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• An introduction to the recent development of SOS relaxation
for computing global optimal solutions of POPs.

• Exploiting sparsity in SOS relaxation to solve large scale
POPs.
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R
n : the n-dim Euclidean space.

x = (x1, . . . , xn) ∈ R
n : a vector variable.

fj(x) : a multivariate polynomial in x ∈ R
n (j = 0, 1, . . . , m).

POP: min f0(x) sub.to fj(x) ≥ 0 (j = 1, . . . , m).

Example: n = 3

min f0(x) ≡ x3
1 − 2x1x

2
2 + x2

1x2x3 − 4x2
3

sub.to f1(x) ≡ −x2
1 + 5x2x3 + 1 ≥ 0,

f2(x) ≡ x2
1 − 3x1x2x3 + 2x3 + 2 ≥ 0,

f3(x) ≡ −x2
1 − x2

2 − x2
3 + 1 ≥ 0,

x1(x1 − 1) = 0 (0-1 integer),

x2 ≥ 0, x3 ≥ 0, x2x3 = 0 (complementarity).

• Various problems can be described as POPs.

• A unified theoretical model for global optimization in non-
linear and combinatorial optimization problems.
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POP: min f0(x) sub.to fj(x) ≥ 0 (j = 1, . . . , m).

[1] J.B.Lasserre, “Global optimization with polynomials and
the problems of moments”, SIAM J. on Optim. (2001).

[2] P.A.Parrilo, “Semidefinite programming relaxations for
semialgebraic problems”. Math. Prog. (2003).

• [1] =⇒ SDP relaxation — primal approach.

• [2] =⇒ SOS relaxation — dual approach.

• [1] and [2] are dual to each other.

(a) Lower bounds for the optimal value.

(b) Convergence to global optimal solutions in theory.

(c) Large-scale SDPs require enormous computation.

(d) “Exploit structured sparsity” to solve large scale POPs.
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f(x) : a nonnegative polynomial ⇔ f(x) ≥ 0 (∀x ∈ R
n).

N : the set of nonnegative polynomials in x ∈ R
n.

f(x) : an SOS (Sum of Squares) polynomial

m

∃ polynomials g1(x), . . . , gk(x); f(x) =

k
∑

i=1

gi(x)2.

SOS∗ : the set of SOS. Obviously, SOS∗ ⊂ N .
SOS2r = {f ∈ SOS∗ : deg f ≤ 2r} : SOSs with degree ar most 2r.

n = 2. f(x1, x2) = (x2
1 − 2x2 + 1)2 + (3x1x2 + x2 − 4)2 ∈ SOS4.

• In theory, SOS∗ (SOS) ⊂ N . SOS∗ 6= N in general.

• In practice, f(x) ∈ N\SOS∗ is rare.

• So we replace N by SOS∗ =⇒ SOS Relaxations.
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P: min
x ∈ R

n
f(x), where f is a polynomial with deg f = 2r
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P: min
x ∈ R

n
f(x), where f is a polynomial with deg f = 2r

m

P’: max ζ s.t f(x) − ζ ≥ 0 (∀x ∈ R
n)

m
f(x) − ζ ∈ N (the nonnegative polynomials)

Here x is an index describing inequality constraints.

f(x)

ζ
ζ

∗

x
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P: min
x ∈ R

n
f(x), where f is a polynomial with deg f = 2r

m

P’: max ζ s.t f(x) − ζ ≥ 0 (∀x ∈ R
n)

m
f(x) − ζ ∈ N (the nonnegative polynomials)

Here x is an index describing inequality constraints.

Σ ⊂ SOS2r ⊂ SOS∗ ⊂ N ⇓ a subproblem of P ′ = a relaxation of P

P”: max ζ sub.to f(x) − ζ ∈ Σ

SOS∗ (SOS2r =) the set of SOS polynomials (with degree ≤ 2r).
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P: min
x ∈ R

n
f(x), where f is a polynomial with deg f = 2r

m

P’: max ζ s.t f(x) − ζ ≥ 0 (∀x ∈ R
n)

m
f(x) − ζ ∈ N (the nonnegative polynomials)

Here x is an index describing inequality constraints.

Σ ⊂ SOS2r ⊂ SOS∗ ⊂ N ⇓ a subproblem of P ′ = a relaxation of P

P”: max ζ sub.to f(x) − ζ ∈ Σ

SOS∗ (SOS2r =) the set of SOS polynomials (with degree ≤ 2r).

• the min.val of P = the max.val of P ′ ≥ the max.val of P”.

• P” can be solved as an SDP (Semidefinite Program) — next.

• In practice, we can exploit structured sparsity of the Hessian
matrix of f to reduce the size of Σ — later.
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Conversion of SOS relaxation into an SDP — 1

What is an SDP (Semidefinite Program)?

• An extension of LP (Linear Program) in R
n to the space

Sn of symmetric matrices;

variable a vector x ∈ R
n =⇒ X ∈ Sn.

inequality R
n 3 x≥ 0 =⇒ Sn 3 X� O (positive semidefinite).

• Can be solved by the interior-point method.

• Lots of applications.
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Conversion of SOS relaxation into an SDP — 2

ap ∈ R
n (p = 0, 1, 2, . . . , m), bp ∈ R (p = 1, 2, . . . , m) : data.

x ∈ R
n : variable.

ap · x =
∑n

j=1[ap]jxj (the inner product).

LP (Linear Program):

max a0 · x
s.t. ap · x = bp (p = 1, . . . , m), x ≥ 0.

SDP (Semidefinite Program):

max A0 • X
s.t. Ap • X = bp (p = 1, . . . , m), X � O.

Ap ∈ Sn (p = 0, 1, 2, . . . , m), bp ∈ R (p = 1, 2, . . . , m) : data
X ∈ Sn : variable.
Ap • X =

∑n
i=1

∑n
j=1[Ap]ijXij (the inner product).

Sn : the set of n × n real symmetric matrices.
X� O : X ∈ Sn is positive semidefinite.
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Conversion of SOS relaxation into an SDP — 3

Representation of

SOS2r ≡







k
∑

j=1

gj(x)2 : ∃k ≥ 1, gj(x) : degree at most r







⊂ SOS∗.

∀ r-degree poly. g(x) ∃a ∈ R
d(r); g(x) = aTur(x), where

ur(x) = (1, x1, x2, . . . , xn, x2
1, x1x2, x1x3, . . . , x2

n, . . . , xr
1, . . . , xr

n)
T ,

(a column vector of a basis of r-degree polynomial),

d(r) =

(

n + r
r

)

: the dimension of ur(x).

⇓

SOS2r =







k
∑

j=1

(

aT
j ur(x)

)2

: k ≥ 1, aj ∈ R
d(r)







=







ur(x)T





k
∑

j=1

aja
T
j



ur(x) : k ≥ 1, aj ∈ R
d(r)







=
{

ur(x)TV ur(x) : V is a positive semidefinite matrix
}

.
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Conversion of SOS relaxation into an SDP — 4

Example. n = 2, SOS of at most deg.2 polynomials in x=(x1, x2).

SOS4 ≡

{

k
∑

i=1

gi(x)2 : k ≥ 1, gi(x) is at most deg.2 polynomial

}

=



















































1
x1

x2

x2
1

x1x2

x2
2

















T

V

















1
x1

x2

x2
1

x1x2

x2
2

















: V is a 6 × 6 psd matrix
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Conversion of SOS relaxation into an SDP — 5

Example : f(x) = −x1 + 2x2 + 3x2
1 − 5x2

1x
2
2 + 7x4

2

max ζ sub.to f(x) − ζ ∈ SOS4 (SOS of at most deg. 2 polynomials)

m

max ζ Sum of Squares

s.t. f(x) − ζ =

















1
x1

x2

x2
1

x1x2

x2
2

















T















V11 V12 V13 V14 V15 V16

V12 V22 V23 V24 V25 V26

V13 V23 V33 V34 V35 V36

V14 V24 V34 V44 V45 V46

V15 V25 V35 V45 V55 V56

V16 V26 V36 V46 V56 V66

































1
x1

x2

x2
1

x1x2

x2
2

















(∀(x1, x2)
T ∈ R

n), 6 × 6 V � O

m Compare the coef. of 1, x1, x2, x2
1, x1x2, x2

2 on both side of =

SDP (Semidefinite Program)

max ζ s.t. −ζ = V11, −1 = 2V12, 2 = 2V13, 3 = 2V14 + V22,
−5 = 2V46 + V55, 7 = V66, all others 0 = · · · , V � O

In general, each equality constraint is a linear equation in ζ and V .
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P: min
x ∈ R

n
f(x), where f is a polynomial with deg f = 2r

H : the sparsity pattern of the Hessian matrix of f(x)

Hij =

{

? if i = j or ∂2f(x)/∂xi∂xj 6≡ 0,
0 otherwise.

f(x) : correlatively sparse ⇔ ∃ a sparse Cholesky fact. of H.

(a) A sparse Chol. fact. is characterized as a sparse (chordal)
graph G(N, E); N = {1, . . . , n} and

E = {(i, j) : Hij = ?} + “fill-in”.

(b) Let C1, C2, . . . , Cq ⊂ N be the maximal cliques of G(N, E).

Sparse SOS relaxation

max ζ
s.t. f(x) − ζ ∈

∑q
k=1 (SOS of polynomials in xi (i ∈ Ck))

Dense SOS relaxation
max ζ
s.t. f(x) − ζ ∈ (SOS of polynomials in xi (i ∈ N))

• Sparse relaxation is weaker but less expensive in practice.
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Example: Generalized Rosenbrock function.

f(x) =
n

∑

i=2

(

100(xi − x2
i−1)

2 + (1 − xi)
2
)

.

Dense SOS relaxation
max ζ
s.t. f(x) − ζ ∈ (SOS of deg-2. poly. in x1, x2, . . . , xn)

• The size of Dense grows very rapidly, so we can’t apply
Dense to the case n ≥ 20 in practice.

• The Hessian matrix is sparse (tridiagonal).

• No fill-in in the Cholesky factorization.

• Ci = {i − 1, i} (i = 2, . . . , n − 1) : the max. cliques.

Sparse SOS relaxation
max ζ
s.t. f(x) − ζ ∈

∑n
i=2 (SOS of deg-2. poly. in xi−1, xi)

• The size of Sparse grows linearly in n, and Sparse can process
the case n = 800 in less than 10 sec.
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POP: min f0(x) sub.to fj(x) ≥ 0 (j = 1, . . . , m).

• Rough sketch of SOS relaxation of POP

“Generalized Lagrangian Dual”

+

“SOS relaxation of unconstrained POPs”

⇓
SOS relaxation of POP

• Exploiting sparsity in SOS relaxation of POP
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POP: min f0(x) sub.to fj(x) ≥ 0 (j = 1, . . . , m).

Generalized Lagrangian function

L(x, λ1, . . . , λm) = f0(x) −
m

∑

j=1

λj(x)fj(x)

for ∀x ∈ R
n, ∀λj ∈ SOS∗

If R 3 λj ≥ 0 then L is the standard Lagrangian function.

Generalized Lagrangian Dual
max

λ1 ∈ SOS∗, . . . , λm ∈ SOS∗

min
x ∈ R

n
L(x, λ1, . . . , λm)

m
max ζ
s.t. L(x, λ1, . . . , λm) − ζ ≥ 0 (∀x ∈ R

n),
λ1 ∈ SOS∗, . . . , λm ∈ SOS∗

⇓ SOS relaxation
max ζ
s.t. L(x, λ1, . . . , λm) − ζ ∈ Σ0

λ1 ∈ Σ1, . . . , λm ∈ Σm.
Here Σj denotes a set of SOS polynomials with a finite degree.
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Numerical results

Software

• MATLAB for constructing sparse and dense SDP relax-
ation problems

• SeDuMi to solve SDPs.

Hardware

• 2.4GHz Xeon cpu with 6.0GB memory.
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G.Rosenbrock function:

f(x) =
n

∑

i=2

(

100(xi − x2
i−1)

2 + (1 − xi)
2
)

• Two minimizers on R
n: x1 = ±1, xi = 1 (i ≥ 2).

• Add x1 ≥ 0 ⇒ a single minimizer.

cpu in sec.
n εobj Sparse Dense

10 2.5e-08 0.2 10.6
15 6.5e-08 0.2 756.6

200 5.2e-07 2.2 —
400 2.5e-06 3.7 —
800 5.5e-06 6.8 —

εobj =
|the lower bound for opt. value − the approx. opt. value|

max{1, |the lower bound for opt. value|}
.
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An optimal control problem from Coleman et al. 1995

min
1

M

M−1
∑

i=1

(

y2
i + x2

i

)

s.t. yi+1 = yi +
1

M
(y2

i − xi), (i = 1, . . . , M − 1), y1 = 1.



















Numerical results on sparse relaxation

M # of variables εobj εfeas cpu

600 1198 3.4e-08 2.2e-10 3.4
700 1398 2.5e-08 8.1e-10 3.3
800 1598 5.9e-08 1.6e-10 3.8
900 1798 1.4e-07 6.8e-10 4.5

1000 1998 6.3e-08 2.7e-10 5.0

εobj =
|the lower bound for opt. value − the approx. opt. value|

max{1, |the lower bound for opt. value|}
,

εfeas = the maximum error in the equality constraints,

cpu : cpu time in sec. to solve an SDP relaxation problem.
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alkyl.gms : a benchmark problem from globallib

min −6.3x5x8 + 5.04x2 + 0.35x3 + x4 + 3.36x6

sub.to −0.820x2 + x5 − 0.820x6 = 0,
0.98x4 − x7(0.01x5x10 + x4) = 0,
−x2x9 + 10x3 + x6 = 0,
x5x12 − x2(1.12 + 0.132x9 − 0.0067x2

9) = 0,
x8x13 − 0.01x9(1.098 − 0.038x9) − 0.325x7 = 0.574,
x10x14 + 22.2x11 = 35.82,
x1x11 − 3x8 = −1.33,
lbdi ≤ xi ≤ ubdi (i = 1, 2, . . . , 14).

Sparse Dense (Lasserre)
problem n εobj εfeas cpu εobj εfeas cpu

alkyl 14 5.6e-10 2.0e-08 23.0 out of memory

εobj =
|the lower bound for opt. value − the approx. opt. value|

max{1, |the lower bound for opt. value|}
,

εfeas = the maximum error in the equality constraints,

cpu : cpu time in sec. to solve an SDP relaxation problem.
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Some other benchmark problems from globallib

Sparse Dense (Lasserre)
problem n εobj εfeas cpu εobj εfeas cpu

ex3 1 1 8 6.3e-09 4.7e-04 5.5 0.7e-08 2.5e-03 597.8
st bpaf1b 10 3.8e-08 2.8e-08 1.0 4.6e-09 7.2e-10 1.7

st e07 10 0.0e+00 8.1e-05 0.4 0.0e+00 8.8e-06 3.0
st jcbpaf2 10 1.1e-07 0.0e+00 2.1 1.1e-07 0.0e+00 2.0
ex2 1 3 13 5.1e-09 3.5e-09 0.5 1.6e-09 1.5e-09 7.7
ex9 1 1 13 0.0 4.5e-06 1.5 0.0 9.2e-07 7.7
ex9 2 3 16 0.0e+00 5.7e-06 2.3 0.0e+00 7.5e-06 49.7
ex2 1 8 24 1.0e-05 0.0e+00 304.6 3.4e-06 0.0e+00 1946.6

ex5 2 2 c1 9 1.0e-2 3.2e+01 1.8 1.6e-05 2.1e-01 2.6
ex5 2 2 c2 9 1.0e-02 7.2e+01 2.1 1.3e-04 2.7e-01 3.5

• ex5 2 2 c1 and ex5 2 2 c2 — Dense is better.

• Sparse attains approx. opt. solutions with the same quality
as Dense except ex5 2 2 c1 and ex5 2 2 c2.

• Sparse is much faster than Dense in large dim. cases.
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• Lasserre’s (dense) relaxation
— theoretical convergence but expensive in practice.

• The proposed sparse relaxation
= Lasserre’s (dense) relaxation + sparsity
— no theoretical convergence but very powerful in practice.

• There remain many issues to be studied further.

– Exploiting sparsity.

– Large-scale SDPs.

– Numerical difficulty in solving SDP relaxations of POPs.

This presentation material is available at

http://www.is.titech.ac.jp/∼kojima/talk.html

Thank you!
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