{4}-x_{7}\left(0.01 x_{5} x_{10}+x_{4}\right)=0,-x_{2} x_{9}+10 x_{3}+x_{6}=0$,
$x_{5} x_{12}-x_{2}\left(1.12+0.132 x_{9}-0.0067 x_{9}^{2}\right)=0$,
$x_{8} x_{13}-0.01 x_{9}\left(1.098-0.038 x_{9}\right)-0.325 x_{7}=0.574$,
$x_{10} x_{14}+22.2 x_{11}=35.82, x_{1} x_{11}-3 x_{8}=-1.33$,
$\operatorname{lbd}_{i} \leq x_{i} \leq \operatorname{ubd}_{i}(i=1,2, \ldots, 14)$.

- 14 variables, 7 poly. equality constraints with deg. 3 .

A POP alkyl from globalib

$$
\begin{aligned}
& \min \quad-6.3 x_{5} x_{8}+5.04 x_{2}+0.35 x_{3}+x_{4}+3.36 x_{6} \\
& \text { sub.to } \quad-0.820 x_{2}+x_{5}-0.820 x_{6}=0 \\
& 0.98 x_{4}-x_{7}\left(0.01 x_{5} x_{10}+x_{4}\right)=0,-x_{2} x_{9}+10 x_{3}+x_{6}=0, \\
& x_{5} x_{12}-x_{2}\left(1.12+0.132 x_{9}-0.0067 x_{9}^{2}\right)=0 \\
& x_{8} x_{13}-0.01 x_{9}\left(1.098-0.038 x_{9}\right)-0.325 x_{7}=0.574 \\
& x_{10} x_{14}+22.2 x_{11}=35.82, x_{1} x_{11}-3 x_{8}=-1.33 \\
& \operatorname{lbd}_{i} \leq x_{i} \leq \operatorname{ubd}_{i}(i=1,2, \ldots, 14)
\end{aligned}
$$

- 14 variables, 7 poly. equality constraints with deg. 3.

	Sparse			Dense (Lasserre)		
r	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	cpu	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	cpu
2	$1.0 \mathrm{e}-02$	$7.1 \mathrm{e}-01$	1.8	$7.2 \mathrm{e}-3$	$4.3 \mathrm{e}-2$	14.4
3	$5.6 \mathrm{e}-10$	$2.0 \mathrm{e}-08$	23.0	out of	memory	

$\epsilon_{\text {obj }}=$ approx.opt.val. - lower bound for opt.val.
$\epsilon_{\text {feas }}=$ the maximum error in the equality constraints

Systems of polynomial equations

- Is the (sparse) SDP relaxation useful to solve systems of polynomial equations?
- The answer depends on:
- how sparse the system of polynomial equations is,
- the maximum degree of polynomials.

Systems of polynomial equations

- Is the (sparse) SDP relaxation useful to solve systems of polynomial equations?
- The answer depends on:
- how sparse the system of polynomial equations is,
- the maximum degree of polynomials.
- 2 types of systems of polynomial equations
(a) Benchmark test problems from Verschelde's homepage; Katsura, cyclic - not c-sparse
(b) Systems of polynomials arising from discretization of an ODE and a DAE (Differential Algebraic Equations)
- c-sparse

Katsura n system of polynomial equations; $n=8$ case $0=-x_{1}+2 x_{9}^{2}+2 x_{8}^{2}+2 x_{7}^{2}+\cdots+2 x_{2}^{2}+x_{1}^{2}$,
$0=-x_{2}+2 x_{9} x_{8}+2 x_{8} x_{7}+2 x_{7} x_{6}+\cdots+2 x_{3} x_{2}+2 x_{2} x_{1}$,
not c-sparse
$0=-x_{8}+2 x_{9} x_{2}+2 x_{8} x_{1}+2 x_{7} x_{2}+2 x_{6} x_{3}+2 x_{5} x_{4}$,
$1=2 x_{9}+2 x_{8}+2 x_{7}+2 x_{6}+2 x_{5}+2 x_{4}+2 x_{3}+2 x_{2}+x_{1}$.

Katsura n system of polynomial equations; $n=8$ case $0=-x_{1}+2 x_{9}^{2}+2 x_{8}^{2}+2 x_{7}^{2}+\cdots+2 x_{2}^{2}+x_{1}^{2}$,
$0=-x_{2}+2 x_{9} x_{8}+2 x_{8} x_{7}+2 x_{7} x_{6}+\cdots+2 x_{3} x_{2}+2 x_{2} x_{1}$,
not c-sparse
$0=-x_{8}+2 x_{9} x_{2}+2 x_{8} x_{1}+2 x_{7} x_{2}+2 x_{6} x_{3}+2 x_{5} x_{4}$,
$1=2 x_{9}+2 x_{8}+2 x_{7}+2 x_{6}+2 x_{5}+2 x_{4}+2 x_{3}+2 x_{2}+x_{1}$.

- Numerical results on SparsePOP (WKKM 2004)

n	obj.funct.	relax. order r	cpu
8	$\sum x_{i} \uparrow$	1	0.08
8	$\sum x_{i}^{2} \downarrow$	2	7.1
11	$\sum x_{i} \uparrow$	1	0.14
11	$\sum x_{i}^{2} \downarrow$	2	101.3

- A formulation in terms of a POP
$\max \quad \sum_{i=1}^{n} x_{i}$ or min $\sum_{i=1}^{n} x_{i}^{2}$
sub.to Katsura n system , $-5 \leq x_{i} \leq 5(i=1, \ldots, n)$.
- Different objective functions \Rightarrow different solutions.

Katsura n system of polynomial equations; $n=8$ case $0=-x_{1}+2 x_{9}^{2}+2 x_{8}^{2}+2 x_{7}^{2}+\cdots+2 x_{2}^{2}+x_{1}^{2}$,
$0=-x_{2}+2 x_{9} x_{8}+2 x_{8} x_{7}+2 x_{7} x_{6}+\cdots+2 x_{3} x_{2}+2 x_{2} x_{1}$,
not c-sparse
$0=-x_{8}+2 x_{9} x_{2}+2 x_{8} x_{1}+2 x_{7} x_{2}+2 x_{6} x_{3}+2 x_{5} x_{4}$,
$1=2 x_{9}+2 x_{8}+2 x_{7}+2 x_{6}+2 x_{5}+2 x_{4}+2 x_{3}+2 x_{2}+x_{1}$.

- Numerical results on SparsePOP (WKKM 2004)

n	obj.funct.	relax. order r	cpu
8	$\sum x_{i} \uparrow$	1	0.08
8	$\sum x_{i}^{2} \downarrow$	2	7.1
11	$\sum x_{i} \uparrow$	1	0.14
11	$\sum x_{i}^{2} \downarrow$	2	101.3

Katsura n system of polynomial equations; $n=8$ case $0=-x_{1}+2 x_{9}^{2}+2 x_{8}^{2}+2 x_{7}^{2}+\cdots+2 x_{2}^{2}+x_{1}^{2}$,
$0=-x_{2}+2 x_{9} x_{8}+2 x_{8} x_{7}+2 x_{7} x_{6}+\cdots+2 x_{3} x_{2}+2 x_{2} x_{1}$,
not c-sparse
$0=-x_{8}+2 x_{9} x_{2}+2 x_{8} x_{1}+2 x_{7} x_{2}+2 x_{6} x_{3}+2 x_{5} x_{4}$,
$1=2 x_{9}+2 x_{8}+2 x_{7}+2 x_{6}+2 x_{5}+2 x_{4}+2 x_{3}+2 x_{2}+x_{1}$.

- Numerical results on SparsePOP (WKKM 2004)

n	obj.funct.	relax. order r	cpu
8	$\sum x_{i} \uparrow$	1	0.08
8	$\sum x_{i}^{2} \downarrow$	2	7.1
11	$\sum x_{i} \uparrow$	1	0.14
11	$\sum x_{i}^{2} \downarrow$	2	101.3

- Numerical results on HOM4PS (Li-Li-Gao 2002)

n	cpu sec.	\#solutions
8	1.9	256
11	209.1	2048

cyclic n system of polynomial equations: $n=5$ case
$0=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}$,
$0=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{5}+x_{5} x_{1}$,
not c-sparse
$0=x_{1} x_{2} x_{3}+x_{2} x_{3} x_{4}+x_{3} x_{4} x_{5}+x_{4} x_{5} x_{1}+x_{5} x_{1} x_{2}$,
$0=x_{1} x_{2} x_{3} x_{4}+x_{2} x_{3} x_{4} x_{5}+x_{3} x_{4} x_{5} x_{1}+x_{4} x_{5} x_{1} x_{2}+x_{5} x_{1} x_{2} x_{3}$,
$0=-1+x_{1} x_{2} x_{3} x_{4} x_{5}$.

- Numerical results on SparsePOP: obj.funct.+lbd, ubd on x_{i}

n	obj.funct.	relax. order r	cpu
5	$\sum x_{i} \uparrow$	3	1.83
6	$\sum x_{i} \uparrow$	4	753.2

cyclic n system of polynomial equations: $n=5$ case
$0=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}$,
$0=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{5}+x_{5} x_{1}$,
not c-sparse
$0=x_{1} x_{2} x_{3}+x_{2} x_{3} x_{4}+x_{3} x_{4} x_{5}+x_{4} x_{5} x_{1}+x_{5} x_{1} x_{2}$,
$0=x_{1} x_{2} x_{3} x_{4}+x_{2} x_{3} x_{4} x_{5}+x_{3} x_{4} x_{5} x_{1}+x_{4} x_{5} x_{1} x_{2}+x_{5} x_{1} x_{2} x_{3}$,
$0=-1+x_{1} x_{2} x_{3} x_{4} x_{5}$.

- Numerical results on SparsePOP: obj.funct.+lbd, ubd on x_{i}

n	obj.funct.	relax. order r	cpu
5	$\sum x_{i} \uparrow$	3	1.83
6	$\sum x_{i} \uparrow$	4	753.2

- Numerical results on HOM4PS (Li-Li-Gao)

n	cpu sec.	\#solutions
5	0.1	70
6	0.2	156

Discretization of Mimura's ODE with 2 unknowns $u, v:[0,5] \rightarrow \mathbb{R}$ $u_{x x}=-(20 / 9)\left(35+16 u-u^{2}\right) u+20 u v$,
$v_{x x}=(1 / 4)((1+(2 / 5) v) v-u v)$,
$u_{x}(0)=u_{x}(5)=v_{x}(0)=v_{x}(5)=0$,
Discretize:
$x_{i}=i \Delta x(i=0,1,2, \ldots), u_{x}\left(x_{i}\right) \approx\left(u\left(x_{i+1}\right)-u\left(x_{i-1}\right)\right) /(2 \Delta x)$.

Discretization of Mimura's ODE with 2 unknowns $u, v:[0,5] \rightarrow \mathbb{R}$ $u_{x x}=-(20 / 9)\left(35+16 u-u^{2}\right) u+20 u v$,
$v_{x x}=(1 / 4)((1+(2 / 5) v) v-u v)$,
Discretize:

$$
x_{i}=i \Delta x(i=0,1,2, \ldots), u_{x}\left(x_{i}\right) \approx\left(u\left(x_{i+1}\right)-u\left(x_{i-1}\right)\right) /(2 \Delta x)
$$

Discretized system of polynomials with $\Delta x=1$:

$$
\begin{aligned}
& f_{1}(\boldsymbol{u}, \boldsymbol{v})=76.8 u_{1}+u_{3}+35.6 u_{1}^{2}-20.0 u_{1} v_{1}-2.22 u_{2}^{3}, \\
& f_{2}(\boldsymbol{u}, \boldsymbol{v})=-1.25 v_{1}+v_{2}+0.25 u_{1} v_{1}-0.1 v_{1}^{2}, \\
& f_{3}(\boldsymbol{u}, \boldsymbol{v})=u_{1}+75.8 u_{2}+u_{3}+35.6 u_{2}^{2}-20.0 u_{2} v_{2}-2.22 u_{2}^{3}, \\
& f_{4}(\boldsymbol{u}, \boldsymbol{v})=v_{1}-2.25 v_{2}+v_{3}+0.25 u_{2} v_{2}-0.1 v_{2}^{2}, \\
& f_{5}(\boldsymbol{u}, \boldsymbol{v})=u_{2}+75.8 u_{3}+u_{4}+35.6 u_{3}^{2}-20.0 u_{3} v_{3}-2.22 u_{3}^{2}, \\
& f_{6}(\boldsymbol{u}, \boldsymbol{v})=v_{2}-2.25 v_{3}+v_{4}+0.25 u_{3} v_{3}-0.1 v_{3}^{2}, \\
& f_{7}(\boldsymbol{u}, \boldsymbol{v})=u_{3}+76.8 u_{4}+35.6 u_{4}^{2}-20.0 u_{4} v_{4}-2.22 u_{4}^{3}, \\
& f_{8}(\boldsymbol{u}, \boldsymbol{v})=v_{3}-1.25 v_{4}+0.25 u_{4} v_{4}-0.1 v_{4}^{2} .
\end{aligned}
$$

Here $u_{i}=u\left(x_{i}\right), v_{i}=v\left(x_{i}\right)(i=0,1,2,3,4,5)$,
$\underline{u_{0}=u_{1}, u_{5}=u_{4}, v_{0}=v_{1} \text { and } v_{5}=v_{4} .}$

Discretization of Mimura's ODE with 2 unknowns $u, v:[0,5] \rightarrow \mathbb{R}$ $u_{x x}=-(20 / 9)\left(35+16 u-u^{2}\right) u+20 u v$,
$v_{x x}=(1 / 4)((1+(2 / 5) v) v-u v)$,
$u_{x}(0)=u_{x}(5)=v_{x}(0)=v_{x}(5)=0$,
Discretize:
$x_{i}=i \Delta x(i=0,1,2, \ldots), u_{x}\left(x_{i}\right) \approx\left(u\left(x_{i+1}\right)-u\left(x_{i-1}\right)\right) /(2 \Delta x)$.

Discretization of Mimura's ODE with 2 unknowns $u, v:[0,5] \rightarrow \mathbb{R}$ $u_{x x}=-(20 / 9)\left(35+16 u-u^{2}\right) u+20 u v$,
$v_{x x}=(1 / 4)((1+(2 / 5) v) v-u v)$,
$u_{x}(0)=u_{x}(5)=v_{x}(0)=v_{x}(5)=0$,
Discretize:
$x_{i}=i \Delta x(i=0,1,2, \ldots), u_{x}\left(x_{i}\right) \approx\left(u\left(x_{i+1}\right)-u\left(x_{i-1}\right)\right) /(2 \Delta x)$.

- Numerical results on SparsePOP

Δx	n	obj.funct.	relax. order r	cpu
1.0	8	$\sum r_{i} u\left(x_{i}\right) \uparrow$	3	11.3
0.5	18	$\sum r_{i} u\left(x_{i}\right) \uparrow$	3	57.8

Here $r_{i} \in(0,1)$: random numbers.

Discretization of Mimura's ODE with 2 unknowns $u, v:[0,5] \rightarrow \mathbb{R}$ $u_{x x}=-(20 / 9)\left(35+16 u-u^{2}\right) u+20 u v$,
$v_{x x}=(1 / 4)((1+(2 / 5) v) v-u v)$,
$u_{x}(0)=u_{x}(5)=v_{x}(0)=v_{x}(5)=0$,
Discretize:
$x_{i}=i \Delta x(i=0,1,2, \ldots), u_{x}\left(x_{i}\right) \approx\left(u\left(x_{i+1}\right)-u\left(x_{i-1}\right)\right) /(2 \Delta x)$.

- Numerical results on SparsePOP

Δx	n	obj.funct.	relax. order r	cpu
1.0	8	$\sum r_{i} u\left(x_{i}\right) \uparrow$	3	11.3
0.5	18	$\sum r_{i} u\left(x_{i}\right) \uparrow$	3	57.8

Here $r_{i} \in(0,1)$: random numbers.

Discretization of Mimura's ODE with 2 unknowns $u, v:[0,5] \rightarrow \mathbb{R}$
$u_{x x}=-(20 / 9)\left(35+16 u-u^{2}\right) u+20 u v$,
$v_{x x}=(1 / 4)((1+(2 / 5) v) v-u v)$,
$u_{x}(0)=u_{x}(5)=v_{x}(0)=v_{x}(5)=0$,
Discretize:
$x_{i}=i \Delta x(i=0,1,2, \ldots), u_{x}\left(x_{i}\right) \approx\left(u\left(x_{i+1}\right)-u\left(x_{i-1}\right)\right) /(2 \Delta x)$.

- Numerical results on SparsePOP

Δx	n	obj.funct.	relax. order r	cpu
1.0	8	$\sum r_{i} u\left(x_{i}\right) \uparrow$	3	11.3
0.5	18	$\sum r_{i} u\left(x_{i}\right) \uparrow$	3	57.8

Here $r_{i} \in(0,1)$: random numbers.

Discretization of Mimura's ODE with 2 unknowns $u, v:[0,5] \rightarrow \mathbb{R}$ $u_{x x}=-(20 / 9)\left(35+16 u-u^{2}\right) u+20 u v$,
$v_{x x}=(1 / 4)((1+(2 / 5) v) v-u v)$,
$u_{x}(0)=u_{x}(5)=v_{x}(0)=v_{x}(5)=0$,
Discretize:
$x_{i}=i \Delta x(i=0,1,2, \ldots), u_{x}\left(x_{i}\right) \approx\left(u\left(x_{i+1}\right)-u\left(x_{i-1}\right)\right) /(2 \Delta x)$.

- Numerical results on SparsePOP

Δx	n	obj.funct.	relax. order r	cpu
1.0	8	$\sum r_{i} u\left(x_{i}\right) \uparrow$	3	11.3
0.5	18	$\sum r_{i} u\left(x_{i}\right) \uparrow$	3	57.8

Here $r_{i} \in(0,1)$: random numbers.

- Numerical results on HOM4PS

Δx	n	cpu sec.	\#solutions	\#real solutions
1.0	8	2.2	1296	222
0.5	18	167.7	$10,077,696$	not traced
		(M.vol.)	(M.vol.)	(M.cells=1089)

Discretization of DAE with 3 unknowns $y_{1}, y_{2}, y_{3}:[0,2] \rightarrow \mathbb{R}$
$y_{1}^{\prime}=y_{3}, 0=y_{2}\left(1-y_{2}\right), 0=y_{1} y_{2}+y_{3}\left(1-y_{2}\right)-t, y_{1}(0)=y_{1}^{0}$.
2 solutions : $y(t)=(t, 1,1)$ and $y(t)=\left(y_{1}^{0}+t_{2}^{2}, 0, t\right)$.

Discretization of DAE with 3 unknowns $y_{1}, y_{2}, y_{3}:[0,2] \rightarrow \mathbb{R}$ $y_{1}^{\prime}=y_{3}, 0=y_{2}\left(1-y_{2}\right), 0=y_{1} y_{2}+y_{3}\left(1-y_{2}\right)-t, y_{1}(0)=y_{1}^{0}$. 2 solutions : $y(t)=(t, 1,1)$ and $y(t)=\left(y_{1}^{0}+t_{2}^{2}, 0, t\right)$.

- Numerical results on SparsePOP
- c-sparse

y_{1}^{0}	Δt	n	obj.funct.	relax. order r	cpu
0	0.02	297	$\sum y_{2}\left(t_{i}\right) \uparrow$	2	30.9
1	0.02	297	$\sum y_{1}\left(t_{i}\right) \uparrow$	2	33.9

Solution: $y(t)=(t, 1,1)$

Solution: $y(t)=\left(y_{1}^{0}+t_{2}^{2}, 0, t\right)$

Contents

1. PHoMpara - Parallel implementation of the polyhedral homotopy method ([1] Gunji-Kim-Fujisawa-Kojima '06)
2. SparsePOP - Matlab implementation of SDP relaxation for sparse POPs ([2] Waki-Kim-Kojima-Muramatsu '05)
3. Numerical comparison between the SDP relaxation and the polyhedral homotopy method ([1]+[2]+[3] Mevissen-Kojima-Nie-Takayama)

4. Concluding remarks

SDP $=$ Semidefinite Program or Programming
POP = Polynomial Optimization Problem

- Some essential differences between Homotopy Continuation and (sparse) SDP Relaxation - 1 :
- Some essential differences between Homotopy Continuation and (sparse) SDP Relaxation - 1 :
(a) HC works on \mathbb{C}^{n} while SDPR on \mathbb{R}^{n}.
(b) HC aims to compute all isolated solutions; in SDPR, computing all isolated solutions is possible but expensive.
(c) SDPR can process inequalities.
- Some essential differences between Homotopy Continuation and (sparse) SDP Relaxation - 2 :
- Some essential differences between Homotopy Continuation and (sparse) SDP Relaxation - 2 :
(d) SDPR is sensitive to degrees of polynomials of a POP because the SDP relaxed problem becomes larger rapidly as they increase.
\Rightarrow SDPR can be applied to POPs with lower degree polynomials such as degree ≤ 4 in practice.
(e) HC fits parallel computation more than SDPR.
(f) The effectiveness of sparse SDPR depends on the c-sparsity; for example, discretization of ODE, DAE, Optimal control problem and PDE.
- Some essential differences between Homotopy Continuation and (sparse) SDP Relaxation - 2 :
(d) SDPR is sensitive to degrees of polynomials of a POP because the SDP relaxed problem becomes larger rapidly as they increase.
\Rightarrow SDPR can be applied to POPs with lower degree polynomials such as degree ≤ 4 in practice.
(e) HC fits parallel computation more than SDPR.
(f) The effectiveness of sparse SDPR depends on the c-sparsity; for example, discretization of ODE, DAE, Optimal control problem and PDE.

Thank you!

