Sums of Squares Relaxation of Polynomial Optimization Problems

Asian Mathematical Conference
Singapore, July 20-23, 2005
Masakazu Kojima
Tokyo Institute of Technology, Tokyo, Japan

- An introduction to the recent development of SOS relaxation for computing global optimal solutions of POPs.
- Exploiting sparsity in SOS relaxation to solve large scale POPs.

Outline

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. SOS relaxation of unconstrained POPs
4. Conversion of SOS relaxation into an SDP (Semidefinite Program)
5. Exploiting structured sparsity
6. SOS relaxation of constrained POPs - very briefly
7. Numerical results
8. Concluding remarks

Outline

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. SOS relaxation of unconstrained POPs
4. Conversion of SOS relaxation into an SDP (Semidefinite Program)
5. Exploiting structured sparsity
6. SOS relaxation of constrained POPs - very briefly
7. Numerical results
8. Concluding remarks
\mathbb{R}^{n} : the n-dim Euclidean space.
$x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}:$ a vector variable.
$f_{j}(x):$ a multivariate polynomial in $x \in \mathbb{R}^{n}(j=0,1, \ldots, m)$.
POP: min $f_{0}(x)$ sub.to $f_{j}(x) \geq 0(j=1, \ldots, m)$.
Example: $\boldsymbol{n}=3$

$$
\begin{aligned}
\min & f_{0}(x) \equiv x_{1}^{3}-2 x_{1} x_{2}^{2}+x_{1}^{2} x_{2} x_{3}-4 x_{3}^{2} \\
\text { sub.to } & f_{1}(x) \equiv-x_{1}^{2}+5 x_{2} x_{3}+1 \geq 0 \\
& f_{2}(x) \equiv x_{1}^{2}-3 x_{1} x_{2} x_{3}+2 x_{3}+2 \geq 0 \\
& f_{3}(x) \equiv-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}+1 \geq 0 \\
& x_{1}\left(x_{1}-1\right)=0(0-1 \text { integer }) \\
& x_{2} \geq 0, x_{3} \geq 0, x_{2} x_{3}=0 \text { (complementarity) } .
\end{aligned}
$$

- Various problems can be described as POPs.
- A unified theoretical model for global optimization in nonlinear and combinatorial optimization problems.

POP: $\min f_{0}(x)$ sub.to $f_{j}(x) \geq 0(j=1, \ldots, m)$.
[1] J.B.Lasserre, "Global optimization with polynomials and the problems of moments", SIAM J. on Optim. (2001).
[2] P.A.Parrilo, "Semidefinite programming relaxations for semialgebraic problems". Math. Prog. (2003).
$\bullet[1] \Longrightarrow$ SDP relaxation — primal approach.
$\bullet[2] \Longrightarrow$ SOS relaxation - dual approach.

- [1] and [2] are dual to each other.
(a) Lower bounds for the optimal value.
(b) Convergence to global optimal solutions in theory.
(c) Large-scale SDPs require enormous computation.
(d) "Exploit structured sparsity" to solve large scale POPs.

Outline

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. SOS relaxation of unconstrained POPs
4. Conversion of SOS relaxation into an SDP (Semidefinite Program)
5. Exploiting structured sparsity
6. SOS relaxation of constrained POPs - very briefly
7. Numerical results
8. Concluding remarks

$$
f(x) \text { : a nonnegative polynomial } \Leftrightarrow f(x) \geq 0\left(\forall x \in \mathbb{R}^{n}\right) .
$$

\mathcal{N} : the set of nonnegative polynomials in $x \in \mathbb{R}^{n}$.
$f(x)$: an SOS (Sum of Squares) polynomial

$$
\exists \text { polynomials } g_{1}(x), \ldots, \stackrel{\hat{\mathbb{1}}}{g_{k}}(x) ; f(x)=\sum_{i=1}^{k} g_{i}(x)^{2} .
$$

SOS_{*} : the set of SOS. Obviously, $\mathrm{SOS}_{*} \subset \mathcal{N}$. $\operatorname{SOS}_{2 r}=\left\{f \in \mathrm{SOS}_{*}: \operatorname{deg} f \leq 2 r\right\}:$ SOSs with degree ar most $2 r$.
$n=2 . f\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}-2 x_{2}+1\right)^{2}+\left(3 x_{1} x_{2}+x_{2}-4\right)^{2} \in \mathrm{SOS}_{4}$.

- In theory, $\mathrm{SOS}_{*}(\mathrm{SOS}) \subset \mathcal{N} . \mathrm{SOS}_{*} \neq \mathcal{N}$ in general.
- In practice, $f(x) \in \mathcal{N} \backslash$ SOS $_{*}$ is rare.
- So we replace \mathcal{N} by SOS $_{*} \Longrightarrow$ SOS Relaxations.

Outline

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. SOS relaxation of unconstrained POPs
4. Conversion of SOS relaxation into an SDP (Semidefinite Program)
5. Exploiting structured sparsity
6. SOS relaxation of constrained POPs - very briefly
7. Numerical results
8. Concluding remarks
$\mathcal{P}: \min _{n} f(x)$, where f is a polynomial with $\operatorname{deg} f=2 r$
$\mathcal{P}: \quad \min _{n} f(x)$, where f is a polynomial with $\operatorname{deg} f=2 r$

1

$$
\begin{aligned}
& \mathcal{P}^{\prime}: \max \zeta \text { s.t } f(x)-\zeta \geq 0\left(\forall x \in \mathbb{R}^{n}\right) \\
& \hat{\mathbb{I}} \\
& f(x)-\zeta \in \mathcal{N} \text { (the nonnegative polynomials) }
\end{aligned}
$$

Here x is an index describing inequality constraints.

$\mathcal{P}: \quad \min _{n} f(x)$, where f is a polynomial with $\operatorname{deg} f=2 r$ $x \in \mathbb{R}^{n}$

I

$$
\begin{aligned}
& \mathcal{P}^{\prime}: \max \zeta \text { s.t } f(x)-\zeta \geq 0\left(\forall x \in \mathbb{R}^{n}\right) \\
& \hat{\mathbb{I}} \\
& f(x)-\zeta \in \mathcal{N} \text { (the nonnegative polynomials) }
\end{aligned}
$$

Here x is an index describing inequality constraints.
$\Sigma \subset \mathrm{SOS}_{2 r} \subset \mathrm{SOS}_{*} \subset \mathcal{N} \Downarrow$ a subproblem of $\mathcal{P}^{\prime}=$ a relaxation of \mathcal{P}

$$
\mathcal{P}^{\prime}: \max \zeta \text { sub.to } f(x)-\zeta \in \Sigma
$$

$\mathrm{SOS}_{*}\left(\mathrm{SOS}_{2 r}=\right)$ the set of SOS polynomials (with degree $\leq 2 r$).
$\mathcal{P}: \min _{x} f(x)$, where f is a polynomial with $\operatorname{deg} f=2 r$ $x \in \mathbb{R}^{n}$

1

$$
\begin{aligned}
\mathcal{P}^{\prime}: \max \zeta \text { s.t } & f(x)-\zeta \geq 0\left(\forall x \in \mathbb{R}^{n}\right) \\
& f(x)-\zeta \in \mathcal{N} \text { (the nonnegative polynomials) }
\end{aligned}
$$

Here x is an index describing inequality constraints.
$\Sigma \subset \mathrm{SOS}_{2 r} \subset \mathrm{SOS}_{*} \subset \mathcal{N} \Downarrow$ a subproblem of $\mathcal{P}^{\prime}=$ a relaxation of \mathcal{P}

$$
\mathcal{P}^{\prime}: \max \zeta \text { sub.to } f(x)-\zeta \in \Sigma
$$

$\operatorname{SOS}_{*}\left(\operatorname{SOS}_{2 r}=\right)$ the set of SOS polynomials (with degree $\leq 2 r$).

- the min.val of $\mathcal{P}=$ the max.val of $\mathcal{P}^{\prime} \geq$ the max.val of $\mathcal{P}^{\prime \prime}$.
- $\mathcal{P} "$ can be solved as an SDP (Semidefinite Program) - next.
- In practice, we can exploit structured sparsity of the Hessian matrix of f to reduce the size of Σ - later.

Outline

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. SOS relaxation of unconstrained POPs
4. Conversion of SOS relaxation into an SDP (Semidefinite Program)
5. Exploiting structured sparsity
6. SOS relaxation of constrained POPs - very briefly
7. Numerical results
8. Concluding remarks

Conversion of SOS relaxation into an SDP - 1
What is an SDP (Semidefinite Program)?

- An extension of LP (Linear Program) in \mathbb{R}^{n} to the space \mathcal{S}^{n} of symmetric matrices;
variable a vector $x \in \mathbb{R}^{n} \Longrightarrow X \in \mathcal{S}^{n}$. inequality $\quad \mathbb{R}^{n} \ni x \geq 0 \Longrightarrow \mathcal{S}^{n} \ni X \succeq O$ (positive semidefinite).
- Can be solved by the interior-point method.
- Lots of applications.

Conversion of SOS relaxation into an SDP - 2
$a_{p} \in \mathbb{R}^{n}(p=0,1,2, \ldots, m), b_{p} \in \mathbb{R}(p=1,2, \ldots, m)$: data.
$x \in \mathbb{R}^{n}$: variable.
$a_{p} \cdot x=\sum_{j=1}^{n}\left[a_{p}\right]_{j} x_{j}$ (the inner product).
LP (Linear Program):

```
max }\mp@subsup{a}{0}{}\cdot
s.t. }\quad\mp@subsup{a}{p}{}\cdotx=\mp@subsup{b}{p}{}(p=1,\ldots,m),x\geq0
```

SDP (Semidefinite Program):

```
max }\mp@subsup{A}{0}{}\bullet
s.t. }\quad\mp@subsup{A}{p}{}\bulletX=\mp@subsup{b}{p}{}(p=1,\ldots,m),X\succeqO
```

$A_{p} \in \mathcal{S}^{n}(p=0,1,2, \ldots, m), b_{p} \in \mathbb{R}(p=1,2, \ldots, m):$ data $X \in \mathcal{S}^{n}$: variable. $A_{p} \bullet X=\sum_{i=1}^{n} \sum_{j=1}^{n}\left[A_{p}\right]_{i j} X_{i j}$ (the inner product).
\mathcal{S}^{n} : the set of $n \times n$ real symmetric matrices. $X \succeq O: X \in \mathcal{S}^{n}$ is positive semidefinite.

Conversion of SOS relaxation into an SDP - 3
Representation of
$\operatorname{SOS}_{2 r} \equiv\left\{\sum_{j=1}^{k} g_{j}(x)^{2}: \exists k \geq 1, g_{j}(x):\right.$ degree at most $\left.r\right\} \subset$ SOS $_{*}$.
$\forall r$-degree poly. $g(x) \exists a \in \mathbb{R}^{d(r)} ; g(x)=a^{T} u_{r}(x)$, where

$$
\begin{aligned}
u_{r}(x)= & \left(1, x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, \ldots, x_{n}^{2}, \ldots, x_{1}^{r}, \ldots, x_{n}^{r}\right)^{T}, \\
& (\text { a column vector of a basis of } r \text {-degree polynomial }) \\
\boldsymbol{d}(r)= & \binom{n+r}{r}: \text { the dimension of } u_{r}(x) .
\end{aligned}
$$

\Downarrow

$$
\begin{aligned}
\operatorname{SOS}_{2 r} & =\left\{\sum_{j=1}^{k}\left(a_{j}^{T} u_{r}(x)\right)^{2}: k \geq 1, a_{j} \in \mathbb{R}^{d(r)}\right\} \\
& =\left\{u_{r}(x)^{T}\left(\sum_{j=1}^{k} a_{j} a_{j}^{T}\right) u_{r}(x): k \geq 1, a_{j} \in \mathbb{R}^{d(r)}\right\} \\
& =\left\{u_{r}(x)^{T} V u_{r}(x): V \text { is a positive semidefinite matrix }\right\} .
\end{aligned}
$$

Conversion of SOS relaxation into an SDP - 4
Example. $n=2$, SOS of at most deg. 2 polynomials in $x=\left(x_{1}, x_{2}\right)$.
$\operatorname{SOS}_{4} \equiv\left\{\sum_{i=1}^{k} g_{i}(x)^{2}: k \geq 1, g_{i}(x)\right.$ is at most deg. 2 polynomial $\}$

$$
=\left\{\left(\begin{array}{c}
1 \\
x_{1} \\
x_{2} \\
x_{1}^{2} \\
x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right)^{T} V\left(\begin{array}{c}
1 \\
x_{1} \\
x_{2} \\
x_{1}^{2} \\
x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right): V \text { is a } 6 \times 6 \text { psd matrix }\right\}
$$

Conversion of SOS relaxation into an SDP - 5
Example : $f(x)=-x_{1}+2 x_{2}+3 x_{1}^{2}-5 x_{1}^{2} x_{2}^{2}+7 x_{2}^{4}$
$\max \zeta$ sub.to $f(x)-\zeta \in \mathrm{SOS}_{4}$ (SOS of at most deg. 2 polynomials)
I
$\max \zeta$
Sum of Squares
$\begin{array}{ll} & \\ \text { s.t. } & f(x)-\zeta=\left(\begin{array}{l}1 \\ x_{1} \\ x_{2} \\ x_{1}^{2} \\ x_{1} x_{2} \\ x_{2}^{2}\end{array}\right)^{T}\left(\begin{array}{llllll}V_{11} & V_{12} & V_{13} & V_{14} & V_{15} & V_{16} \\ V_{12} & V_{22} & V_{23} & V_{24} & V_{25} & V_{26} \\ V_{13} & V_{23} & V_{33} & V_{34} & V_{35} & V_{36} \\ V_{14} & V_{24} & V_{33} & V_{44} & V_{45} & V_{46} \\ V_{15} & V_{25} & V_{35} & V_{45} & V_{55} & V_{56} \\ V_{16} & V_{26} & V_{36} & V_{46} & V_{56} & V_{66}\end{array}\right)\left(\begin{array}{l}1 \\ x_{1} \\ x_{2} \\ x_{1}^{2} \\ x_{1} x_{2} \\ x_{2}^{2}\end{array}\right) \\ \left(\forall\left(x_{1}, \boldsymbol{x}_{2}\right)^{\boldsymbol{T}} \in \mathbb{R}^{n}\right), \quad \mathbf{6} \times \mathbf{6} V \succeq O\end{array}$
I Compare the coef. of $1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}$ on both side of $=$
SDP (Semidefinite Program)
$\max \zeta$ s.t. $\quad-\zeta=V_{11},-1=2 V_{12}, 2=2 V_{13}, 3=2 V_{14}+V_{22}$,
$-5=2 V_{46}+V_{55}, 7=V_{66}$, all others $0=\cdots, V \succeq O$
In general, each equality constraint is a linear equation in ζ and V.

Outline

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. SOS relaxation of unconstrained POPs
4. Conversion of SOS relaxation into an SDP (Semidefinite Program)
5. Exploiting structured sparsity
6. SOS relaxation of constrained POPs - very briefly
7. Numerical results
8. Concluding remarks
$\mathcal{P}: \min _{x} f(x)$, where f is a polynomial with $\operatorname{deg} f=2 r$ $x \in \mathbb{R}^{n}$
$H:$ the sparsity pattern of the Hessian matrix of $f(x)$

$$
H_{i j}=\left\{\begin{array}{l}
\star \text { if } i=j \text { or } \partial^{2} f(x) / \partial x_{i} \partial x_{j} \not \equiv 0 \\
0 \text { otherwise }
\end{array}\right.
$$

$f(\boldsymbol{x})$: correlatively sparse $\Leftrightarrow \exists$ a sparse Cholesky fact. of \boldsymbol{H}.
(a) A sparse Chol. fact. is characterized as a sparse (chordal) $\operatorname{graph} G(N, E) ; N=\{1, \ldots, n\}$ and

$$
E=\left\{(i, j): H_{i j}=\star\right\}+" \text { fill-in". }
$$

(b) Let $C_{1}, C_{2}, \ldots, C_{q} \subset N$ be the maximal cliques of $G(N, E)$.

Sparse SOS relaxation
$\max \zeta$
s.t. $\quad f(x)-\zeta \in \sum_{k=1}^{q}\left(\right.$ SOS of polynomials in $\left.x_{i}\left(i \in C_{k}\right)\right)$

Dense SOS relaxation
$\max \zeta$
s.t. $\quad f(x)-\zeta \in\left(\right.$ SOS of polynomials in $\left.x_{i}(i \in N)\right)$

- Sparse relaxation is weaker but less expensive in practice.

Example: Generalized Rosenbrock function.

$$
f(x)=\sum_{i=2}^{n}\left(100\left(x_{i}-x_{i-1}^{2}\right)^{2}+\left(1-x_{i}\right)^{2}\right) .
$$

Dense SOS relaxation $\max \zeta$

$$
\text { s.t. } f(x)-\zeta \in\left(\text { SOS of deg-2. poly. in } x_{1}, x_{2}, \ldots, x_{n}\right)
$$

- The size of Dense grows very rapidly, so we can't apply Dense to the case $n \geq 20$ in practice.
- The Hessian matrix is sparse (tridiagonal).
- No fill-in in the Cholesky factorization.
- $C_{i}=\{i-1, i\}(i=2, \ldots, n-1):$ the max. cliques.

Sparse SOS relaxation
$\max \zeta$
s.t. $\quad f(x)-\zeta \in \sum_{i=2}^{n}$ (SOS of deg-2. poly. in x_{i-1}, x_{i})

- The size of Sparse grows linearly in n, and Sparse can process the case $n=800$ in less than 10 sec .

Outline

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. SOS relaxation of unconstrained POPs
4. Conversion of SOS relaxation into an SDP (Semidefinite Program)
5. Exploiting structured sparsity
6. SOS relaxation of constrained POPs - very briefly
7. Numerical results
8. Concluding remarks

POP: min $f_{0}(x)$ sub.to $f_{j}(x) \geq 0(j=1, \ldots, m)$.

- Rough sketch of SOS relaxation of POP

- Exploiting sparsity in SOS relaxation of POP

POP: min $f_{0}(x)$ sub.to $f_{j}(x) \geq 0(j=1, \ldots, m)$.

Generalized Lagrangian function

$$
\begin{aligned}
L\left(x, \lambda_{1}, \ldots, \lambda_{m}\right)= & f_{0}(x)-\sum_{j=1}^{m} \lambda_{j}(x) f_{j}(x) \\
& \text { for } \forall x \in \mathbb{R}^{n}, \forall \lambda_{j} \in \operatorname{SOS}_{*}
\end{aligned}
$$

If $\mathbb{R} \ni \lambda_{j} \geq 0$ then L is the standard Lagrangian function.
Generalized Lagrangian Dual

$$
\max _{\lambda_{1} \in \operatorname{SOS}_{*}, \ldots, \lambda_{m} \in \mathrm{SOS}_{*}} \min _{x \in \mathbb{R}^{n}} L\left(x, \lambda_{1}, \ldots, \lambda_{m}\right)
$$

I

$$
\begin{array}{ll}
\hline \max & \zeta \\
\text { s.t. } & L\left(x, \lambda_{1}, \ldots, \lambda_{m}\right)-\zeta \geq 0\left(\forall x \in \mathbb{R}^{n}\right), \\
& \lambda_{1} \in \operatorname{SOS}_{*}, \ldots, \lambda_{m} \in \operatorname{SOS}_{*}
\end{array}
$$

\Downarrow SOS relaxation

$$
\begin{array}{ll}
\hline \max & \zeta \\
\text { s.t. } & L\left(x, \lambda_{1}, \ldots, \lambda_{m}\right)-\zeta \in \Sigma_{0} \\
& \lambda_{1} \in \Sigma_{1}, \ldots, \lambda_{m} \in \Sigma_{m} .
\end{array}
$$

Here Σ_{j} denotes a set of SOS polynomials with a finite degree.

Outline

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. SOS relaxation of unconstrained POPs
4. Conversion of SOS relaxation into an SDP (Semidefinite Program)
5. Exploiting structured sparsity
6. SOS relaxation of constrained POPs - very briefly
7. Numerical results
8. Concluding remarks

Numerical results
Software

- MATLAB for constructing sparse and dense SDP relaxation problems
- SeDuMi to solve SDPs.

Hardware

- 2.4 GHz Xeon cpu with 6.0 GB memory.
G.Rosenbrock function:

$$
f(x)=\sum_{i=2}^{n}\left(100\left(x_{i}-x_{i-1}^{2}\right)^{2}+\left(1-x_{i}\right)^{2}\right)
$$

- Two minimizers on $\mathbb{R}^{n}: x_{1}= \pm 1, x_{i}=1(i \geq 2)$.
- Add $x_{1} \geq 0 \Rightarrow$ a single minimizer.

		cpu in sec.	
n	$\epsilon_{\text {obj }}$	Sparse	Dense
10	$2.5 \mathrm{e}-08$	0.2	10.6
15	$6.5 \mathrm{e}-08$	0.2	756.6
200	$5.2 \mathrm{e}-07$	2.2	-
400	$2.5 \mathrm{e}-06$	3.7	-
800	$5.5 \mathrm{e}-06$	6.8	-

$\epsilon_{\mathrm{obj}}=\frac{\mid \text { the lower bound for opt. value }- \text { the approx. opt. value } \mid}{\max \{1, \mid \text { the lower bound for opt. value } \mid\}}$.

An optimal control problem from Coleman et al. 1995

$$
\left.\begin{array}{ll}
\min & \frac{1}{M} \sum_{i=1}^{M-1}\left(y_{i}^{2}+x_{i}^{2}\right) \\
\text { s.t. } & y_{i+1}=y_{i}+\frac{1}{M}\left(y_{i}^{2}-x_{i}\right), \quad(i=1, \ldots, M-1), \quad y_{1}=1 .
\end{array}\right\}
$$

Numerical results on sparse relaxation

M	$\#$ of variables	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	cpu
600	1198	$3.4 \mathrm{e}-08$	$2.2 \mathrm{e}-10$	3.4
700	1398	$2.5 \mathrm{e}-08$	$8.1 \mathrm{e}-10$	3.3
800	1598	$5.9 \mathrm{e}-08$	$1.6 \mathrm{e}-10$	3.8
900	1798	$1.4 \mathrm{e}-07$	$6.8 \mathrm{e}-10$	4.5
1000	1998	$6.3 \mathrm{e}-08$	$2.7 \mathrm{e}-10$	5.0

$\epsilon_{\mathrm{obj}}=\frac{\mid \text { the lower bound for opt. value }- \text { the approx. opt. value } \mid}{\max \{1, \mid \text { the lower bound for opt. value } \mid\}}$, $\epsilon_{\text {feas }}=$ the maximum error in the equality constraints, cpu : cpu time in sec. to solve an SDP relaxation problem.
alkyl.gms : a benchmark problem from globallib

$$
\begin{array}{ll}
\min & -6.3 x_{5} x_{8}+5.04 x_{2}+0.35 x_{3}+x_{4}+3.36 x_{6} \\
\text { sub.to } & -0.820 x_{2}+x_{5}-0.820 x_{6}=0, \\
& 0.98 x_{4}-x_{7}\left(0.01 x_{5} x_{10}+x_{4}\right)=0, \\
& -x_{2} x_{9}+10 x_{3}+x_{6}=0, \\
& x_{5} x_{12}-x_{2}\left(1.12+0.132 x_{9}-0.0067 x_{9}^{2}\right)=0, \\
& x_{8} x_{13}-0.01 x_{9}\left(1.098-0.038 x_{9}\right)-0.325 x_{7}=0.574, \\
& x_{10} x_{14}+22.2 x_{11}=35.82, \\
& x_{1} x_{11}-3 x_{8}=-1.33, \\
& \operatorname{lbd}_{i} \leq x_{i} \leq \text { ubd }_{i}(i=1,2, \ldots, 14) .
\end{array}
$$

		Sparse		Dense (Lasserre)	
problem	n	$\epsilon_{\text {obj }} \quad \epsilon_{\text {feas }} \quad$ cpu	$\epsilon_{\text {obj }} \quad \epsilon_{\text {feas }} \quad$ cpu		
alkyl	14	$5.6 \mathrm{e}-10 \quad 2.0 \mathrm{e}-08 \quad 23.0$	out of memory		

$\epsilon_{\mathrm{obj}}=\frac{\mid \text { the lower bound for opt. value }- \text { the approx. opt. value } \mid}{\max \{1, \mid \text { the lower bound for opt. value } \mid\}}$,
$\epsilon_{\text {feas }}=$ the maximum error in the equality constraints, cpu : cpu time in sec. to solve an SDP relaxation problem.

Some other benchmark problems from globallib

		Sparse			Dense (Lasserre)		
problem	n	$\epsilon_{\text {obj }}$	$\epsilon_{\text {feas }}$	cpu	$\epsilon_{\text {Obj }}$	$\epsilon_{\text {feas }}$	cpu
ex3_1_1	8	$6.3 \mathrm{e}-09$	$4.7 \mathrm{e}-04$	5.5	$0.7 \mathrm{e}-08$	$2.5 \mathrm{e}-03$	597.8
st_bpaf1b	10	$3.8 \mathrm{e}-08$	$2.8 \mathrm{e}-08$	1.0	$4.6 \mathrm{e}-09$	$7.2 \mathrm{e}-10$	1.7
st_e07	10	$0.0 \mathrm{e}+00$	$8.1 \mathrm{e}-05$	0.4	$0.0 \mathrm{e}+00$	$8.8 \mathrm{e}-06$	3.0
st_jcbpaf2	10	$1.1 \mathrm{e}-07$	$0.0 \mathrm{e}+00$	2.1	$1.1 \mathrm{e}-07$	$0.0 \mathrm{e}+00$	2.0
ex2_1_3	13	$5.1 \mathrm{e}-09$	$3.5 \mathrm{e}-09$	0.5	$1.6 \mathrm{e}-09$	$1.5 \mathrm{e}-09$	7.7
ex9_1_1	13	0.0	$4.5 \mathrm{e}-06$	1.5	0.0	$9.2 \mathrm{e}-07$	7.7
ex9_2_3	16	$0.0 \mathrm{e}+00$	$5.7 \mathrm{e}-06$	2.3	$0.0 \mathrm{e}+00$	$7.5 \mathrm{e}-06$	49.7
ex2_1_8	24	$1.0 \mathrm{e}-05$	$0.0 \mathrm{e}+00$	304.6	$3.4 \mathrm{e}-06$	$0.0 \mathrm{e}+00$	1946.6
ex5_2_2_c1	9	$1.0 \mathrm{e}-2$	$3.2 \mathrm{e}+01$	1.8	$1.6 \mathrm{e}-05$	$2.1 \mathrm{e}-01$	2.6
ex5_2_2_c2	9	$1.0 \mathrm{e}-02$	$7.2 \mathrm{e}+01$	2.1	$1.3 \mathrm{e}-04$	$2.7 \mathrm{e}-01$	3.5

- ex5_2_2_c1 and ex5_2_2_c2 - Dense is better.
- Sparse attains approx. opt. solutions with the same quality as Dense except ex5_2_2_c1 and ex5_2_2_c2.
- Sparse is much faster than Dense in large dim. cases.

Outline

1. POPs (Polynomial Optimization Problems)
2. Nonnegative polynomials and SOS (Sum of Squares) polynomials
3. SOS relaxation of unconstrained POPs
4. Conversion of SOS relaxation into an SDP (Semidefinite Program)
5. Exploiting structured sparsity
6. SOS relaxation of constrained POPs - very briefly
7. Numerical results
8. Concluding remarks

- Lasserre's (dense) relaxation - theoretical convergence but expensive in practice.
- The proposed sparse relaxation
$=$ Lasserre's (dense) relaxation + sparsity
- no theoretical convergence but very powerful in practice.
- There remain many issues to be studied further.
- Exploiting sparsity.
- Large-scale SDPs.
- Numerical difficulty in solving SDP relaxations of POPs.

This presentation material is available at
http://www.is.titech.ac.jp/~kojima/talk.html
Thank you!

References

[1] D. Henrion and J. B. Lasserre, "GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi'.
[2] S. Kim, M. Kojima and H. Waki, "Generalized Lagrangian duals and sums of squares relaxations of sparse polynomial optimization problems". To appear in SIAM J. on Optimization.
[3] J. B. Lasserre, "Global optimization with polynomials and the problems of moments", SIAM J. on Optimization, 11 (2001) 796-817.
[4] P. A. Parrilo, "Semidefinite programming relaxations for semi algebraic problems". Math. Prog., 96 (2003) 293-320.
[5] S. Prajna, A. Papachristodoulou and P. A. Parrilo, "SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB - User's Guide".
[6] H. Waki, S. Kim, M. Kojima and M. Muramatsu, "SparsePOP: a Sprase Semidefiite Programming Relaxation of Polynomial Optimization Problems".

